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ABSTRACT .
In horizontal wells reservoir fluid flow is governed in behaviour by well

geometry and reservoir properties in such a manner that none of the existing
methods can be used alone to generate accurate pressure values for all the different
flow periods exhibited. Apart from the very early times, where the log approximation
could be used, this paper shows that accurate pressure distribution beyond the early
period can be computed using the Gauss-Legendre quadrature.

Results obtained using this method support the expected physical behaviour of oil and
gas reservoirs and agree in principles with those published in literature.

INTRODUCTION

The most common and easily obtainable solution to the 3D diffusivity
equations describing fluid flow in reservoirs containing horizontal wells is usually
through the use of the Lord Kelvin’s source functions and the Newman’s product of
the sources. This normally leads to an instantaneous pressure expression containing
an integral to be evaluated with respect to time. The period of flow of interest
determines the extent of integration to be performed and the method of solution to be
applied. Application of the same integration for all periods yields results that may not
make physical sense.”For example, during the early transient flow period (infinite
acting period) the best method is a suitable log approximation. Beyond the wellbore
vicinity where the reservoir actual geometry and boundaries are beginning to be felt,
other methods are employed to obtain the integral. The accuracy of results obtained,
however, varies from one method to another and depends generally on the reservoir
model. :

In this paper the use of the Gauss-Legendre quadrature is discussed as an
alternative to the existing methods. The mathematical development that follows
describes the statement of the problem.

STATEMENT OF THE PROBLEM
The 3D diffusivity equation, for an anisotropic reservoir with a horizontal
well, is given as follows for an unsteady oil flow :
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If one dimension is considered from Eq. (1) as follows:
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the Laplace solution otherwise called the Green’s function for an infinite linear
reservoir is given as:

G(x, 3 i f) - 1 e—(Xﬂ’I) drret (3)
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where 7, = %ﬂc . In a reservoir, the smallest domain is a well bore. Hence upon
1]

substitution of x,, for X’ in Eq. (3) where x is an arbitrary point in the reservoir and Xy
is a point of reference (the wellbore) within the reservoir, we obtain the
corresponding instantaneous source function for an infinite plane as:
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Eq.(4) is now a particular solution to Eq.(2). If the point of fluid withdrawal is at the
point of symmetry in the reservoir and the reservoir is bounded such that there is no
flow through the boundaries, the source is called a slab and its instantaneous source is
obtairied by integrating Eq. (3)from X, — x; /2 to X + Xg/2 tO give
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where x; is the wellbore thickness. The equivalent sources can be written for the -y
and -z directions. The general solution to Eq.(1) is therefore obtained by the
Newman's product method as

s(x.y. z. 1) = s(x. 1) .s(y, ) - 8(z, t) - (6)

If production or injection rate q is maintained in the wellbore then the pressure drop at

any point in the reseryoir is given as a continuous source as
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Ap(x,y,z,7)= ;—z— ];' s(x,y,z,T)dt
o
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In terms of dimensionless parameters Eq. (7) may be written as

where
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These dimensionless parameters render Eq.(1) to take the form:
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aZPD + azpD + BZPD =aP)_f) (18)
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Egs (10) to (12) are justified in the Appendix. Egs. (9) to (17) are based on
horizontal well half length, L/2. 1t is important to note that the wellbore storage and
skin factors are not included in Eq.(8). Eq. (8) can be derived for various reservoir
boundaries. No matter the reservoir being modelled the solution to the integral
involved is common to all. The aim of this paper is to describe a numerical integration
procedure, called the Gauss-Legendre quadrature, for performing integration of the
type in Eq.(8), after identifying the relevant flow periods both in the wellbore and in
the reservoir.

