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ABSTRACT -

The dynamic analysis of the rectangular plate resting on a Pasternak
foundation and subjected to uniform partially distributed moving masses is carried
out. The effects of shear deformation and rotary inertia are neglected. The governing
partial differential equation is transformed into a set of coupled ordinary differential
equations that are eventually solved using finite difference technique. It is found that

~ an increase in the area of the distribution of the moving mass causes a reduction in the
maximum dynamic deflection. Various values of the dynamic deflection for various
ot values of foundation moduli are obtained and presented in tabular form. Moreover,

the critical speeds of the moving masses and forces were calculated. Finally,
numerical examples are given and the results compared well with existing ones for
the limiting cases in which the area of the load distribution reduces to zero, and also
the effect of inertia mass neglected.

1. INTRODUCTION

- The emphasis placed on safety performances and reliability of structures
such as beams, plates etc has led to the need for extensive research analysis in
determining structures response to dynamic loading especially moving loads. As a
matter of fact, it is known that such moving loads are likely to produce larger
structural deflections and stresses than when the same loads are not dynamic (i.e.
when they act staticaily). As such, the moving loads have a great potential of
preducing hazard when acting on various structures,

Consequently, engineers, applied mathematicians and applied physicists who
are concerned with the design of railway and highway bridges and space station
facilities that are likely to be affected by an abrupt change of mass, have carried out
and continue to carry out investigations of the response of a variety of structures to
moving loads.[1- 10].

These moving loads problems can be discussed from two points of view viz.
(1) the point of concentrated mass formulations and (ii) the distributed or partially
distributed load formuiation. The first formulation is the most common one, This is,
perhaps due to the fact that it is a simplified version of the second. As a matter of
fact, it is a special case of the second if the load distribution interval in the second
formulation is assumed small. A considerable amount of work has been carried out
on this ¥irst version as per the formulation involving structures like beams.
Timoshenko [1] studied the case of a concentrated load moving with a constant
velocity along a beam neglecting the effect of damping. He obtained a closed form
z solution to the governing initial boundary value problem and an expression for the
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critical velocity. The dynamic response of a simply supported beam transversed by a
concentrated moving load was determined by Stanisic and Hardin [2]. They
developed an interesting technique which, however, cannot easily be applied to
various boundary conditions which are of practical interest. An analytical method
capable of handling different boundary conditions associated with' the moving
problems of beam was developed by Akin and Mofid [3]. The problem of the
dynamic behaviour of elastic beam subjected to moving concentrated mass was also
studied by Sadiku and Leipholz [4]. Gbadeyan and Oni [5] presented a more versatile
technique which can be used to determine the dynamic behaviour of beams having
arbitrary end supports. Considerable amount of work has also been done on the
behaviour of elastic plates traversed by moving concentrated masses. The elegant
technique developed for the beams in [5] was also extended to non_Mindlin
rectangular plates in the same paper. Earlier, Stanisic et al [2] showed that the natural
frequency of plates traversed by moving concentrated forces is greater than that of
plates subjected to moving concentrated masses. A finite element analysis of the
problem for non-uniform elastic plates was carried out in [6]. Recently, the dynamic
analysis of a rectangular plate continuously supported by an elastic foundation
transvered by moving concentrated masses was carried out by Gbadeyan and Oni [7].
Although, the above-completed works on concentrated loads are impressive, they do
not represent the reality of the problem formulation as concentrated masses do not
exist physically. Thus, for practical application, it is useful to consider moving load
problem involving distributed moving load as opposed to concentrated moving loads.
To this end. an analysis of dynamic behavior of Bernoulli beam carrying uniform
partially distributed moving masses was carried out in [8]. It was shown that the
inertia effect of the moving mass is of importance in the dynamical behaviour of such
structures. The work in [8] was extended in [9] by considering the vibration of a
Timoshenko moving masses. Most recently, Gbadeyan et al [10] considered the
vibration of non-Mindlin rectangular plate subjected to uniform partially distributed
moving loads. - It is found that the magnitude of the distribution of the load varies
firectly as the deflection for the moving force problem while it varies inversely as the
{eflection for the moving mass problem.

