T -

J. Nig. Ass. Math. Phys.
Vel. 5 (2001)

ELECTRONIC BAND STRUCTURE OF SOLID Cg

: F. MATTHEW-OJELABI
Department of Physics, University of Ado-Ekiti, Nigeria

and

J.O.A. IDIODI
Department of Physics, University of Benin, Benin City, Nigeria

ABSTRACT

We present a group theoretical method for the construction of the molecular
orbitals of carbon 60 (Ce) using 60 atomic orbitals (AO’s) per Cg molecule. The
geometry of the crystalline fcc solid Cg and the hypothetical unidirectional structure
with space group Fm3 are adopted in our study. The goal is to provide all the
relevant transformation matrices that are required by group theory. These are then
used to obtain analytical expressions for the molecular orbitals (MO’s) in a form
snitable for further calculations. We limit our derivations to the lowest unoccupied
molecular orbitals (LUMO?’s) i.e. the levels relevant to superconductivity in the doped
compounds. In a preliminary calculation, the MO’s are used to diagonalize a single
particle Hamiltonian in a band structure calculation.

1. INTRODUCTIUGN

The football-shaped Cg molecule was first synthesized in 1985 [1]. The
molecule contains 60 carbon atoms which sit at the 60 vertices of the 20 hexagonal
and 12 pentagonal faces of a truncated icosahedron. ‘Each carbon atom of the
molecule is bonded to its three neighbour atoms in two different ways: a double bond

of length 1.40 A shared by two hexagons, and two single bonds of length 1.46 ,:1

shared by a hexagon and a pentagon. The molecule has a diameter of about 7.0;1 f
Pure solid Cg (fullerene) is an orgauic moleculzr crystal in which the
icosahedral Cg molecules occupy the latiice sites of a fec lattice [2,3] with lattice

constant a = 14.10 4. The interactions between the molecules in the solid state are
weak and believed to be predominantly of Van der Waals type. Infact, the centres of

neighbouring molecules are separated by a distance of about 10 4 . Solid Cq, contains
two tetrahedral sites and an Octahedral site per molecule or unit cell. These
interstitial spaces permit the insertion of metal toms between the Cg, molecules.

Solid Ce can be made to superconduct by alkali-metal doping. The
composition A;Cg (With Ay = Kj, K;Rb, Rb;K, Rbs, Rb,C;, etc) has been established
and known to crystallize in fcc lattice structure [4]. A doping level AxCq, where X > 3



MATTHEW-OJELABI, F.and IDIODIL J.O.A.

will force the structure to change from fcc to bee or bet and superconductivity
disappears. The experimental success in synthesizing macroscopic quantities of solid
Ce and the discovery of superconductivity in its doped or alloy compounds have
spurred great interest in the structural and electronic properties of the Cg molecule
and also solid Cg. The electronic structure is usually one of the starting points in the
construction of an appropriate Hamiltonian for the Ceo system. The Hamiltonian is
vital for various theoretical studies.

The electronic band structure of Cgo has been treated by various workers and
the literature on Cq, is quite vast. A lot of the current effort is directed towards
providing simplification to the diverse existing theoretical methods. For instance, in
the work by Tit and Kumar [5] four orbitals per carbon atom (i.e. 240 orbitals per
molecule) are used to diagonalize a one<electron, tight-binding Hamiltonian in a local
density approximation (LDA) type of calculation. The large dimension of their
Hamilltonian matrix (240N x 240N) coupled with heavy computational cost warranted
the need for simpler methods.

In this paper, we present a preliminary report of a group theoretical method
which we have used to determine the electronic band structure of solid Ce. The
method involves the use of one orbital per carbon atom. Our approach is anchored on
the high symmetry (icosahedral) possessed by the Ceo molecule which allows the
derivation of the degenerate MO’s analytically. The expected dimension of our
Hamiltonian matrix , 60N X 60N, is hugely reduced by symmetry to 3N x 3N which is
clearly easier to handie. We consider specifically a unidirectional structural order
where N = | and as a first step we construct, in section 2 of this work the relevant
matrices and molecular orbitals required by the group theory of the problem. The
construction of the 3N Bloch sums and the evaluation of the corresponding elements
of the single-particle tight-binding Hamiltonian together with the electronic band
structure and the density of states (DOS) then follow in subsequent sections.

