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ABSTRACT ;

This paper considers the theory of the observed shallow water waves. The
interest is essentially on the range of periods associated with beach leng waves. This
range seems to be of environmental interest in the locality. This is so, considering the
proportion of ocean energy trapped within this range and often dissipated along the
shoreline.

On the whole, the analysis re-enforces the concept of the cnoidal and solitary
oscillations as essential members of shallow water processes: It is difficult to observe
this considering the complicated wave patterns over beaches. However, spectral
decomposition of this pattern is quite revealing.

1. INTRODUCTION

A look over a beach presents patterns of endless moving successipn of
irregular humps and hollows reaching from horizon to horizon. The processes Zre so
complicated and random that it seems an impossible assrgnment to form any realistic
picture concerning their evolutional patterns.

The formulation concerning these patterns dated beyond the days of Scott
Russell (1844), Kortweg D.J and De Vries (1895). For details of the developments in
the initial stage of wave theory, one may refer to Benney (1965). A comprehensive
account and more recent developments may be obtairied from Witham (1973) and
Okeke (1999). This study begins by introducing the reader to the basic equations and
the non-linear boundary conditions governing the evolutional pattern of shallow water
waves. It continues to and touches some aspects of the recent developments in the
theory.

% BASIC EQUATIONS
The x-axis is taken perpendicular to the wave front whilst the y-axis is

perpendicular to it. y= r](x,r) is the wave profile whilst y =-h(x) is the bottom
profile of the water layer (Stoker, 1957).
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Fig I: Wave profile in beaches

The equation of continuity ‘gives

V. q= 6? 5 =0 -h(x)<y< r,(x,t) g4 = particle velocity (1)

The boundary conditions are:
d‘: y): no+un -V=0 oh y= r;(x, r) )
P(x »i)=P=0 on y=q(x,r) (3)
d(’;: y)_ ar +¥=0 on y = —h(x) )
Integrating (1), using (2) and (4),
Rt A
I 2 (v un,), + (), = (5
hiv) €%
:(; ud] J-*—uﬁ + u N 'rh" h, (6)
ax
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3§ Q
— |udy=-n,
ox 3

To simplify (7), we use the vertical equation of ‘motion, which reads (in static
equilibrium),
Lo

o 8
poy g 8)

from which we obtain, using (3)

p=pgn-y) )
o _ o1
Pl e (10)

(10) is independent of y-coordinate. For motion in x-direction,

But from (10), C-Z% is independent of y. Thus, %l:- is independent of y-coordinate.

Consequently, the entire motion is uniform with depth. This statement is true to the
' 2
order of [%i} , hy = typical water depth when undisturbed and L, = typical
0

wavelength.  Thus, the approximation is true provided that hy << L, and

2
u=u(x,0)+ O[Lﬁ] , 1.e. in shallow water.

0
Equation (7) now becomes
0
g[u(ﬂ+h)]=-ﬂ, (11)
Together with
..ai‘- +u @ — —g Q]— ( 12)

& T
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u(x,t) and 77(x,¢) in (11) and (12) are connected by the relationship

u=2(c~60)

where

¢’ = gly+hy) and c = ghy

concerning internal friction, the decay time, 7 is given by T},

2

VT

(13)

g where v is the

coefficient related to viscosity and L is the wavelength. The following table identical
to those of Kinsman (1965) gives values of 7; with the corresponding wavelengths.

Table 1:
Ty L
5 seconds 1.8cm (wind waves)
2.3 hours 1.1 meter (3 seconds swell)
2 % years 101 meters (10 seconds or more swell)

Thus considering the range of wave periods, which are of geophysical interest in
which we are concerned with, the effects of viscous dissipation, will be neglected in

the subsequent discussions.

Using (13) in (11) or (12), then,

3n
Uh CD( 2]_’0}1:

+ O(n;:") =0

if we incorporate the effect of dispersion (frequency), (14) gives

f -
. 35
1, +c(,{l+5
".hhu
= 'y = e—
6

i:;inea :jised form of (15)

el + Mgl.r =0

(14)

(15)

(16)
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(16) is solved with the initial condition

n(x0)=f(x)

Let N(k.t)= je*"’“n(x,r )dx

—o

.l oo
With n(xt)==— je"”‘N(k,:)dk
n

-0

F(k)= ?e"“n(x,O)dx = Te*”“ f(x)dx

—00 —o0

From (16)

2,2 )
N (k)= F(k)exp\:ikct[k W ﬂ
ol =71 |
If f(x)=06(x),a point source with infinite strength, then,