This present paper is concerned with the behaviour of a rectangular non-
Mindlin plate continuously resting on an elastic foundation and traversed by a
uniform partially distributed moving load. An illustrative example involving simply
supported plate is presented. Numerical analysis is also carried out.

2. TAEORETICAL ANALYSIS -

Consider a thin isotropic elastic plate which is referred to X,y.z system of
rectangular co-ordinates. with the origin O of the x.y.z system at the corner of the
plane of the plate as shown in figure 1. The transverse displacement w(x,\.[) at time t
of the rectangular plate on a subgrade satisfies the partial diffcrential equation {7]
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a* *'w 8 a*w ,
D{a:v+ ang:z"'a}: pj%=f(x,y;t)-F,-(x,y;r) (2.1)
X ; o

o where the flexural rigidity of the plate is defined by

BTy 2 .41
D=—FEh“(1-
e (1-v7)

h is the thickness of the plate
v is the Poisson ratio of the plate
E is Young’s modulus of the plate
m, is the mass density per unit are of the plate
Fr(x,y,z) is the foundation reaction and
o f{x,y,2) is the applied surface moving load on the plate
The foundation reaction and the transverse displacement w(x,y,t) are relate
as follows

Ff(x,y,z):—(GVZW—Kw—mj w)

where V? is the two dimensional Laplace operator,
m is the mass of the subgrade,
G is the shear modulus of the foundation, and
K is the foundation stiffness

b/

Y=b

Vit
Y=y]

—P ¥
/ X=a

Figure 1

(=Y

The expression [10] for the applied surface-moving load is
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2
f.rx.y.t):i[M;g—Mf : ;"’][H(L%i]“ﬁ(x-é—iﬂ
HE dr (J iy 2. ) X ‘2/ (2_2)
u) B
H pgi ALl =H gy =2
[ S 2] Ly ¥ 2ﬂ
where
2 2 2 2
W B gt W RS (2.3)

at  ar® Db ox?

H is the Heaviside unit function, M;, is the mass of the load which is assumed to be in
contact with the plate during the course of the motion, u is the velocity of the load, the
dimensions of the load is ¢t by € and &=ut+5/2.

The governing equation for the model therefore becomes

i d?
=E[—M!g—M, _d;-?:lLH(x—g-F%JFH(I_é_%H

it foon-t)

The expression for the concentrated force is obtained by taking the limit of the
expression for the force f(x,y.t) as € and p tend to zero.

3. ANALYTICAL SIMPLIFICATION
Assuming a separation of variables solution of the form

M N
wix ) =Y 2T, (0w, (x)w,(¥) (3.0)
r=ia=l
Where w, (x)and w (3) are chosen as the fundamental mode shapes of beams having
the same boundary conditions of the plate [11], r and s are the number of the
contribdted modes and T, {r) are the unknown functions of time, which have to be
calculated. The right hand side of equation (2.2) can be written as
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ﬁ[—M,,g—M_,%}[H[x-—ﬁ-F%J—H[x“i'E}] _ -
[H(y—'yﬁ;) H(y yl—EHZZwm(r)wr(x)w (y)

=] s=1]

Substituting equation (2.3) into equation (3.1) and multiply the result by Wn(x) Wm(y)
yields

M N
uis [~ MW (X)W (¥) =MW, (X)W, (3 )W, ()W, (3)Y. ST (8w, (3 )w,(¥)
+2ul, (t)w (x)w,(v) -

T (W (v))] [H[x —E+ 5) - H[x k- %H{H(V -n+ %] - H(}"— - %)]

. M N
=w,(x)w, (y)zz Vo ()W, (x)w,(y) ; uk3.2)

r=l1 s=1

Taking the double integrals of both sides of equation (3.2) along the !ength and width
of the plate gives ;

’g jw (x)B(x,5)d j (7)B(.8)dy

y=1

M N , b
ZZ{T"(U [WalxIw:%) B 5, ) [y, v)B( y, 8 )dy
r=1 0

a b &
+2uT} (1) [wi(x)w,(x)B(x, € Jdx [Wul ¥ (3 )B(y.€)dy
0 0
a b
+UT,o (1) [Wi(x pw, (2 )BUx.2 ) [ ()0 (DB, s)dy}
0 0
b
= ZIEW“(I)I w, (X)W, (x)dx] w,, (¥)w, (3 ).~ ; (3.3)
r=ls 0

