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ABSTRACT

Longitudinal deformation fields within a long composite cylinder disturbed
by anti-plane shear are investigated. The cylinder is made up of two semi-circular
homogenous solids of different elastic moduli, perfectly bonded along their interface.
The general form of the displacement and the stress states along the bond are deduced
and depicted in graphical form.

1. INTRODUCTION

The utility of composite materials in construction industry requires the
understanding of stress states within the material, when subjected to loads, to avoid
failure especially along the bonds. Here, we study homogenous and isotropic semi-
circular materials of elastic moduli p; and p, used to form a long solid cylinder
perfectly bonded along their interface. Equal and opposite anti-plane shear of
magnitude Q are applied along their lateral surface as depicted in fig. 1. The
longitudinal displacement and stress distribution are then investigated. Different
methods have been employed by various authors to analyze bimatenals. (see for
example Erdogan [1], England [2], Zhang and Hasebe [3], Herrmann et al [4]). Here,
the problem is analyzed by use of conformal mapping and Mellin transform.

2 BASIC NOTIONS

The character of anti-plane deformation is that the displacement components
wr, §), i = 1, 2 in the z-direction are the only non-vanishing components of
displacement which satisfy the equation

[i+lg+]—,Ao-q}w,(r,t?)zo,OﬂrSa,—yrEfﬂﬁz ()]
or: ror ro o6

Homogeneity of the interface require that

w, (r,(]+ )= W, (r,O’ ). W, (r,;r) =W, (r,—zr), 0=r_- - . 2)

Og-, (r,0+)= -, (r.O'),GQ:I (r,m)= -, {r ~xL0<r<a 3

On the surface of the cylinder

op. (0.0)=0.0<0sm o, (a.0)=-0.-m<t <8 @)
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Polar stresses are related to displacement gradients through

oW ' 1
ud (r,@)z»f—ce:,(r,ﬁ); _8«£=_Grz,(r’e) ()
0 M, or
Where p; , i = I, 2 are shear moduli and p, is the modulus of the homogenous
material.
3. TRANSFORMATION OF THE PROBLEM

The original plane of the analysis, |z| < a id mapped onto the right half plane
Red 20 by use of the holomorphic function

¢(2)= th T=x+iy (6)
Setting {(2)= pe” = u(r,8)+iv(r,8) leads to
e 2ar sin® ;
u(r, 9)= ; v(r, 9): s , z=re'®
.a” =2arcos®+r® a® -2arcos@+r?
Then
plr.0)= {u: (r.0)+12(r, B)}J’L @)
o
tang(r.0) = M (8)
as—r
Therefore, for-n <@ <mandr<a
p ap ap
—(a.0) =0, —\r.0)=0, —(r,t7)=0 9
or =B Ga )=t i) e
C 1 ¢ 2ar op
—(u.0) = =) ————=—-—(rt 10
cr (. asin@ &4 (r ) a —r- aA (r ”) (10

Let the transform plane displacement be denoted by W(p,9) = w(r,8). Then, chain
rule and (9a) give

cH; W ¢
(. '(u.()):(ﬁ.' (!,|%)5ﬁ(‘:‘0) 0<O<mp>0 (11a)
% c@ ar
i CHL YA !
—_‘--;(d.())‘: . (p,—-:‘]q—(u,()) -r<0 <0‘p>0 {1 lb)
cr c S r

From (6} = - afs - 1){2 +1) 'sothatonr - a
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y 7 = T
(ip—Dip+1)7, 4=, p>0

e =
(p+Dip-1", $=-Z. p>0
Hence
2 %]
— ap(l+p°) O0<f<nrm 12)
—2ap(1+p2)‘] ~7<f8<0

Using (4), (5b) and (10a) — (12) we derive the boundary conditions

oW, 2a0p
—(p.5) = >0 13
=7 (p: %) e p (13)
oWw. 2a

2(p-%)= Q'Oz p>0
o w\l+p

Continuity of displacement and (2) lead to
W (p0)=W,(p,0), p>0 (14)

Chain rule and (9b, c) give

8=0 1
M iy sy gy, oeread, T
a6 o8 o0 B=mp<l
Which together with (’Sa) and (10b) gives
oW, ow;
L(p,0)y=—=(p.0), 0
a’;ﬁ(p) a¢(’0) P> (15)

(The shear modulus has been considered to be pp).
Thus, in terms of Wi(p,9), the problem is transformed into the task of solving
fori=1,2

5

8 18 1 &
g

g =% & é‘?]W,(P,Gﬂ=O,P>O, -

[SHR

T
<g<3 (16)