Ref. 3 suggested the use of Simpson rule for obtaining the integrals of the type in Eq.
(8).The obvious problem associated with Simpson’s rule for such integrals is the
program overflow at very early times, especially at tp=0.; pressures are infinite in
magnitude. This is physically unacceptable! Refs. 4 and 5 following suggestions by
Ref. 6 solved similar integrals as discrete areas under the curve of the integrand and
time. This method gives fairly accurate results only for the early radial, and perhaps,
part of the early linear periods. Results obtained for the early linear period gave some
undesirable trends indicating that the reservoir model has an external recharge like a
gas cap or an aquifer. This may not necessarily be the situation unless the reservoir
model incorporates such boundaries. Refs. 7, 8 and 11 have used methods, though
undisclosed, that seem to give a uniform slope 1.151 of pressure with time
immediately after the nearest boundary had been felt. Although, this agrees
mathematically with the simplified form of their dimensionless pressure expressions,
the simplification may exclude certain important representations of the physical
reservoir model, and are therefore apt to errors. Because all it involves is simply to
identify the early period, and dimensionless pressure values beyond this period are
simply obtained by a multiplication of the last value by a slope of 1.151. But results
obtained from actual well test and utilized by Ref. 9 show that this trend is not
accurate because several well test results and their plots do not show a similar
uniform slope even beyond the early times. This constant slope is expected though, to
depict pscudosteady flow, and there are more than one period of pseudosteady flow.
The first encounter by flow transient of a boundary does not necessarily mean that all
the wellbore and reservoir no-flow boundaries have been felt. As a matter of fact
the. e are two major linear flow periods in a horizontal well and unless a reservoir is
finite in dimensions a final and complete pseudosteady flow is not exhibited. This
means that (1) for an infinite reservoir. a portion of the reservoir continues to exhibit
infinite behavior even as other boundaries have manifested and hence (2) a hindered
gromth in pp over time is not appropriate after only the nearest boundary has been
felt. Appropriate flow periods should be identified and suitable expressions derived to
represent them using the prinaiple of superposition to account for all the events that
occur m the wellbore ~ince the first disturbance. Ref. 10 used the combined methods
of Laplace and Fourier integral transforms successively to solve Eq. (18). Although
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good results were obtained, it was not without very tedious reservoir simulation
studies. Obtaining the inverse of all the transforms was obviously impossible without
some serious simplifying assumptions. The method proposed here is not tedious
mathematically and does not involve building a simulator to understand the
relationships between parameters. The integral is evaluated in a straightforward
manner.

APPLICATION OF THE GAUSS-LEGENDRE QUADRATURE
We consider fluid flow through a bounded anisotropic reservoir. The solution is given
for all periods of flow by Ref. 11 as:

T krD I+x 1-x p P
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Following Ref. 2, the dimensionless pressures in Eq.(19) is now written as follows:
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The second term on the RHS is the actual Gauss-Legendre quadrature. z are the roots
and w, are the weight factors of the quadrature. n is the number of points chosen for
computation. The choice of n depends on the degree of the polynomial function,
f(pwp). z; and w, are listed in Ref. 2. The flow chart for the computing pp is shown in
Fig. 1. e

The wellbore parameters used in the example are as follows; -Lp= 0.25, rup = 107,
zwp = 0.5, xp = 0.732 (infinite conductivity horizontal W‘Iee"‘ll)1 The dimensionless
wellbore radius r,p is the same in all directions and it is the same as the wellbore
position along the y-axis. Hence y,p =r,p = 10, Substituting these data into Eq.
(20) gives the dimensionless wellbore pressure, p.p for several. values of to. f=1.0.
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Suggestions by Ref. 3 on the computation of the summation did not make much
difference in the overall computed p,p with only a few terms considered in the
summation. '

RESULTS AND DISCUSSION

The argument of the exponential integral Ei, in Eq. (20) shows that the z-direction is
also undergoing infinite behavior during this period tp < tp.. The period of validity
of the early time period in Eq.(20) depends strongly upon the magnitudes of xp, zp,:
Z.p» Lp and the reservoir anisotropy and it is given as

8’p /20
toe € min {(zp + Z,p)* A20L°D) (21)
(zp +2,p-2) /(20Lp)

where 8 = 1 — xp for isotropic reservoir under consideration. Thus for data given
above, tpe < 3x10°. That is , the exponential integral in Eq. (20) can be
approximated as:

po(Xp Yo »Zp stp) =-In(1.781x) : (22)

for an isotropic reservoir where

xz[(:n":nn):‘q'z”"'ynz] (23)
) 4,

provided t, < ty,. Results obtained are tabulated in Table [ along with those of
Ref.11.

—spectedly, results are same during the infinite acting flow period. Results during this
time are the Ei functions of the argument given by Eq.(3). Ref.11 shows results that
were fixed using a slope of 1.151 immediately after the early time; that is, during the
onset of the first pseudosteady state occasioned by the passage of pressure transient
across the nearest wellbore boundary. It therefore means that even as other wellbore
boundaries are being felt it does not matter the amount of wellbore volume that now
contributes to flow. This is not an acceptable representation of the wellbore. At the
onset of the first pseudosteady flow a unique and uniform change in pressure with
time is established. This some what stabilized flow is disturbed when other new well
boundaries are felt especially for horizontal wells. This introduces a new regime of
pressure gradient in the wellbore pressure. The change in pressure gradient is
expectedly more pronounced than in the first instance due to a larger area of the
wellbore now contributing to flow. It is therefore not appropriate to impose a fixed
slope after the disappearance of the infinite period. This is the exact state of affair
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represented by the results obtained using the Gauss-Legedre quad: .. . 22 @
Table 1. To be factual, there cannot be a reasomably proionged psews:
behaviour until the farthest wellbore boundary is felt. Furthermore, a pe
psuedosteady  state is achieved if flow lasts enough for the farthest
boundary to be felt. This may occur for infinite time if the reserveir is m
infinite.

