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1 ABSTRACT
The variation with temperature of the magnetization of Ni, Fe, Co, Dy and

Gd are studied. New data for Co, Dy and Gd is presented along with previously
reported measurement for Ni, Fe, and Co. The coefficients of the T°” term evaluated
are compared with result from independent experiments.

II INTRODUCTION

It has been established that spin wave excitations exist in metals 1l and that
. they provide the dominant mechanism for initial decay of the ferromagnetic moment
4 By using a special expansion formalism we have already shown that spinwares,
when quantized are ideal Bosons with an effective chemical potential effected by
wave-wave interactions P*. The nearest neighbour exchange interaction model of a
ferromagnet is described by the following Hamiltonian [5]

N
H=-2J3 5,5 +Bognz .S} )

Ji J=l

S; is the spin oprator at the j™ atom, N is the total number of atoms, g the Lande-g
factor, uB the Bohr magneton, the summation is taken over all the nearest neighbour
pairs, and the external magnetic field Bo is directed along the Z-axis.

For the cubic crystals, the Hamiltonian is written as

H:%(sz —u)vxk @)
where,

Fo228l-ack )){2 3)

JK) =Y, 3, expliR, -, @

where z is the number of nearest neighbours and R ' =(0,0,0) and R = (% ¥, z)
The reciprocal lattic vector is defined by

k = (ke ky, k;}
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where
ky = k Cos®Sin6, k, = k Sin®5in6, k, = kCosd

The nearest neighbour Distance on a simple cubic lattice in units of a is known,
while the nearest neighbour distances on a body centered and face cubic lattice in

units of /2 are also known.
In most work we estimate the nearest neighbour distances on an hexagonal
close parked lattice in units of a. The exchange integral is then evaluated.

m THE FOURIER TRANSFORMATION OF J(X)
For a simple cubic lattice, the Fourier transform, Eqn. (4) becomes

J(k)=¥% T Jjicosk(R,~R;) (5)
J(k)Y=% [cos(k, a)+cos(k,a) +cos(k, a)] (6) £

For a body centered cubic lattice, Eqn. (4) becomes

J(ky=Jcos(k, %)+ cos(k, %)+ cos(k, )] o)
while for a face centered cubic lattice, we get

J(k)="4 [cos(k, Sz)+cos(k, o) +cos(k, yﬁ)] (8)

The Fourier transform J(k) for a hexagonal close packed lattice is obtained as follows
using the estimated nearest neighbour distances.

12
J(h)=24 cos(k.x, +k,y, +k.z,) )

1=1

Taking each term separately, we have the following:

2 Kk x +K. .y, +k:z;)2 %
EE [ e | (%D, 0)(ka)?] (10)
1=l d
Also i
12 kxx,+Kyy,+k:z‘)"' )
%22[( a ] = Yy (Y )A'(D, 8)(ka)* (11)

1=l
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Y DISCUSSION OF RESULTS

With the effect of the electrochemical potential, the coefficients of T*2, T
and T'? of spontaneous magnetization of some ferromagnets have been tabulated in
tables 2.1 and 2.2.

In cases of Iron and Nickel for which experimented values are available, our
computed values of the coefficients are in impressive agreement with the
experimental ones"). In finding the effect of the electrochemical potential on the

5/2

. coefficients of T in the expression of the Spontanecous magnetization for

ferromagnets with the Hexagonal close packed structures, we require the correct
expansion for the terms encapsulated in the dispersion relation.
For the Hexagonal close packed crystals, th Hamiltonian is

H= Z(F'k2 —p)nk

&
where

E

2

_ 252/{D"(@, 6)(ka)* - A"(®, O)(ka)" - B"(®, O)(ka)° + }/

and D"(®.8), A"(D,0), and B"(P,8) have been outlined and evaluated.

Our calculations also give the coefficients of T for the hexagonal close
packed structures of Dysprosium and Gadolinium, the experimentally measured
values of which are not available from literature.

It is not out of place to emphasize that the behaviour of the magnetization of
these ferrometals is very well described at low temperatures by the Spinwave theory.

Table 2.1 Coefficient of T2, T** and T”” of spontaneous magnetization

Elements Lattice Spins ’ C, C; C;
structure | Nearest T Nk i
neighbours
Iron (Fe) BCC S=1/2,Z2=7 2.292 0.828 3.167
S=1/2,Z=7.5 | 3.647 0.894 3.420
S=1/2, Z=7 4.000 1.065 4.008
Cobalt (Co) HPC S=1/2,Z=11 2 il 0.357 1.355
S=1/2,7=12 2.259 0.496 2271
Nickel (Ni) FCC S§=1/2, Z=12 7.359 3.600 37.87
Gadolium (Gd) | HCP S=1/2,7=12 | 2.279 Tl 9275w
| Dysprosium (Dy) S=1/2, Z=12 | 1.67 50 | 2497 x10° | 6.929 510"
283
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Table 2.2 Calculated and Experimental Values of Coefficient of T*”and T

Lattice | Spins and nearest Ci C, C, C,

structure neighbour Experimental| Experimental

BCC S=112,Z=75 36472150 | 088050 | 34 50" [ BTy

BCC S=1/2, Z=8.0 4.000 x10° | 1.065x10” | 341x10° | 1% 1x0°

HCP $=1/2, Z=11 2.068 x10° | 0.357x10° | 1.7 x10°

HCP S=1/2,7-12 22594,0° | 0496 x10° | 1.7 510"

FCC S=1/2, Z=12 7.395%10° | 0.360x10° | 74x10° | 1.5 230"

HCP S=7/2, Z=12 2.790%10° | 0.770 x10°

HCP S=5 7=12 1.671 510" | 0.249 510" ™~
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