Subject to the boundary conditions (13) - (15).
Mellin integral transform denoted by
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W (s, ) = Iwoo, $)p*dp

is then applied to (13) - (16) to get

2
[—d—u-l-s JW,(S,¢)=0,—1<Res<l,i:l,2 (17)
dg*
BW
E( 5,t9)= 200 —=b(s) (the negative sign is associated with i = 2)
H;
where
bis)=lsecls, — =32412 (5] (18)
2 2
; . W Ww.
W, (5.0) = W, (5.0); %(;,0) ¢ ¢’ (5,0) (19)

The bounds in (17) we deduced from the asymptotic behaviours of the stresses as
p—0 and as p—ax, which are obtained from (13)

H 2aQ
B2, (p.t%)*—-—aj p>0
p P l+p-

Thus if W.(p. ¢)—0(p )thnnu—gﬂ(p ¢)-o(p %
e

Hencek = 1as p—>0and k = -1 as pox.
The solution of (17) may be written as

Wis.00= Ais)sinse+Bis)cosd, i=12 (20)
Then (19a) gives

Bis) Bus) (2D
while (19b) and

el
(p.o)= sAdL(5)
N
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gives
A(s) = Aq(s), (22)
Using (18) and (20) we get

cosis  2aQb(s)

Bis)=A4(s) sinZs gyssinZs
’ | 2 Z( ) @)
cosZs aQb(s
Biir Sl L 2 '
sinfs g,ssinfs
By (21),
Bi(s) - Bo(s) =0
leads through (22) and (23) to
A= Tt )Qf(S)
My}, 5C0S L s
Substituting this value of A (s) into (23) yields
f = b
B‘ (5): a(ﬂl /uZ)QR (S)
Ly 1,5 COS TS
With b(s) as given in (18b), write (20) as
. ) W, —
W)= -2 sz)sm s¢+Mcoss¢ 4)
2 i, | scos %9 §8in 7S

The formula for the inverse Mellin transform is

l (R F SN
‘F‘l-(p.cﬁ):v_m [ W, (s.¢)p'ds, —l<c<l k=12

s

Which. relative to (24) gives the displacement as
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w(p.4)=
(p.9) ey 27 o

ssin” @

?THQ rl_c'*fm {(ﬂl + #2) sin Sl;ﬁ 4 2(#1 ';u2) cossqﬁ}p"ds (25)

v
§5COS 25‘

The first term of the integrand in (25) has poles of order 2 ats = + (2n-1),
n=1.2.3 ... while the second term has one pole of order 2 at s =0 and simple poles

ats=+n,n=123, ...

The integral is then evaluated by Cauchy’s residue method

and the result written according to Jordan’s Lemma [6] which requires the closure of
the contour in the right half planes Res > 0 for p > 1 and closure of the contour in the

left half plane Res <0 for p < L.

Since solutions are to be bounded we drop the

solution arising from the pole at s = 0 and then write the result as the following

uniformly convergent series:

2n-1

AN E
(P:*’Pz{ 'b;zn_]

2n-1

2aQ
M2

Wip.o)=

2n-1

n=|
w . 1-2n

following results:
cn\(“.‘.n Tk

Foro- 1, _\_";‘:"
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o0 ) oS 71 n
—MPan_lsrﬂ(Z”-l)fb}%(m—uz)Z( ) pcosnb,
n=l

0 p1—2n ) pI—‘}_n
(Pl TH2 —‘1’2 005{2”“1)4""2
n=1

@

ni-l
cos(2n- )0 +Z ’f;___i Sin(:ln = !)Lb

piic] ‘\2!7— 1)

p<l

n=t B

sin(2n = 1)¢

J (2n —1)2

o _1 n _
-!npzp sin(Zn—l)zbj\—g(p, —pz)z(—r-l)—p "cosnd, p<l

n=l1 2n-1 n=l
(26)
- N
Substituting p(r.8)= ‘a_jj;a_rQS_BiE @7
a® —2arcosO+r
-
And ¢(r.e):um'(:‘iji’-'zﬁ] (28)
4 =
Into (26) vields the displacement w(r,0)
4. STRESS STATES
cW g
The displacement gradients (—"E and fj—V may be written in terms of the
¢ cp

pli = p*Jeose
o207 cosg+ )
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] 1_ 2
$ 52 sinan-1)p = P( . P )zcoséﬁ s
n=1 1-2p“cos g+p
i(_l)npu COSH¢= "p(p+cos¢)a :
o 1+2pcosg+p°
¢ non fPSin(P"