This work differs in approach from the recent work of Lin and Nori [6] who
employ analytically the recursion and moment methods to determine the electronic
structure of Cgo. Our work is similar in spirit however to the work of Laouini et al [7]
where the usage of group theory as discussed in the standard text of Cotton [8], is
employed to bring about tremendous simplification to the band structure problem.

Despite the vast amount of work already published on the Cgo system, the 3 x
3 matrix representations for the 120 symmetry elements of the Cq molecule are
difficult to find in the literature. Since a knowledge of these matrices is crucial in the
approach adopted in this work, the construction and full listing of these matrices is
partly the motivation for this study.

Due to problems of space, only a few of these matrices are explicitly listed in
this paper. With some knowledge of group theory, the remaining matrices can be
generated from the ones listed. A complete listing however, of these matrices and
other details not available in this report have been provided elsewhere [9].
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2 GROUP THEORY AND THE MOLECULAR ORBITALS

The structure of the Cq molecule has been determined explicitly through
well known experiments. There are 12 pentagons and 20 hexagons in the Cg
molecule, which correspond to those of a truncated icosahedron. The 120-element
icosahedral point group of the Cg, molecule, Iy, is the cross-product of the 60-element
icosahedral rotation group I and the inversion group C, ie. I, =I/®C,. The
inversion group C; contains only the unit operator and the inversion operator, both of
which commute with the 60 proper rotations in 1. "Thus the elements of the full I, are
generated by first operating on all the elements of I with the unit operator of C,,
replicating the class structure of I; then all the elements of I are next multiplied with
the inversion operator of C;, creating 60 new improper rotations. Thus, the 120
point-group elements (R) of I contain 12 five fold axes (Cs) passing through
the pentagon centers, 20 three fold axes (C;) passing through the hexagon
centers, 15 t wofold axes (C,) passing through the midpoint of the hexa
edges and a center of inversion (i). On the whole, I, has 10 classes

E,12C5,12C3 20C3,15C,, 1,128,0,1287,,2085,150 ) and 10 irreducible representations.

The characters z'(R) of the icosahedral group for the three irreducible
representations (Il g,rlu,hu), relevant to this work are given in Table 1. The characters

have been taken from Ref. 8.
In what follows, we shall view the Cgo molecule as a ball-shaped lattice with
one carbon atom at each lattice site. To investigate the electronic properties of a
single Cgp molecule, one norn..!ly starts with the four carbon valence electrons 28,
2Py, 2P, and 2P, at each carbon atom site of the molecule. The 60 2P, orbitals, each
pointing along the outward radial direction, are hybridized to form n states. The
other three orbitals 28, 2P, and 2P, , distributed on the plane tangential to the surface
of the miolecule are hybridized along the lattice bohds to form o bonding and
antibonding states. While the 60 outer m orbitals are relevant to the comducting
properties of the molecule and only = states occur around the fermi energy, the 1800
orbitals are mainly responsible for the elastic properties of the molécule. For solid
Ceo, the highest valence bands and the lowest cc.duciion bands are derived,
respectively from the fivefold degenerate highest occupied molecular orbital
~h,(HOMO) and the threefold-degenerate lowest unoccupied molecular orbitals
't1(LUMO) of the neutral Cg molecule. The bands ty, t,, and h, have primarily P,
(also called Pr) character.
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Table 1: Character y'(R) for three irreducible representations of the icosahedral

group I,

R Z’(R)

( i=1, i=t, i=h,
E 3 3 5
12Cs T T 0
12C -1 -1 c;
20C; 0 0 '1
15C; -1 -1 5
i 3 -3
12850 5y i :

3 3 T T 0
257 : i 1
205, 0 |
15¢ =] 1

e=4(1+45)

W

Since these are the bands that feature in the superconductivity of the doped Ceo
system, and since the phenomenon of superconductivity is one of our major
motivations for studying the electronic structure of the Ty system, our usage of only
the 2P, orbital per carbon atom in the construction of the C¢ molecular orbital (MO)
is a reasonable starting point.