Where
B(x,e)= Hb-ﬁ%}ﬂ(pg—%} and
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- 5 s
J_B(y.u) = H[y—rya +%}—H[y—yn —%J

' Hencéfonh,

B(x.e)=Band B(y.u)=B(y)

By delta integral properties,

'a(x-xo)-—-{f; e (3.4)
oy
L 3= 0-5) (3.5)

Evaluating the first integral in equation (3.3) by parts and using the delta integral
properties (3.4) and (3.5), we obtained

ﬂw..(x)ﬂduiz[wn[;ur%]—w,,[g-%ﬂdg 36)
- wleh(5) (50 (£) (£ e
w.(c)+(§)z[-;—! 1) EX)

Where Taylor series expansion has been used.
Similarly.

%zw,(m.(x)ma w,,(é')"'..(e’){%)z&)[wp(é)w"(é)}f

2
= w,(Ew.(£)+ gg w, (Ehei (&) + 2w, (Ew, (€)+w, (é)w,(z:)] (3.8)
" Also.
-‘:'jwmu By =~ I_“:v,,,(y)dy= An (3.9
» o H )'I"%
And
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b » +%‘- s
ﬁ [wuly w (v JB(y )y = ﬁ (Wl ¥ 10,(3)B(y )by = 4, (G.10)
]

» '%

Applying the orthogonal properties of the characteristic functions w(x) and w(y) and
using equations (3.7), (3.9) and (3.10) in equation (3.3), the equation becomes

v, () =
E i A i g £ Sl
M;gAm{w,,(f)Ezw:, (s)wM,ZZAm{ﬁs (t)|:w,(£)w,,(£)+§{1v,,(£)§w,(e)} ﬂ+

r=l s=1

. . 32 " ii 5 € 2 " ii
2uﬂs(t){w'r(e)wnfe)+-2—3{w,,(e)w;(s,)} +u27;5(t){w:‘re)w,,(a)+£{w;(e)w:'(a)} H
J

@G.1D
Where the normalized constant is defined as follows

a b
[w; (x)dx = [w] (y)dy =1
0 Q
Considering equation (3.1) equation (2.4) becomes

Pw _o'w _ w
T s e o

M N
=2 2y, (Ow,. ()w,(¥) _ o ¢.12)

r=lg=l1

o*w o'w  d'w
D{-a? +2

using equation (3.0) in equation (3.12) yields

3 5 [DT W, () + 2wl W () 4w, WP )+ (o, + 1 YT 0w, (I, ()

r=ls=1
G (! (5)w, () 4w, (W (3 )0 KTy (), (5 )15, 713 (£, (5, ()] =0
(3.13)

For arbitrary x and y, equation (3.13) becomes

DT, (W (I, (3) + 2w CIWE () + 3, I G Gy + = >The0)0, (Y, ()

“IGT U{Wf (x)w,(y)+w,(x)w, ( y)}+ KT ()W, (x)w (¥ ) =%, 0w, (x)w,(y).=0
(3.14)
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The equation of motion describing the free vibration of a plate on elastic foundation is

4 4 4 2 2
2_1_0_+2 B1w +6w _Ga w_GB W+Kw+m2(m +m,—)w=0 (3.15) -
&c‘ axzayz By‘ 6x2 6y2 F 4

Where @ is the circular frequency expressed in radian/unit time.
The substitution of w(x,y,t) as expressed in equation (3.0) into equation

(3.15) yields

D! (x)w, () + 2] (x)wi (y)+w, (x)w] (v)}
~GlW! (xJw (y)+w, (x)w! (3 )} K, (x)wy(3) = AW, (3)9,(7) (3.16)

where A, =w(m,+m;)
Substituting equation (3.16) into equation (3.14) gives

BT+ (my ST W (2) =W (W (5)0(3) =0 (B.17)