o e i

“tp Pwp from | Pywp using ¢ suss-
Ref.11 Legendre quadraiure

10° 7717 - DN

10° 10.02 10.02

10~ 12.32 12.32

107 14.61 14.29

10” 16.58 17.50

1 17.99 20.18

10 19.07 22.91

10° 20.21 25.32

10° 21.37 27.64 -

100~ | 2252 29.94 .

10° 23.67 By 24

B

Table 1.:Comparison of Dimensionless Wellbore Pressurc Data for Refll aud
the Gauss-Legendre quadrature
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No

Read Dimensionless
Wellbore Parameters

Compute flow (start and end) period

v

Formulate Eq. (8) to represem model of interest

/ Read the appropriate z, and w, /

Calculate Dimensionless Weilbore pressure, pup
using Eq.(20)

v
/Write tD. PWD. /
v

Enough Calculations?

Fig.L.: Flow Chart for computing p.p
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Comparison of results of Ref.11 and
our method

N W Ww
oo m

N
o

Dimensionless
- —
o O

welibore pressure,pwD

O n

0 0 0 00101 1 10
Dimensionless time, tD

Fig. 2.: Comparison of results of Ref.11 and those obtainied using the Gauss-
Legendre quadrature
Curve 1 from Ref. 11; Curve 2 from Gauss-Legendre

CONCLUSION

For the first time a comprehensive and straighiforward method has been presented to
evaluate integrals associated with horizontal weii flow problems. This has eliminated
the rigorous mathematical labour which often leads to inaccurate solutions when
solving related integrals. In accepting this method, however, full account must be
made for the error associated with the quadrature. If these errors are accounted for,
more accurate results could be obtained to descihe the pressure distribution in a
horizontal wellbore with time for any given szr - elibore and reservoir parameters
using the Gauss-Legendre quadrature.
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Moro - wistuie

2l formation compressibility,psi”

seservoir thickness, ft’

hp  dimensionless reservoir thickness

L well length,fi

Lp dimensionless well length

q  production rate bbl/day

r, wellbore radius,fi

fup dimensionless wellbore radius

s  source function

t time,days

tp  dimensionless time

tpe dimensionless early time

x¢  well thickness,ft

X distance in the x-direction, ft

y distance in the y-direction, ft

z  distance in the z-direction,ft

p pressure,psi

pp dimensionless pressure

Xp dmensionless in x direction,ft

yo dimensionless in y direction,ft

zp dimensionless in z direction, ft

ywp dimensionless wellbore width, ft
total horizontal permeability, md
permeability in the x-direction,md
permeability in the y-direction,md
permeability in the z-direction,md

p  pressure drop,psi

1t dummy integration variable

p  oil viscosity,cp

] reservoir porosity,fraction

n  diffusivity constant, mdpsi/cp

EELF

APPENDIX

" Equations (11) and (12) in the text are not having the same form as Equation
(10) considering the argument below:
Green’s functions are general Laplace solutions for arbitrary positions in the
reservoif. Source functions on the other hand are particular solutions as stated in the
paper. Source functions as defined by Eqs. (11) and (12), depend upon one ‘space
variable only and do not, in general, satisfy all propefties of the Green’s functions.
The sources in y and z- axes of the reservoir model 4re infinite sources in an infinite
reservoir. Hence their respective source functions are simply written by substituting
the arbitrary position in their Green’s functions with a wellbore position,
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without integration (Ref. 1). The source function from the x-axis is a slab source of
thickness x;/2 or L/2 in an ihfipite reservoir. Hence, it is obtained by integrating
the corresponding Green’s function from(x,-X¢2) to (x,+X¢2) (see Ref. 1). X, is
the plane of symmetry generally regarded as the point in the wellbore where fluid
flow takes place. The integration is as follows

Xf

Xr
xo +1/ 1 X+ (Xy +7) x—(xwf—{)
s(x,t) = fG(x,x’t)dx’=— erf| ————= |+ erf| —————=—
x\u_x% 2 2 nxt 2 T'Xt

where

Nx =k'\.|J ud)cl

With the substitution of the defined dimensionless parameter and noting that there can
not be a radius along the well length xwp = 0 and k = k, for isotropic reservoir and

hence
o))

Note finally that T and t, both connote dimensionless time paranveters.
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