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ABSTRACT

The Cylindrically Averaged Pseudopotential Scheme (CAPS) is used within
the local density approximation to study the ground-state ionic and electronic
properties of sodium clusters. In this approach calculations were carried out for the
bond length of dimer, the total energies, binding energies per atom, as well as volume
and surface energies of sodium clusters. The results obtained compare very well with
the ones obtained from quantum chemical methods, distance-dependent Huckel type
model and car Parrinello method who used full three dimensional approach.

INTRODUCTION

The study of metal clusters had attracted keen interest in recent years due to
its relevance in catalysis and chemisorption. The metal clusters are used for studying
transition form the atom to the metal. Presently, bimetallic clusters are used as
catalysis for the conversion of automobile exhausts to non-toxic gas and refinement of
crude oil in the petroleum industry. For this purpose many models had been used for
the study of clusters and theoretical results obtained are compared with the various
experimental values provided by the development of the molecular beam techniques.
In this regard therefore, alkali metals with one electron per atom are particularly
studied as prototypes of metal clusters.

In the theory of alkali metals clusters, the jellium model [1,2] was a very
unique technique for the determination of the properties of clusters with sizes n =2 —
2000. In this jellium model, all emphasis are based on the electron structure whereas
the ionic background is treated as a smooth positive charge distribution [3]. Here, the
interaction between electrons and ion is included by an external potential. According
to the jellium model, the exact localization of nuclei is not important in explaining the
electronic properties of alkali clusters due to the large screening. Nevertheless, major
goals of the jellium model are the understanding of the magic numbers and in the
prediction of the shell structure [2,4]. Despite the success recorded by using the
jellium model in explaining the electronic properties of simple metal clusters, some
properties calculated with the jellium assumption did not always fall in close
quantitative agreement with accurately measured properties when these were
available, for instance, with regard to ionization potentials [5]. The failure of the
jellium model in this regard is due to neglect of information on the ionic structure.
On the other hand, the quantum chemical mgthods which provide more realistic
results are very elaborate and limit the range of applicability to small clusters. Thus,
there was need to bridge the gap between both methods. In the effort to bridge this
gap, there arose some extensions which added some average ionic structure
information to the jellium model thus giving self-consistent dynamics also to the
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jellium background [6-7]. With large clusters in mind, Inigueze and co-workers [8]
introduced granularity of the ions by using pseudopotential to describe electron — ion
interaction, although the method made several drastic approximations concerning the
net external pseudopotential in order to simplify the solution of the Kohn-Sham
equations for large clusters. In this way, Inigueze and co-workers [9] arrived at the
Spherically Averaged. Pseudopotential Scheme (SAPS). Despite this simplification,
the SAPS method goes a long way beyond the jellium model, since SAPS potential is
less smooth than the extra potential of the spherical jellium model. In the next year,
Perdew and co-workers [9] added the average effect of the ionic structure to the mean
field and the Madelung energy for the ionic bulk was taken into account in order to
obtain the correct total energy in the volume. This approach gave rise to the
Stabilized Jelluim Model (SIM). A few years later, Montag and Reinhard [10]
included average ionic structure information into the jellium model by introducing the
average ionic effect on the electronic mean field potential and the ionic modeling
energy of the bulk. This is Structure Averaged Jellium Model (SAJM). Recently,
Montag and Reinhard [11] considered the pseudopotential for the ionic cores and
valence electrons in a metal by treating the ions in three dimensions and the electrons
restricted to axial symmetry. This gave rise to the Cylindrically Averaged
Pseudopotential Scheme (CAPS). More recently, Kummel and co-workers [12]
calculated in a self-consistent manner, with the ionic structure and the photo
absorption spectra of medium-size sodium clusters beyond Na-20. In this case, the
ionic positions are optimized by simulated annealing in a Monte Carlo approach.