We show in Fig. 1 the C4 molecule with its atomic positions indicated. The
coordinates of the 60 atomic positions, with respect to an origin at the center of the
molecule. are fully listed in Appendix 1. As earlier stated this molecule has 120
«smmetry elements (R) which are grouped into 10 classes. The 3 x 3 matrix

representation R for each symmetry element R has been worked out and fully listed
clewhere [9]. We give in Appendix 2 a few of these matrices. Taking into account
[1= | and the listing in Appendix 1, the other matrices can be worked out from those

already given,
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z

Fig 1. The Cg molecule im the y-orientation with atomic positions 1,2, 3,...
indicated. The co-ordinates of the stom positions with respect to an origia at the
center of the molecule, are given in Appendix 1.

With the above tools at hand, we can now use the characters to projeét aut of
the carbon P, orbital | n) or ¢, at atomic site n ghe part Ei) which belongs to the ith

irreducible representation, in the sense

V 120 %
liy= £ ' (RRIn) @
/ R=1
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Using for instance, i=#, with n = 1, as an example, we get from (2.1) the

symmetrized molecular orbital | 7, 3) , which is of the form

1 1
|11g3) =261 = 2y —— s + b5 + 77 + b5 ~do + 2610 ~ 2611 ~ 212 ~ g

1 1 1 1. .1 1
+ TPy + Ty + Thig + Thyg —— P22 ——Po3 ——Prs + — P25 +—@ +—01,

T T T T T T
1 :
+;‘¢2s + g + @31+ sy — a3 —Paa — 35 — P36 + Th3g + TPy9 + TPy

1 1 1 1

— TPy ~Thyy — Thy3 — Thys — Thss +;¢46 "";11547 +;¢4x —;4?549

1
= %¢so = %¢5: = ;?552 — Ts3— P54 — P35 — Psg + P57 + Psg + 5o + Deo
@2)

To gmemw more t, functions, we applied suitable icosahedral operations on |, 3)
as defined in

Rij)= ;Z_il i) (R) 23)

where j labels the g' degenerate partner functions of the ith irreducible representation
and I are the ith irreducible matrix representations. Two matrices which involve
rotations around [111] and [T 1 T] axes are designated here as

010 ~fo o1
R=]0 0 1] ad Ry={1 00
100 010

respectively. Tuming |4, 3) around [111] and-{ﬁ-f] axes results in
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)= ol 3) =26~ Loy s gy —ch + L~y s by e+ L+ e
R A A e
¢ty + by 4 g s~ 2 hm g b ()
L =004 L+ Thu s dus + b b
iy =+~ s~ =y s + T + e

| g ) Ryl1, ) 267 + ¢q — 75 ‘%% 7 +70g “"%4’9 +2013 — 2614 — 2415
‘14)16 + ¢117 # ‘1?131 19 — a0 — Thaz + Thp3 + T¢24 s = Tha6 + Th27 + Thos
—;‘1’30 L b3+ =052 — —¢33 —;‘1’34 o e : ¢36 3g + B30 +bg0 — a1 (25)
=gy + Paz + Pag + a5 +T¢46 47 — Thag +Tha9 + Thso — Ts1 — 152 = P53
+;¢54 —;—@55 _;¢56 +;¢57 +;T¢ss —'1'4’59 ”;4’60
| tig 1) |i1g ) and |4, > are called pariner functions for the ty; irreducible

representation. Three such functions are also required for the ty, Iupresentatlon, while
five are needed for the h, representation. In view of the band structure calculation to
be carried out in the next section, we may rewrite these functions more compactly as

|ij) = %\ n)Cpy (2.6)

where i denotes the representation and j the partner function, while C‘ . are of course
the coefficients of the atomic orbitals @, in the expressions (2.2} or (2.4) , etc.

