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ABSTRACT

Transition to intermittency is investigated in globally coupled maps. The distribution
of laminar phases for the various transition regions obey —3/2 power law decay. The
difference of the emerging two clusters at the various transition regions show features
of on-off intermittency. By applying noise to the system at the transition regions, the
small cluster attractor reduces to a large number of clusters. The differences of the
clusters also show features of on-off intermittency.

INTRODUCTION
The transition routes to chaos in low-dimensional non-linear dynamical

systems have been well understood. One of them, the intermittency route was
classified into three types by Pomeau and Manneville [1]. The gssentiai feature of
intermittency is that a simple periodic orbit is replaced by a chactic attractor, where
the chaotic behaviour resembles that before the transition in an intermittent fashion. -
Recently, a different type of intermittency called “ on-off” intermittency has been
reported in some low-dimensional non linear dynamical systemis [2-7]. This
intermittency is characterized by a two-state nature. One is the “off ” state which is
nearly constant, and remains so for very long periods of time and is suddenly changed
by a burst, the so called “on” state which departs quickly from and returns quickly to
the “off’ state. Moreover, a power law characterizing the on-off intermittency has
been obtained and discussed by Platt et al [6].
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. THEORETICAL ANALYSIS

Globally coupled systems are ubiquitou: i1 mature. They arise naturally in
studies of Josephson junction arrays, multirinde fasss, charge-density wave,
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oscillatory neuronal system and so on [10-12]. As one of the simplest globally
coupled map (GCM) has been the subject of intensive research in recent years. Some
rather surprising and novel results, such as clustering, splay state, collective chaotic
behaviour, and violation of the law of large numbers in the turbulent regime are
revealed in the GCM model [13-20]. However, to the best of our Knowledge, the
mechanism of transitions among the dynamical phases in the GCM has never been
discussed. In this paper, we will study the transition to intermittency in the GCM
model, which takes place between the coherent and the ordered phases, coherent and
glassy phases and the ordered and turbulent phases.

Specifically, we use the following form of GCM.

X,.() =1-8)7(X, )+ %Zf (x,()) (1)

Where n i and € are discrete time step, the index of elements and the coupling
coefficient respectively. The mapping function f(x)=1- ax® , and a is the nonlinear
parameter. N is the total number of elements or system size.

An important concept in GCM model is “clustering”. This means that even when the
interactions between all elements are identical, the dynamics can break into different
clusters, each of which consists of fully synchronized elements. After the system falls
in an attractor, we say that the elements i and j belong to the same cluster X, =X,
Therefore, the behaviour of the whole system can be characterized by the number of
clusters n; and the number of elements of each cluster { My, M, ...Mng) [21]

As the nonlinearity or coupling is varied, the system exhibits successive phase
transitions among coherent, ordered and turbulent phases [21].

In the coherent region the system is homogeneous in space i.e. X' = X' v i, j. Itis
characterized by only one cluster i.e, n;=1,M;=N. The motion of each element is
zquivalent to that of the single logistic map. The stability condition for coherent state
is the modulus of all eigenvalues of NxN stability metrix J=[1" -, f "(X,)J,"  has
magnitude less than one. Here f'(X,) is the derivative of the n" iteration of the logistic
map. M is taken as the periodic number

J, is an NxN constant matrix

{
Jy = Meire ey B B BE B S
N NN N NN J

The cigenvalues of the stability matrix are
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The eigenvector corresponding to eigenvalue is given by l(%ﬁgf](l’l’---:l)r Thu§’\
\ R

the amplification of a disturbance along this eigenvector does not destroy. the
coherence Eigenvectors for the other N -1 identical eigenvalues are not uniform, the
amplification along these eigenvectors destroys the coherent phase. Therefore, the
stability condition of the coherent attractor is decided by the N-1 identical
eigenvalues.