Hence
AT 0+ (m, +m )T () =y, (1) .(3.18)

Considering the expression for W, in equation (3.1 1), equation (3.14) finally implies

N M [

2 r Tn (1) +(mp +my )T;: (’) = Mf gAm[wn(“’) —;—; 'W:: (E) =3 M.' z z Ann‘ r': (‘}[wr (E)wn (e)

r=l =l
3

E & i ! ' g’ r "
+ a—{u’,.(a)'-i-i w,(s)} ]+ 2uT,_;(f)[w,(a)w,, (€)+ a{wn(e)wr(g)}

+u’T, (1 ){w,'.‘ (E)W"(E)}'i' %%{w,,(s)wf(a.)}" ]] (3.19)

 These coupled ordinary differential equations are to be solved subject to the
various boundary conditions for the plate. The kernel for the required boundary
condition is substituted into the coupled ordinary differential equations and solved for

the solutions of the unknown function of time.
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4. SIMPLY SUPPORTED RECTANGULAR PLATES
The normahzed deflection curves (kernels) for simply supported plates are

w, (x)w, (y§)= csin{r }sm(szy} 4.1)
a
r=1,23,... s=1,2,3, ...
Where ¢ is evaluated from the equation
ab e ab
[{w?Gepw2 (v)ardy =< | smz{ﬂ}sinz{f%}tmyﬁ @2)
a0 0 a

0

Such that

2
c=— (4.3)
Jab
Substituting equation (4.1) into equation (3.16) yields the eigen values
2 2 72 2 212 .
i, =Dz il-z-+‘—.} WeZ 2l LAFEIRIRY ¢ (4.9)
a~ bt at b

Following the procedure in section three, the exact govermng equations. are
obtained since the kernel could be directly integrated without the use of Taylor’s

series expansion.
Substituting equation (4.1) into equation (3.3), we obtain

v, (f) = M, ge ].sin( i ) x,&)dx Ism( )B(y)dx
HE a

e el el

r=1 s=1

+2uT! (t)j—cos{ } ( )rg)dx‘[sm{ }sm[ )B(y}dy
+u’T, (;)‘J{—[%J }sin{%}sir{-’?)ﬁ{x, E)dx Jsin{%’?-}sin{if-]uyw

(4.5)
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By direct integration and further simplification of equation (4.5) we have

2
g )= 2oMige 4 (Lﬂé] s,-,,(EJ
nTE a 2a

m(r—a a

r=1 s=1

Mclifz*A [T"(r){ a o {(r n)nf} {(r n)fr;’}

DE(; Tn)JTC_,]: (r+n)n T (t)m l1{(r + n)mf} r+ n)mf }
n’r-m) ;r(r +n)

= n)mf} {(r ”)”‘5}1

a(r— n) { a 2a ]

+u'T (f){— ()’ }{ : cos{(r—n)rrf}sin{(r—n)né}
Z a w(r—n) a 2a |

~ { 1 ik { (r+n)xt }sin{(r +n)at }H
w(r+n) a 2a 3

Forr=n

Where,
A, = i sing 22 L sin 2
mymx 2b b

A = I(m s)mu cos (m-s)ny,

(m— s)p':r 2b b

9 n{(mﬂ)ﬂﬂ cos{(m”)’w'
(m+s)ur 2b b
formes
A, :.1... ; b sin{(mﬁ)w cos m form=s
2 (m+s)ur 26 b
; T
v, (N = Rallge A, sin(ﬁ)sin{ﬂ[ﬁJ
nre a 2a
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AMN it ("+")TC§ ("+")1'C§
HEEE ARl f
; (r+n)1t§ (r-i-n)nlf, :
+7u7;,s(t)m{ e n{ } S }}

" (,){_(m)zH_s__ 1 m{(r+n)x¢15in{(r+n)x§}}] o an
& a 2a #(r+n) a a Sl

Considering équations (4.6) and (4.7), equation (3.17) becomes

T, (8)+(m, +m )T (8) =—%§Am s_in[mg)sm[mm] ;

a 2a :
Mzc i (r—n)m§ {(r n)ﬂ;g}
§§A [T U{ﬂ(r " { a } s o
' oy 18 {(r+n)1t§} {(r+n)1t§}
n(r+n) a 2a
a1 oot fo-and)
i +H r—H
+£Ta4iﬂmem7’v {# . -
J{(r+n)1tf,} '{(r-i-n)nE,}
n(r+n)