The three t,, functions are congruent and tave vio)=~1, ie. the t,; MO’s
are even with respect to one coordinate and odd with respect fo the remaining two

coordinates. The labelling convention for the t., fu

ons is as follows: ltng> is

=123 T ievel or band structure i§

even with respect to the coordinate K ( K

the LUMO in alkali-deped solid Ceo.
The 1y, representatlon is like the tj; e:cept that the by, representation is odd

rather than even under inversion. The t;, MO’s «¢. glso congruent and related to each

other through rotations around the {111] and {: 3 :E axes. Unlike the tyg, the t,
representation occurs twice in the space of the ¢y A0's. This leads to the division of

£ T
i iz
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the t,, space into the MO’s of the upper level, denoted with a *, and those of the lower
level without a *. Thus, the t;u level is the LUMO in pure solid Cgo and it is partly

occupied in alkali-doped solid Ceo; and since the t;, and t;, bands are the ievels that

are relevant to superconductivity , they are the levels that are calculated in this work.
The fivefold degenerate h, level is the HOMO in pure solid Cgo. Like the ty,, the h,
representation also occurs twice in the space of the 60 AO’s but for h,, one is usually
interested in the lowest h, level. Much more details on these levels or bands, than
contained here can be found in the literature [5 - 7, 12 — 16].

3 BAND STRUCTURES
(a) Atomic orbitals (AQ’s) and the hopping terms:
The tight-binding Hamiltonian is defined as [5]

<l pun,v>

H=2Eciuent T Vun (i Nt uCms + HC) 3.1
2

In Eq. (3.1), / and m label atomic sites while p and v labe! atomic orbitals (8, Py, Py,
P,). The angular brackets <...> indicates a sum over all sites and is restricted to

nearest neighbours. ¢, creates an electron in the orbital p at site 1 while ¢,
annihilates the electron at the same location. The on-site energy term is represented

by E,,, while V, () are the hopping integrals. The hopping terms are designed to
decay rapidly with interatomic distance ), and are also given in terms of the two-

centre imegrals written  as V.\'sa (rlm)x V\'po‘ (rlm )’ Vp,uo (rlm)’ and Vpp;r (r!m) & The

hopping integral between the P orbitals on different atoms 1 and m has the expression
<m|H11>= -V, (d)-V(@)R, - dJ& -d)+V,(@)&, &) (3.2)

Where R, is a unit vector in the direction of the P orbital on atom 1, 3(: d/d) is also
a unit vector in the direction starting from atom m to atom | and ‘d’ is the distance
between them. The relationship between V_(d) and ¥, (d) is V,(d)=—-4V,(d) as
recommended by Harrison [10] while the distance-dependence is parametrized
according to

V.(d)=V, diuexp(—d;doJ | (3.3)

with L = 0.505 4 . Vo = 0.90¢V, and d, = 3.0 4

208



L]

ELECTRONIC BAND STRUCTURE...

The simplest structure with the Cgo molecules on a fec lattice is obtained if all
molecules have the same orientation, thus leading to a structure with one molecule per
primitive unit cell. Among the structures with one molecule per primitive cell, the one
with the lowest energy seems to be the one where the local x, y and z axes, i.e., the
molecular twofold axes, coincide with the X, y and z axes of the lattice. This structure

has the space group Fm3 and since it is the one normally considered in LDA

1 calculations, it is the one also considered here. Two orientations are possible for this
' structure. If the double-bonded hexagon edge with the highest z coordinate in each

Cyo molecule is arranged to be perpendicular to the z-axis and parallel to the x-axis we
obtain the so-called X-orientation [7]. But if the double-bonded hexagon edge with
the highest z coordinate in each Ceo molecule is made perpendicular to the z-axis and
parallel to the y-axis we get the y-orientation which is adopted in this work and shown
in Fig. 1.

We refer to the two structures just described as the unidirectional structure,
since all molecules in the solid have the same orientation, X or y. For this structure in
the y-orientation, the molecule-molecule contacts in the Cqo solid consist of parallel
single bonds, involving, for instance, atoms 6 and 35 on the molecule at the origin and
atoms 36 and 30 on the nearest neighbour molecule at the fcc lattice site (%,%,0). In
general, the contact atoms in the positive octant for the molecule at the origin are the
atoms numbered 4, 5 and 6. The contact atoms for the remaining 7 octants can be
easily determined. These contacts atoms form the closest contact to the nearest
neighbour molecules in the fec lattice. With all the molecules “parallel”, the
intermolecular nearest-neighbour-atom distance and the corresponding AO hopping

integral are, respectively, di; = 3.05 4 and V,, = 742meV for a lattice constant ofa=

14.14.
(b) LUMO sub-bands: :
Let the ket !‘E]n) represent the jth partner function of the ith representation