Their corresponding lyapunov exponents are

A= Alen(1—£)+ Ay F=23...N (4)

where A, is the Iyapunov exponent of the single logistic map. Therefore the critical
stability condition is given by A =0, i.e. &c= 1-e -Ao. When ¢ is larger than e, all
elements quickly evolve to the same motion (the homogeneous state) after a short
transient process, since A <0. Starting at the coherent region =0.4, the coherent
attractor occupies all the basin volumes for a<<1.84. The basin for 2 cluster attractor
increase with a, for 2>1.84. By interating equation [1] with initial condition of each
element randomly chosen in the uniform interval [0,1], and gradually increasing the
non linearity ‘a’ at the transition region, it is observed that the system oscillates
between the ccherent state and the 2 cluster attractor state as nonlinearity is gradually
increased. Furthermore the difference of the two clusters (X'-X”) shows some very
interesting and complex features.

RESULTS AND DISCUSSION
Fig.1 shows a time evolution of X'-X* for a=1.899 ande = 0.4 for the GCM with
M,=102, M,=98, N=200, + g, =0.42
In the region £ =0.3, where the coherent atractor is known to occupy a < 1.54 and the
system is in the glassy phase from 1.56< a <1.80, the same oscillation between the
coherent state and the two cluster attractor state is observed at the transition region.
The complex features of the difference of the two clusters (X'-X?) are also observed.
Fig, 2 shows a time evolution of X'-X? for a=1£70¢ ~=d £ = 0.3 for the GCM with
M,=78, M,=122, N=200.g =0.32.

In the region £=0.2, a=1.893 where there are four clusters M,=20, M,=21,
M;=74, M,=85. The difference of the two smallest clusters M, and M, only glve the
complex feature.

Fig.3 shows a time evolution of X'-X? for £ =0.2 and a=1.893
In the region for € =0.1, for a< 1.62 ‘where the ordered phase appears, the complex
feature is observed at a=1.62 for the GCM with M,=21, My=41, M;=62, M=75,
N=200.
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Fig 4 shows a time evolution of X'-X* for &=0.1 and a=1.62 and X'-X* is the
difference of the two smaliest clusters M, and M. :

It is observed that X'-X? remains along time near zero, and suddenly departs from it
and quickly returns after some random bursts. In order to characterize the intermittent
behaviour, we have calculated numerically the statistical distribution of the duration
of laminar phase X'-X* shown in figs 5,6,7 and 8.

For threshold © =107, a total of 1x 10 iterations of equation (1) were computed to
obtain the curves. P, represents the probability of the laminar phase of length n,
namely Pn=M,/M where M is the total number of segments of laminar phase, M, the
number of those of length n.

The distribution obeys an asymptotic power law with exponent =3/2.

By adding smali amplitude to the system, the medel is changed to

x,0(1) =(1 —e)f(X,,(i))+%Zf(Xn(j))*-ci 5)

1=t

Where £ is a random variable in the interval [0,1] and o is the intensity of the noise.
The intermitient behaviour is observed much earlier at (¢ =0.4, a=1.87899), (¢ =0.3,
a=1.67), (¢ =0.2, a=1.47 and a= 1.91) Ae =0.1,a= 1.6227) and o =0.008 see figs 9,
10,11, 12 and 3.

The 2-cluster attractor reduces to a large number of clusters with all Mi’s small (1 or
2). The difference of the clusters also showed the features of intermittency at the
transition regions. The coherent state at € =0.2, a=1.47 also reduces to large number
of clusters with the addition of noise. Intermittency is also observed.

CONCLUSION

In conclusion, we have investigated the intermittent attractions from a coherent state
to a two cluster attractor, coherent to glassy state and the ordered to turbulent states.
The on-off intermittency of low dimensional systems, the two state on-off
characteristic of motion and the -3/2 power law scaling are observed. The
spatiotemporal on-off intermittency is essentially a global behaviour at transition
regions of extended system.
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ﬁﬁ 5. The _.m_m?m distribution Pn E.w_._w laminar phase of x1-x2 plotted against n (log-log plotting) at muo._a_mi .899.
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FI1G . 6. The relative distribution Pn of the laminar phase of x1-x2 plotted against n (log-log plotting) at e=0.3,a=1.6705.
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FIG.7. The relative distribution Pn of the laminar phase of x1 xw plotted against n (log-log plotting) at e=0.2,a=1.893.
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FIG.8. The relative distribution Pn of the laminar phase of x1-x2 plotted against n (log-log plotting) at e=0.1 .w... .62.
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FIG. 9.The evolution of the difference of the tw

0.4

o clusters with addition of noise at e=0.2,a=1.47.
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