Fo) = [e ™ 8()dx =1

-0

3.3
N(k,t)= exp{ikcr( L iﬂ
L 6

Kk2h? F
-— ket -1}
Ie”“e[ { 5k

-0

1
(x,)=—
7z 2r

i i
2 NT
=(——c”21 } 4 (%} (x-ct) an

A (z) is called Airy function which is the solution of
u +zu=0 (18)
This function models the evolutions of a variety of phenomena such as intensity of

light in the neighbourhood of a causic. It also defines the behaviour of wave train
near the front. Also,
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This function models the evolutions of a variety of phenomena such as intensity of
light in the neighbourhood of a causic. It also defines the behaviour of wave train
near the front. Also,

‘1/_ P exp(— zz% ), z—®
2 3 =
A CITRE SR

=

4(2)=

N1

ANANVAYE

FigII: Point source evolutions

3 SOLITARY AND CNOIDAL WAVES
It isiusulally assumed that the wave motion in this consideration is uniform.

That is z=x-uy where u,= c{H%ﬁ-] 770 being the wave height,

n(x,) =hy&(x) . In the case of solitary waves, &(x)—>0., £(y)—>0asy—>w

Equatior (15) now takes the form P
h" &t =¢£a-¢) (19) y
;{——IJ or -'-‘—°—=E+l ‘ ¥

2
Th-.unmmonof(:o)is .
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£ =asech’ [[;}%J(x— ut)} a =10 = &)

With
e S
H(x,t) =1, sec W l:[%} (x.— uot)] 20)

is
. - 2
(20) defines a wave with a single hump and wave number k=(i%} , which

depends on wave height 77,  This is one of the striking features of the non-linear

waves.
But if &(y) and £'(y) do not vanish as £ — oo, then,

&%= 1) @n
Where f (g) is a cubic polynomial with three distinct roots, i. e. 0, @ a-f where
2
0
Asa—0,

£(x)= %|:1 + cos(@ hi” 22)

0

Generally,
3 :
§(x)=a0i[é}(x—w) @3)

¢, is the Jacobian elliptic function. But (22) and (23) give rice to periodic solutions.
For details see Witham, (1973).
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4. EFFECTS OF HIGHER ORDER NON-LINEAR TERM
Following Okeke (1997), equation (15) is generalized to give

2 3
.6_77.4_5-0 1430 30 |0 _o 1 (24)
o 2k 8K )ox \B

' 2 3
ai+cc(]+zl_én_Ja_n+7M=0 (25)

Co=+/8h; y=c—°6h3 as before

lawoducing X = x —ugt, uj = g(hc, +n0). As before, up is the uniform wave speed.
(25) wansforms to

2 3 4
Uy > n~.n ul 2 On
——N ey A ———— |+Y | — |= =B e 26
> n 0( 2 ah 32}13] Y (BX] XoN—%a (26)

If by is suitably chosen such that

62
%)-:"-=5—-'3-=0 @7)
"

where wave height at the shelf edge is 77 = a,, then,

2 N
Coao QU E u
= = Jo— i~ —-1 28
Xo = CoXoo = 4%[ 2hs ) an[co J {28)
5 3
coay | ug Cod, 3a,
=Gy = ol T Y et i
& =Rdn ="y (co J 2110[ 164,
(26) takes the form
d 2
—E} =n'-ay7’ +ayn’ +aym-ay (29)

dy
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0

y 2 3
S u Mo o o 2
S Y O = | @y =32y %

<o 2’1(] 8h02 [hg) 4 h(] 11

B= léhnz[i,]; a; =8k, @y = 16}’5(1‘1} as =32hy oo
¢ ) c

It may be of interest to evaluate the contribution to the wave energy arisen from the
additional term. Thus (26) takes the form

.‘ ( 3 Y hop?
_en? g 150002 |+ 22 = 3(yon- ) (30)
hy hy 3 -
u 1
where g = 0.774hy, — =1~ —
Co 3

Multiplying (30) by p (density) and carrying out vertical averaging of terms im (30),
we have :

3 —4
P’ = ph”n +pg(15%—0 19;;]+;m a1

712 includes contribution from mean sea elevation. 772 is proportional to the kinetic
energy of linear wavefc. n whilst 77 is related to potential energy. 77° arises from
first order non-linear term in (15). 7% suggests the effect of the additional second

order non-linear term. If ng = 0.774hy, the contribution of ﬁ“ to (31) is on 8%. This
is quite significant, which if neglected can affect the accuracy of any of the related
data. 2

Solitary wave solution obtained from (19)
(29) now takes the form

ﬂ(?} =n*(n-b)n-d) (32)
Z .

where
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i

b+d=ay, bd=a,, d=4h 11[2—1]
Co

and finally,

2(R
a,sech (—‘l 33)
Ay +dsech®|3

Ao =b—d =or=2d =8k J2-L," R =2 az[i]
Co B

@, 1s related to the wave amplitude 1o through the flow velocity up. As y — o,

mx) =

L
sec /i —};—'Jal and n—)% and as y —» o, sech( 5 ]—>0and n(x)—>0 o =
3.68h,”. Hence, the solution in this case still models solitary waveform suggesting a
new mathematical form of solitary waves.