T, =T,(¢)=0.forr=n “8)

I'K rs

And

WT )+ 0y +m T (1) = *MA sm(m:]sm("“)
nme 2a
M,r:2 i f: Ans| T"(t)a £ cos{(r 1.0 sin{(r s "M}
- 2a 71:(?‘ +n) a 2a

r=1 s=1

+2uT (r)rfr{ : sin{(r i n)mf}sia{(r i n)mf}}
x(r+n) a 2a -
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\+u2T(f){ (mr)2HE_ 1 co{(r+n)ﬂr§}sin{(r+n)7r§}H
" a J|2a a(r+n) a 2a

T, (0)=T,(2)= G Fobs i (4.9)

5. ** RESULTS AND DISCUSSION

For the numerical work the coupled differential equations (4.8) and (4.9) are
solved using the central difference formula of finite difference method. The variou:
parameters have been defined as follows: Poisson ratio v = 0.2, E = 2.109 x 10’kgm™,
u = 1.5ms" and the dimension of the plate is taken to be a = 0.914m by b= 0.457 for
the purpose of comparison. The areas (Adl, Ad2 and Ad3) of the distribution of the
moving load are taken as & x p. Adl = 980mm* Ad2 = 245mm’* and Ad3 =
0.005mm’.

The deflection curve at the mid span of the plate is shown in Table 1 with the
moving masses and moving forces for values of K = 20 and G = 4. As the
distribution tends towards concentration (concentrated moving load), the
displacement profile tends to symmetry and the line of symmetry is at the centre. The
behaviours of point load compares well with that in [7]. The moving force table
represents the results obtained when the inertia effect of the load is neglected.

* The distribution of the moving load is proportional to the deflection of the
plate. This is evident in table 2 that shows the dynamic deflection of the plate at a
specified time. The more the area of the distribution of the movnng masses, the less
the dvnamic deflection. The deflection of the concentrated moving load agrees with
the research work in [2, 5].

The presence of the elastic foundation reduces the deflection of the plate.
This is seen in tables 3a and 3b that show the displacement profile of different values
of the subgrade’s shear moduli G and K. It is found that the variation in deflection for
concentrated moving mass is larger compared with distributed moving mass for
various values of foundation moduli. Also the result reveals that an increase in G or
K. decreases the deflection at every point of the plate. The effect of G on the plate’s
displacement is more pronounced than that of the foundation reaction modulus K.

The critical speed of the moving load is obtained in table 4. It is found that
critical speed of the movmg mass and the moving force are approximately 25m/s and
26m/s respecuvely

6.~ CONCLUSIONS

: The ‘structure of interest is a rectangular plate on a non-winkler elastic
foundation under the influence of a uniform partially distributed moving load. The
governing equation is analytically simplified to form coupled ordinary differential
equations.  Finite difference technique was adopted in solving the differential
equations for the simply supported plate. The results show that the presence of the
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foundation moduli reduce the deflection of the plate. Also the area of the distribution
of the load has significant effect on the displacement amplitude.