MO at site n. In order to calculate the band structure for a crystal with lattice

; 4 : -
translations 7 and molecules at the N sites ¢ (now inside the primitive cell), we
construct Bloch sums

it ?2> e ?> exp{fk'.[7+ ?J} (.4)
-

- =
of the MO’s (2.6) at sites ¢+ T and then evaluate the matrix elements,

(c‘f’r‘ 'K

H|i7E) = Lexplk - -1 +f)}<gr,r'iu|,-j.f +F) (3.5)
:T'
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of the one-electron Hamiltonian between these Bloch sums.
The matrix élements on the right-hand side of (3.5) are the MO transfer

integrals, and they are related to the A transfer integrals <n’]H |n) through the
equation,

(-7 {ufi+7) = 5.ty (oc co
n'n

The integer n runs over the 60 atoms of the molecule centered at 7 +7 and »’ runs

over the atoms of the molecule centered at 7' .
Note that, in Eq. (3.5), the matrix elements between Bloch sums of different

-
k ’s in the Brillouin zone vanish for a crystal, and those between MO’s from different
molecular levels i are neglected in the single-MO approach adopted here.

Taking into account section 33-above, the integral for hopping between the

MO’s |1j’,0) and ]y? ) on neighbouring molecules may now be easily calculated by
summing over the AO’s on the two molecules according to (3.6). Since the diameter
D of the molecule is approximately 37 which is approximately five times the bond
length b, which itself is nearly three times the decay length L of the AO hopping in
(3.3), the sums in (3.6) are effectively limited to a small region between the
molecules, the so-called “contact region”. Moreover, MO hoppings beyond nearest-
neighbour molecules can safely be neglected.

Diagonalization of the 3 x 3 Hamiltonian matrix (3.5) yields the ith

representation band structure E‘V(K ] where v enumerates the sub-bands. The

f - -
eigenvalues E,‘,[K J are easily calculated once the wave-vector K is specified.

We can simplify further Eq. (3.5) since only nearest neighbour molecules are
involved in the summation. In this connection, let the 4 molecules in the XY plane
that are nearest neighbours to the central molecule at the origin possess the position

vectors ;(i) with /' = 1,2,3,4 and where ;(l)r-%(l.],o), ;{/z)=§(-|,-|.o),

- ‘ - :
x(3)=4(,-1,0), and x(4)=%(~1,1,0). Then the matrices M describing the hopping
terms from the central-molecule to its 4 nearest neighbours may be written as
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=12 (3.78)
/l
=34 a1

Similarly, hepping to the 4 neighbours on the XZ plane may be written in matrix form

as

M(0,7)= i

and

M(0,1)=

B e

E, 0 S,

0 D, 0

0
0 D, 0
-8, 0 C,

usg (3.70)

=78 (3.71d)

where the 4 molecules denoted by = 5,6,7 and 8 possess the position vectors

Pl £(1,0,1), ;(6) =£(-1,0,-1), ;’(7) =£(1,0,-1), and ;(s)= 2(~1,0,1). Finally,
hopping from the central molecule to its 4 neighbours on the yz planes takes the form

Mm(0,1)=
and

M(0,0)=

B—

B

D, ©
0 Cyi 8,

k 0 S, E,

f

D, 0 0.
0 C, =S,

L0 -5, E,

qm9l0 K (.7¢)

/ i=ll]2 (.79

where the 4 neighbour molecules possess the position vectors

20)=2(011), %(10)=£(0,-1,-1), x(11)=2(0,1,-1), and ;(12)=§(o,-1,1) ;
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These matrices must fulfil certain selection rules or symmetry requirements.
In particular, '

3.8
Sy =8.=S S

In terms of these matrices, the tlght-bmdu;g (nearest neighbours only) Hamiltonian
matrix (3.5) now take the form

-» 12 - =
H,{,ﬂ[xJ = :EIM“” (O,I)exp{iK- x(I)} (3.9)

with e f=1,2,3
Eqn. (3.9) can be easily worked out to give
Hn[ J

J &
cos +E,; co!
2 Vi

' The expressions (3.10) agree with the Hamiltonian matrix elements given in
Ref 7 if accoumt is taken of the change in notation. The coefficients
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Coll),

(3|Cy2i3) , and <2|C2112) in Ref 7. Eq. (3.8) implies that there are only 4 independent

Cy» Eyz,and Dy, in this work are the coefficients labeled, respectively, (1

Xy

coefficients in (3.10). These independent coefficients can be determined by fitting to
accurately calculated band structures or by using (3.6) together with (3.2) and (3.3).

