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ABSTRACT

In this paper we investigate the effect of a moving wall on the velocity field
of a power-law fluid. We show that when the fluid is dilatant (n > 1), momentum
penetration is finite.

1. INTRODUCTION

Since Bird (1959) investigated an unsteady pseudoplastic flow near a
moving wall, there has been much interest ion non-Newtonian flows. Recently,
Hassanien et al, (1998) examined flow and heat transfer in a power-law fluid over a
non-isothermal stretching sheet. They studied steady flow and showed that the
friction and heat transfer rate results exhibit strong dependence on the fluid
parameters.

In this paper we return to a key interest of Bird — that is, the extent of
momentum penetration. Bird presented velocity profiles against the reduced variable
r. In particular he gave r, for various values of n for which the fluid velocity has
fallen to 1% of the velocity of the moving wall,

In this paper we examined what has been neglected, the momentum
penetration of the backward power-law flow.

2 MATHEMATICAL FORMULATION
The unsteady power-law near a moving wall (sée Bird (1 959)) is
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p is the density, Y is the x-component of velocity, T, is the stress tensor, n is the
power index. m is the coefficient of viscosity, while the space variable y measures the
distapee fram the wall. Bird solved equation (2.1) with the Boundary ang iﬂbi&%]l
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As in backward heat equation (2.1) becomes

We retain (2.2) and our boundary and initial conditions becomes
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3, EXISTENCE OF SOLUTION
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$,, is the dimensionless velocity and is a function of r alone

Then (2.1)— (2.5) imply
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For n > 1, equations (3.3) may be integrated twice using (2.2), (2.4) and (2.5) to
obtain
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Clearly, (2.10) exists and is non-negative for each n for 0 < r < r; for
example, when n=2

@ (r) = lvzr -0.52r

When a=1.18 and r =0.89, ¢,(r)=0.01(=1%). Note that $(0.90)=—0.01.
Thus, there exists ry such that ¢(r;)=0 for 0.89 < rn <0.90.

4, MOMENTUM PENETRATION
Equations (3.3) and (3.4) imply that
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Since ¢,(r) is concave and ¢ (r) starts off negative, it must remain

negative for t > 0. It follows that ¢, () must vanish at some finite r,. That is, for all
n, the momentum penetration is finite.
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