-1 sinnpg=——>
zC-D'p ¢ 1+2pcosg+p°

n=1

These results are obtained following the procedure outlined in [7] by noting that for

the first set we use

izz"'] = l—zzz , |4 <1

n=l1

And for the other set, use is ma de of

Sy =2, <t

Then setting z = pe”® with 0 < p < 1 and comparing real and imaginary parts prove

the results.
The expression for the gradients are:

2aQ { '(IJH'Mz) [¢p(1+p )sm¢ p!np cos¢’]

a-cb( = s [1-20% cas20+p° (293)
T psing
B g Y BRE 1
2(“1 “2)1+2pcos¢+P2} P&
2
__2aQ { (l-lxﬂlz [¢p (1+p )smfb pllnp( cos¢]
ik, |1-2p2 cos2¢+p ' (29b)
n (i -po T sing |
21+2p"‘cos¢:+p
oW 240 (k1 +13) o2 2)gi
oW b o) — ol - -Inpll
op G.4) TH B, {1-2p cos2¢+p* H( ’ )com np(+p )SMI (30)

JEimpfereosd)|
"2 1+2pcosdp+p’
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mup, (1-2p72 0082¢+ =3 [¢p ( )COS¢“P72(1+p“2)Sin¢] p>1

() (o™ +COS¢)},

2 1+2p'cosg+p?

_ ?-GQ{ (111""#2

Utilizing (5), chain rule, (29) and (30) the stresses everywhere in the bimaterial can be
computed. The bond stresses are derived with thc aid of the cxpressions

a
g—(r.m "’ —(p,O) o 2n0) D)

o¢

WhereB=0o0r8=n0<r<aandr—a
We note that

By (27) plr.7)= p7'(r0)= 22

a+r

Along the segment 0 <r <a, 6 =m, (¢ = 0and p(r, 1) < 1), (10), (29a) and (31a) lead
to

oW
UE,:(r.n):“—“ = 1)
rod
=gty (p, +44.) a a+r ‘
Tl i ro\a-r
1, ¢
o, (r.r)=— (
r
‘ﬂ.‘(ﬂ; “ M) a s
= Q—— (33)
JIys a+r
Where i, is the shear modulus of the homogenous material. At the cornerr a0 7.
(¢ = 0, ptra=10 (29a) and (30a) are used when ¢ (0 and p—0 10 obtain the

asymptotic relations, as p—0 ghven by
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P (0= 2800 T ib) oy e ) ol S (o, 0= P = IO
a¢ T Hy ap i,
Which lead to
= ]

o) = iy (r, ) Lo 4500 o
r—a 7o, g,

. .(ar)=lmo, (r,7)= —Ho(th — )0 ‘ 39)
r—a Z,H:Iﬂz

A careful check shows that on the regiment 0 <r<a, 8 =0, (¢ =0, p(r,0)>1)
0, (r0)=0,(r,7) and o (r,.0)=0,_(r,7)

At the corner r = a, 8 = 0, (¢ = 0, p(r,0)>1) the equations associated with the
asymptotic behaviours of (29b) and (30b) as p—o are applied to deduce:

.y Ow
0,0) = lim ——(r,0
4:(0,0) = lim = ae(r )

4 il
_ 244 +'u2)Qlim -Si a
7oty r=0p=1 2n~1

_2p (i + 43) 0 36)
T
,.(0,0) = lim ﬁ@(r,O) - Mg (37)
=0 r o Hik

Where g4 is the shear modulus of the homogenous bonded segment.

5. CONCLUSION
~ The longitudinal displacement along the bond is given by the nonlinear
= relation

w(r0)=£" "%an( }OSr<a,¢9:00r9=ﬂ
a

r= (p(a T)—> 0)
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This character of the displacement disappears if the cylinder is homogenous, for in
that case |1, = W, = o and our results agree with those of [8].

The presence of o,(r, ), 0 <r < a implies the introduction of a surface that
would have been absent had the cylinder been homogenous. Cracks may initiate at
the edges r = a ® = 0 and 6= n which experience higher intensity of g, (r.0) asr — a.
The relationship between the magnitudes of

[e] ~ .. .
Termy=—P2 90 (o 0) and  Fra)=—222 22 (1, 7) against L}
a

RolH +Hy) O Holih — 1) QO
are shown in graphs.

-Q

big 1 Bonded semicircular materials subjected to Anti-plane shear
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T(r,7)
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(b)
Figll () Variation of T(r,7)=—1#2 5 with L
Ho(py + 1) 0 a
(b) Variation of 'f(r,rr) = La& with =
,uo(ﬂ1_,u1) E a
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