The values of these coefficients in this work for the t;, bands are

C,, =140.8meV , E,, = 65.44meV , D,, =-91.27meV and S, = 96meV .

For the t,; bands we have
Cy= 28.26meV , E,, = 74.46meV , D, = -194.4TmeV and S,, =46meV

—_
The Hamiltonian matrix simplifies tremendously for the Bloch vector &k at
lines and points of high symmetry. For instance, at the high symmetry point L where

-
k= (1,1,1)% , we get for the t]',, representation the Hamiltonian matrix,

0 S

Nor W
H=|S, 0 &, (3.11)
S Sl

with the eigenvalues

and
3E, =28,, =192meV

The results obtained for the #;, representation band structure are plotted in Fig.3 for

the various symmetry directions, while that for the £, are plotted in Fig.2.

The corresponding density of states (DOS) is calculated from the usual
definition

N(Eyw [f—2— 3.12).

|grad E|
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p2t

d

which is an integration over the surface in k-space for which the energy has a constant
valee E. The calculation of the DOS was performed with 2 special k points [11] and
smeathened by convoluting the energy spectrum with a gaussian of width W(E), the

bam-width. The results got are displayed in Fig.4 for the f;, bands.
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Fig. 2 t,, Daads for a = 14,10 4
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Fig 4: Density of staters of solid Ceo
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Table 2. 1,, band-width W(E)

a b 0 d e f g
W(E) in | 0447 |0.504 |0.552 |0.701 |0.749 | 0430 | 0420
(eV)

a Present work

b Linear combination of Atomic orbitals (LCAQ) [12]
(e Plane Wave Pseudo-potential (PW) [13]

d LCAOQI[14]

e Linear-Muffin-Tin Orbitals (LMTO-FP) [15]

f Local Density Approximation (LDA) [16]

g Local Density Approximation (LDA) [5]

4 RESULTS AND DISCUSSION

The derivation of the 120 matrix representations for the 120 symmetry
elements of the Cg molecule enabled us to construct fully symmetrized molecular
orbitals (MO’s). These transform among each other under the covering operations (R)
of the C¢ molecule according to the irreducible representations of the icosahedgal

group.

The formation of the Bloch sums for the MQ’s at sites n+ T in the crystal
al!owed the evaluation of the matrix elements of the smgie -particle tlght-bmdmg

Hamiitonian. This led to the calculation of the t,; and t,, band structures plotted in

Figs 2 and 3 respectively. Their energy minimum is clearly located at the X point,
The value recorded by s for the conduction band-width of the pure solid Cq, is
0.447eV which agrees with experiments and other calculations, as shown in Table 2,
The fundamental assumption of the tight-binding approximation as
applicable to solid Cg is that the molecules be fart apart enough for the interaction
between them to be small. This weak interaction is responsible for the broadening of
the isolated energy levels of the Cyo molecule into bands of allowed energies in the
crystaliine solid. It follows on the ground of consistency, that the widths obtained
must be comparatively small. Our band-width satisfies this criterion. The advantage
of our method is in its simplicity. A problem that would have required matrices as
large as 60 x 60, was reduced, with the aid of group theory, t¢ mairixes of size 3 x 3,
The density of states computed by us over the range of energy values +0.3eV
is also displayed in Fig 4 for solid Ceo. /A{ ‘
i !

8. CONCLUSION
As indicated in the introductory part, the application of group theory to the
Cgy molecule immensely simplified the task of calculating the electronic band
structures of the pure solid. Our approach, apart from providing the group theoretical
(

{
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data on the Cy molecule (and of course solid Cgp), also provide a proper theoretical
procedure for understanding the composition and structure if the alkali-metal doped
solid Cgp. The band structure of the alkali-metal doped Ceo and its implications for
superconductivity are discussed in the following paper [17].