Following Okeke (1997) and by assuming that the oscillations no longer
vanish at infinity, we obtain a periodic solution of the form,

n{x;t)= % (34)
where

oy ~2a,H? -3aH +40, =0
i~ obhtained

Solution (34) is essentially no cnoidal as in (23) but instead, models a more complex
form of periodic motion. This will be illustrated later.

Eventually, we made bold and eventually successful attempts in the study of
vomplete equations (11) and (12). 1t began by eliminating » from the two equations,

T 1
RECEN Y

+ A (35)
hy+n

+¢ obtain a more complete equation where 4 is a constant,
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4 =%, 4 :%(2”72 -35) 4 :%{2;’0(%;72]_355 -(1+2F2)

Where & satisfies the cubic equation

53 -382 2+ P2 )&l + F2)+ P2 =0 45)

/

(45) is solved numerically for a range of values of 70 as shown in Table TI below.
M

Table II: Variation of non-breaking wave parameters with wave height

s =& T(seconds) Wave lengths, L(m)
hy
0.30 0.19801 7.05 ’ 80.2
0.41 0.19853 7.31 88.6
0.59 0.19942 7.52 93.3
0.65 0.20103 7.81 - 96.1
0.71 0.20130 8.01 100.5
0.78 0.20160 8.30 103.3.
0.80 0.20207 8.42 107.5
0.85 0.20505 8.85 130.7

An extension of Table II clearly predicts the wave breaking after the height

Mo = 0.85h, is attained.
The periodic solution obtained in this case is of the form

7(z) =& - P+ Blck(ex) (46)

¢, is Jacobian elliptic function of the first kind with modulus &, where k = sin 8 6
being the modulus angle;

y ol s ,
a)‘=4;\’, B*=Ry-34;, Py=Ry+34,

The complete period of oscillation is given by
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2
T= .‘ﬂ(.k_) 47

w

where o is the complete Jacobian elliptic function given by

11
K(kz):%zﬂ(-j-,-i;l;kz] (48)

-F, is in fact the familiar hypergeometric function.
Since0<k<l,

[ 1 409 K 4 _
— =Lk |=1+=—+0lk 49
2&(2!21 s J +4+ ( ) ( )

The period range predicted by this model is often associaied with ocean swell on
beaches.

Fig IV: A more complete profile of periodic oscillation

CONCLUSION

The solution (46) is the most complete and is interestingly independent of the
wave height in relation to the depth of the water layer. It seems to suggest, therefore,
that shallow water waves remain unbreaking before reaching the shoreline. This is
expected considering the dominant role dispersion terms plays in the entire present
development. This conclusion may appear unconvincing considering the complicated
wave patterns observed over beaches. However, harmonic analysis of ocean surfaces
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suggests the presence of a wide range of interacting frequencies in the system. That
part of spectrum associated with swell will satisfy the non-breaking theory.

Further, uniform depth approximation on which this analysis is based is also
in reasonable agreement with observation. Usually, when the wavelength of an
oscillation is large compared with the changes in the sea-bed profile, the sea-bed is
assumed to be uniform with respect to the wave oscillation. Considering the range of
wave periods considered, the condition is easily satisfied over most of the shallow
beaches. .

Also investigated is the wave breaking near the shoreline (Okeke, 1983). It
is proved that the part of the depth distribution /(x) involved in the wave breaking
near the shoreline is #*. This result follows closely solution of equations near the
regular singularity.

Finally, the main areas of present interest are:

L. Spectral study of the present derivations.

2. The incorporation of the effects of the uniformly sloping beach in
subsequent analysis:

3 The application of oblique incident theory.

4. The role of the present theory in relation to the local beaches.

It may be of interest to mention a research group with sole interest on ocean
solitons. Information regarding their activities can be obtained form the Head, School
of Ocean Sciences, University of Wales, Anglesey, North Wales, Britain.
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