In this paper, the Cylindrically Averaged Pseudopotential Scheme (CAPS) is
used to study the ground state properties of sodium cluster. The results obtained will
be compared with the quantum chemical calculations [13 — 15], from Car-Parrinello
calculations [16], and from a distance —dependent Huckel type model [17] where full
three-dimensional results are displayed. The outline of the paper is as follows.
Section Il will provide a brief theory of CAPS formalism. The result will be
displayed in section 111 and the attendant conclusion drawn in section IV,

|| FORMALISM
In the Density functional approach. the ground state energy for the valence
electrons with pseudopotentials for the clectron-ion interaction is expressed in the
- form.

Eml rI‘Rre D .\'})= Tlf‘:-']* !.‘.I» [”.-1]+%e:.[ (lj'l!'j ‘ ‘M

Ir=r1

N %
+Efd o 0 1, (r R|)+ Pes s (1)

=1 1=] jmi= IlR R |

116

o



IONIC AND ELECTRONIC PROPERTIES...

where p,, is the density of the valence electron, R;, i = 1, ..., N describes the ionic
positions and V/ mql’— R,l) is the local pseudopotential - which corresponds to the total

ionic potential V,m,(r, Riq N}).

In the CAPS approach, the treatment of the electrons is reduced to axial
symmetry using the cylindrical coordinates (p,z). Thus the cylindrical average of the
pseudopotential seen by the electrons is of the form

L 2
Vp.a'(z’p;zi’pr):zr_; d(DVp.\'(Ir_RID (2)

Now the total energy is thus approximated by
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Eqn (3) constitutes the energy functional of the Cylindrically Averaged
Pseudopotential Scheme (CAPS). Here we use the exchange and correlation energy
density functional of Gunnarsson and Lundqvist [18].

The ground state of a cluster is found by solving the variational equations:
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The variation with respect to the electron wave-functions yields the Kohn-Sham
equations in the pseudopotential field of ions and the variation with respect to the
jonic positions yields classical stationary conditions for the ions. The Kohn-Sham
equations are solved on an axial coordinate space grid.

Since we are dealing with valence electrons, we have to employ
pseudopotentials for the individual ionic potentials [19]. For simple metals, one may
use the local pseudopotential, for instance, Ashcroft’s empty core pseudopotential
(20]
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Here, r. is the core radius and Z the effective ionic charge. The core radius is to be
adjusted such that the Wigner-Seitz radius r; of a given bulk metal is reproduced by
the equilibrium point of the energy functional in equation (1). The value of the
strength of the Ashcroft empty core pseudopotential is chosen in order to reproduce
the experimental value of r,, namely
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Accordingly, from egn (6), we get
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r,=3.96

‘Solving eqn (8) gives r. as 1.76 a.u.
The local pseudopotential is generated by the ionic charge distribution via
Poisson’s equation of the form

AV, (r)
=—L 9
Pl ©)

By expressing the ionic charge distribution in the form
Pp(ry=(p, = 0, )0lr =)+ p,6(r, ~7) (10)

And using the parameters p;. p.. ry. and r, we arrive at the local pseudopotential of the
form
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The most essential feature of the pseudopotential is its total strength Sy, which is
defined as the volume integral over its non-coulomb part, namely,

Ps
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The constraint for the correct strength S, and the conservation of charge eliminates p,
and p; in the form
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Having known all the parameters except r, and r; the pseudopotential is related to the
choice of both matching radii. Accordingly, we have chosen our pseudopotential by
taking r; = 1.15a, and 1, = 3.85a, which are below r.,
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The solution of the ground-state equations proceeds in an interlaced iteration
of the Kohn-Sham and the ionic stationarity conditions. The Kohn Sham equations
are solved by a damped gradient iteration [21]. The ionic configuration is iterated
with a simulated annealing technique using a Metropolis Algorithm.

It RESULTS

The bond length of dimer Na, obtained from the present work is 5.8a, which
is compared with other previous theoretical and experimental values displayed in
Table 1. It is found that the present result perfectly agrees with the experimental
value [22]. However, the results obtained by Martins and co-workers [22] using DFT
calculations and results from CAPS [11] under estimate the bond length of dimer. It
is interesting to observe that the present result is also better than the results obtained
from quantum chemical calculation [14], Car-Parrinello calculations [16] and the
distance —dependent Huckel type model [17] where full three dimensional treatment
were used.