One can proceed to make further investigations and to extend the analytical
calculations to bi-directional structural order which most probably is the actual
orientational structural order for the superconducting phase of these materials. In this

case, the model tight-binding Hamiltonian matrix elements will be 6-dimensional (i.e.
N=2)

Appendix 1: Coordinates of the 60 atoms of the Ceo molecule in the y-orientation in
units of b/2 where b is the bond length. [For realistic calculations, allowance must be
made for the fact that single bonds are of length (1 + €)b while double bonds are of
length (1 — 2€)b. For pure Ceo, € = 0.015 and it is a measure of the bond alternation].

) (01,37 21) (-1,-31,0) 41) (2,-21-1,7)
2) (31.0,1) 22) (21,-1,-2-1) 42) (2,21+1,-1)
3) (1,31,0) 23) (21, +1,2+7) 43) (2,21+1,-1)
4) (1,2+1,21) 24) (21,-1,-2-7) 44) (-2,-2t-1,7)
5) (21 1,2+1) 25) (21, -1,2+1) 45) (-1,-2-1,-27)
6) (+t.2t,1) 26) (-21, 1,-2-1) 46) (-1, -2, -2t-1)
7 (2.211,7) 27) (21, 1,-2-1) 47) (-, 2,21+1)
8) (1,2,2t+1) 28) (21,-1,2+1) 48) (1,2, -27-1)
9) (2t+1,1,2) 29) (-1,31,0) 49) (t,-2,21+1)
10) (0, -1,-31) 30) (-2, -21,-1) 50) (-1, 2,-21-1)
1) (0.-1,31) 31) (2, 2500 51) (x,2,-2t-1)
12) (0,1,-31) 32) (2+1, -21,-1) 52) (-1, -2, 21+1)
13) (-31,0,-1) 33) (2+1, 2, 1) 53) (-1, 2+1,,29)
14) (-31,0.1) 34) (-2-1, 21,-1) 54) (-21-1,-1,-2)
15) (3t,0.-1) 35) (2+1, 21,-1) 55) (-21-1,1,2)
16) (1.-2-1,-27) 36) (-2-1, =20, 1) 56) (21+1,-1,-2)
. o 2n) 37) (1,-31,0) 57y (2t+1,-1,2)
18) (-1.2+1.-21) 38) (-2,-21-1,-1) 58) (2t-1,1,-2)
19) (1.2+7.-21) 39) (-2.21+1, 1) 59) (2t+1,1,-2)
2) (-1.-2-t.21) 40) (2,-2t-1,-1) 60) (-21-1,-1,2)
L s e
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ELECTRONIC BAND STRUCTURE...

'Appendix 2. Matrix representation R for each symmetry element R of e Coo
molecule. With the exception of the single element classes, three magricqe are
listed below for each class. The rest can be worked out from those [

" Class Matrices : =
E - 100 '
010
: 0 0 1
> s -1 -5 (¢ F -5 | §-f
: Lofosl ||+ 5 4 |54 4
. a T "7 1 % §
T e N R G A
R RIEE RIS
1 1 -z 2 . bk ol
2. 2 2 2 7 T 7r \" 2r -$
20C; 1 oz _1 0 1 (£ 5 e
2r 2 2 7]
g | |00 -+ -4
dr ) (Lo -t
Een P SRR -1 0 ®
O AT I
& A Rl e \01, 8,24
; i a- o s
o =f -0
0 0 -1
o I e B % i ~] e O
i o 5 I ST I I L SAE
: S P TS (R
: ] I 2 2. % 2 \zr"‘}"
125% | (-4 + -3 A N G A
e e S I A 0 I B s
Py d) | ) 4
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MATTHEW-OJELABI, F.and IDIODL J O.A,

Class Matrices
208, dor &7 alb 0o 10 L/ el i - -
2t 2 2 2 2r 2
it ol =l o 0 1 R N i
2 2 2t 2r 2 2
1 _1 _z -1 0 0 2 1 1
2 2t 2 2 2 2r
156 & I _1 = _1 -1 00
2 2 2r 2r 2 2
TS, - i 1 L o 1L 0
2 21 2 2 2 2t
mde & 1 _1 1 =z 0o 0 1
2r 2 2 2 2r 2

Note that the elements in each class possess the same trace or character as
required by group theory.
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