TABLE 1: Variation of the deflection ai the middle of the plate

Time in Moving mass Moving mass Moving mass
= sec (ts) deflection (mm) deflection (mm) for | deflection (mm) for
for Adl Ad2 Ad3
Q 0 0 0
G 0.038083 -0.60916732417 -0.29757086961 0.02751096037
0.076166 -1.07100424808 -0.78607934958 -0.50447045007
g, 0.114249 -1.50422174734 -1.26263401172 -0.98740310197
0.152332 -1.87679421898 -1.67850691980 -1.43665870852 :
0.190415 -2.18162523848 -2.03341017142 -1.83331688412
G 0.228498 -2.40248088487 -2.31130328229 -2.16158231802
0.266581 -2.53010637250 -2.50001215193 -2.40745289496
0.304664 -2.55766076347 -2.59083950503 -2.55977405822
& 0.342747 -2.48459543146 -2.57873500259 -2.61133110066
0.380830 -2.31402454586 -2.46796665853 -2.55963295697
0.418913 -2.05396619358 -2.25565063098 -2.40713363580
0.456996 -1.71588573804 -1.96022791724 -2.16110910627
0.495079 -1.31393522549 -1.58523276919 -1.83270824114
0.533162 -0.86401523136 -1.16117449512 -1.43596916037
0.571245 -0.38272237805 -0.68989700515 -0.98652234996
0.609328 0.10743021909 -0.19739908724 -0.50366289449
0.647411 0.67548648116 0.35556695148 0.02838824416
0.685494 0 0 0
(s) moving force moving force moving force
0 —10 0 -0
0.038083 -0.61223322583 -0.29873772652 0.02769261624
0.076166 -1.07579355677 -0.80403098889 -0.50779217899
0.114249 -1.50496871775 -1.26628146290 -0.99247119998
0.152332 -1.87593824009 -1.68054633510 -1.44075330061
0.190415 -2.17484247452 -2.03020182386 -1.83356646520
0.228498 -2.39014229457 -2.30181822610 -2.15592480358
0.266581 -2.51362209276 -2.48500695591 -2.39542617927
0.304664 -2.54048493916 -2.57267897748 -2.54288735408
0.342747 -246973008423 -2.56149399297 -2.59261775498
0.380830 -2.30406599524 -2.45186624650 -2.54273271888
& 0.418913 -2.04986147729 -2.24802970276 -2.39511701310
0.456996 -1.71687525334 -1.95778656925 -2.15545922907
0.495079 -1.31791507927 -1.59233006604 -1.83297819434
0.533162 -0.86831659862 -1.16566536611 -1.44005587983
0.571245 -0.38514994553 -0.69407682387 -0.99169636559
0.609328 0.10910832330 -0.19856727392 -0.50697364093
0.647411 0.66584864574 0.35432973144 0.02857488858
0.685494 0 0 0
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Table 2: Dynamic displacement of the plate at time ¢ = 0.23s.