In Fig. 1, the present total energies of Nay cluster compare favorably with
the previous theoretical result by Poteau and Spiegelmann [17] who employed Monte
Carlo ensemble growth method (MCGM) algorithm to a systematic investigation of
the low energy isomers for sodium clusters. In addition, our present total energy for
Na,; agrees very well with the results of extensive computer simulation using the Car-
Parrinello method [16].

The binding energies per atom

E(N) E(N)
- Em-£W) 17
N W= g

are plotted in Fig 2 for the ground state structures and compared with previous results.
It is seen that present results follow the trend of the results obtained in ab initio
calculations [13] in the topological Huckel model [24] and the distance-dependent
extension of the Huckel model [17]. Our results are very close to the results reported
by Spiegelmann and Pavolini [25] for N < 6, but with values higher than results
reported by Bonacic-Kontecky and co-workers [24] who used smaller basis set and
excluded the core-valence correlation effects. The binding energies obtained by DFT
[16.26] are svstematically larger than other calculate values, and exhibit a quicker
‘increase towards the bulk value. Again, our result perfectly agrees with the
experimental value for the dimer [27].

I'he binding energy of finite clusters can be parameterized in the Liquid
Drop Model (DM as

EcNr=e,, N+ 0'4:17‘:‘\'5 (18)

120



[ONIC AND ELECTRONIC PROPERTIES. ..

Where €, is the binding energy per atom in the bulk and o the surface energy. This

means that E(N)— &, oV % Therefore, we use this trend in the total binding

energies to explain the asymptotic to bulk like behaviour with increasing particle
number. Accordingly, eqn (18) can be expressed in the form

EW) g vaN (19)

Where the first two terms of the expansion define the volume and surface energies.
The coefficient for the volume energy, a, is just the binding energy per valence
electron in the bulk and the surface energy, o, is related to the surface tension G in
the form

LY

a, =d4mlc : 20)

In fig 3, the total energies per valence electron of the neutral sodium clusters with
even N are plotted versus NL,,’% . The results for a, and a, are displayed in table 2.

The deduced volume energy agrees with CAPS [11] and the value obtained in bulk
matter by using the Thomas-Fermi model in the Atomic - Sphere - Approximation
(TF-ASA) with the same Sy [10]. Again the deduced surface energy from the present
work agrees with CAPS [11] and the experimental bulk surface energy obtained by
using the zero-temperature-extrapolation of the surface tension [28].

v CONCLUSIL:!

The present work has consistently incorporated ionic structure information
within the local density approximation in the investigation of the ground state
properties of the electronic structure of Nay clusters with even numbers of atoms, up
to N = 40. The present result for the bond length of dimer now provides excellent
agreement with experimental value. Our present total energy for Na,gs compares very
well with the result obtained with MD simulation and present total energies favorably
compare with previous results from Monte Carlo Growth Method. Furthermore, our
present results compare well with the binding enervies per atom obtained by several
workers who used di_stance-dependem Hucke!l type mode!, quantum chemical and
Car-Parrinello methods where full three dimensional treatment were used. Finally,
our results for volume and surface energies compare favorably with previous values.
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TABLE 1 :Bond length of dimer Na, (in ag)

CAPS DFT DFT DDHM ECP- Expt Present
{MR) (MBC) | (RA)ref. | O(PS) | CT(BFK) | ref. 22 work
ref. 11 ref. 23 16 ref. 17 ref. 14

5.56 5.5 5.56/5.68 5.9 6.1 5.8 5.8

TABLE 2 : The volume energy a, and surface energy a, of Na

Coeff Method Value

' (Ryd)
a, Present work -0.4630
CAPS [11] -0.4702
TF - ASA [10] -0.4708

a, Present work 0.0588
CAPS [11] 0.0634

Bulk (Expt) [28] 0.0669
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Fig 1: Total energies versus cluster size N.
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Fig 2: Binding energies per atom versus cluster size N.
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