X(m) Adl Ad2 Ad3
0 0 0 t0
0.0914 | -0.0007422 | -0.0007141 -0.00066785
0.1828 |-0.0014119 | -0.0013583 -0.00127032
0.2742 | -0.0019433 | -0.0018696 -0.00174845
0.3656 | -0.0022845 | -0.0021978 -0.00205543
0.4570 -0.0024020 -0.0023109 -0.00216121
0.5484 | -0.0022845 | -0.0021978 -0.00205543
0.6398 | -0.0019433 | -0.0018696 -0.00174845
0.7312 | -0.0014119 | -0.0013583 -0.00127032
0.8226 | -0.0007422 | -0.0007141 -0.00066785
09140 |0 0 0
Table 3a Variation of K and G with dynamic displacement at the middle of the
plate
Time in | Displacement due | Displacement due | Displacement due
sec. (ts) | to Adl. G=0, to Adi. G =09, | to Adl. G =4,
K =0 K =0 K =0
0 0 0 0
0.038083 | -0.60918088944 -0.6091546546 -0.60907527506
0.076166 | -1.07100159222 -1.07058361665 -1.07083879384
0.114249 | -1.50425012895 -1.50418374598 -1.50398840219
-0.152332 | -1.87678285536 -1.87674561810 -1.87650295188
0.190415 | -2.18195401691 -2.18158305363 -2.18128564659
0.228498 | -2.40246761393 -2.40243170584 | -2.40210615093
0.266581 | -2.53015389186 -2.53005851196 | -2.52971111737
0.304664 | -2.55769763845 -2.55759314088 | -2.55726114601
0.342747 | -2.48463332163 -2.48453378587 -2.48420752215
0.380830 | -2.31405937713 -2.31396435147 | -2.31366389764
0.418913 | -2.05399721285 -2.05392700441 -2.05364696616
0.456996 | -1.71591069442 -1.71585111878 -1.71561883511
0.495079 | -1.31396273946 -1.31390940520 | -1.31374021053
0.533162 | -0.86402754356 -0.86399318040 | -0.86387639988
0.571245 | -0.38272811542 -0.38271291259 | -0.382661168554
0.609328 | 0.10743167868 0.10742449204 0.10741505782
0.647411 | 0.67549781161 0.67546759461 0.67536942700
0685494 [ O - 0 0
us) k=0 G-0 K=02,G=0 K=20.G=0
0 0 0 0
0.038083 | -0.60918088944 -0.60918001691 -0.60916732417
0076166 | -1.07100159222 -1.07100159197 -1.07100424808
0.114249 | -] 504250] 2895 -1.50425002153 -1.50422174734
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Time in | Displacement due | Displacement due Displacement due
sec. (ts) to Adl. G=0, to Adl. G =109, | to Adl. G=4,
K=0 K =0 K=0
0.152332 | -1.87678285536- | -1.87678254920- | -1.87679421898-
0.190415 | 2.18195401691 2.18195370718 2.18162523848
0.228498 | -2.40246761393 -2.40246759407 -2.40248088487
0.266581 | -2.53015389186 -2.53015368870 -2.53010637250
0.304664 | -2.55769763845 -2.55769738194 -2.55766076347
0.342747 | -2.48463332163 -2.48463318728 -2.48459543146
0.380830 | -2.31405937713 -2.31405899605 -2.31402454586
0418913 | -2.05399721285 -2.05399701826 -2.05396619358
0.456996 | -1.71591069442 -1.71591047984 | -1.71588573804
0.495079 | -1.31396273946 -1.31396267940 -1.31393522549
0.533162 | -0.86402754356 -0.86402749496 -0.86401523136
0.571245 | -0.38272811542 -0.38272805749 -0.38272237805
0.609328 | 0.10743167868 0.10743157435 0.10743021909
0.647411 | 0.67549781161 0.67549772195 0.67548648116
0.685494 | 0 0 0
TABLE 3b: Variation of K and G with dynamic displacement at the middle of
the plate
Time in sec | Displacement due | Displacement due | Displacement due
(ts) to Ad3.G =0, to Ad3. G = 0.9, | to Ad3. G =4,
K=0 K=0 K=0
0 0 0 0
0.038083 0.02751183938 0.02752207341 0.02750187982
0.076166 -0.50447802894 -0.50468436545 -0.50439214847
0.114249 -0.98741784885 -0.98387550872 -0.98725074315
0.152332 -1.43668022160 -1.480365305%6 -1.43643644603
0.190415 -1.83334441089 -1.75020226740 | -1.83303247353
0.228498 -2.16161487052 -2.17310597587 -2.16124611967
0.266581 -2.40748921079 -2.40542766649 -2.40707694336
0.304664 -2.55981290362 -2.56010804858 | -2.55937678383
0.342747 -2.61136992674 -2.61118343769 | -2.61090987881
0.380830 -2.55967499751 -2.55958497975 -2.55929646829
0.418913 -2.40715272761 -2.40707003736 | -2.40643036077
0.456996 -2.16114427366 -2.16105522434 | -2.16082511074
0.495079 -1.83273633713 -1.83266330654 -1.83241804092
0.533162 -1.43598209732 -1.43592425010 -1.43573909093
0.571245 -0.98663984172 -0.98660626063 -0.98647300227
0.609328 -0.50366390062 -0.50364335835 -0.50357532246
0.647411 0.02838877283 0.02838637174 0.02837849900
0.685494 0 0 0
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Table 4: Load’s velocity variation with maximum deflection

U(m/s)

Moving mass deflection (m)

Moving force deflection (m)

3
6
12
i8
22

23

25
26
27
28

0.00259884874222
0.00287634768845
0.00457809516455
0.01128019700310
0.08523278218104
0.13230967145247
0.02303864634032
0.04111638422853
0.01235713822511
0.00486152569957

0.00252759249832
0.00253889856246
0.00274664658207
0.00297187418724
0.00315728725821
0.00316682097558
0.00316744000806
0.00315729199288
0.00310527746928
0.00302956142400
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