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ABSTRACT ;

Another Method for numerical solution of a linear integral equation when
the range of integration is finite is described. It consists essentially of using
Clanshaw-Curtis rule which is predictable and saves a lot of time when the need of
increase in quadrature point arises. Its application is demonstrated.

INTRODUCTION |
In this paper the linear integral equation which is generally represented as
#(x)= £(x)+ ok (et )ple)dr M

is considered. Since the definite integral can be closely approximated by any one of
the several quadratic formulas J. Scanborough in [1] stated that (1) may be written in
the form

¢(x)= f(x) + (b = a)‘;cjk(x,ti):;f(f,) )

where t;, ta, ...t, are subsitituiingdivision points of the interval (a,b) and these C’s are
weighing coefficients whose values depend on the type of quadrature formulas used.
Since (2) must hold for all values of x in the interval (a, b) it must hold for x = ¢, x =
| DR G P

Hence from (2) we get n equations of the type

ot,) = £(6)+ (6 - alCkle, 1 )0(e) + Coklt 02 )06 ) + .C okt 1, )00, ). i=12..n
(3)

Letting ¢ {t,) = ¢ and f(t;) = f; for brevity then the system (3) becomes
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=1+ (b "a)iclk(tist:)ﬁél

= f,+(6- a)iC,k(tz,t, ), ¢ (4)

b, = 1, +(b-a)> Ckle, 1)

Equation (4) are system of n linear equations is n unknowns Oy, 02... 0, which
can be solved. Unlike in quadrature formula where the functional values ¢, $;...0, are
given at point of subsititutingdivision in integral equation the values must be found
out as part of process of solving the equation and the equations for finding then are
obtained by putting X =t;, X =t5, ... x =1t,.

The above numerical process was demonstrated by Scarborough in [1] in the
following examples. (1) Solve the integral equation

)= 2 -S4 2Rl

Applying Simpson’s rule forn=3 orh =% he got

wl)= 2L L (e, + (e, + () + (6 +x()] @)

& 197332

since (5) must hold for all values of x from 0 to 1 it holds for x = t;, X = tz, X = 3.
Hence from 5 we get

‘ 6 19 1
w(ty) =22 Ly L+ 6)+ 4020 (e )+ (6 + (e )] (6)
g A 6 19 18
5t 1
u(ty)= %_ILQ+E (t, +1t3 )+ u(t, 1, HJ)‘-‘(‘:)"'z"’U(t])]
putting t = 0. t, = ', t; = land writing u(t,} = u, we get
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1 1
U, =——+—{2u, +u
1 . 181[ 2 3] s
u
U, =——+—| —+4u, +—u 7
27 18[2 ? 23} &
us —1+-—[u1+6u2+2u3]

Simplifying (7) we have

36].]] = 4112 = 21]3
—uy +28u,; - 3u,
—2u; —12u; + 32u,

II II 1l

_u &
11 } (8)
26

and solving givesu; =0, u; = 12 and u; = 1, and substituting these values in (5) gives

)= 5?"-% 1—%[0+4(%+3J%+(1+x)(1)}=x )
e u(x)=x

- Example 2
Solve the integral equation

)= 2 +.;. 2, Ge - ule) e (10

Using the three point Gauss rule as in [2] and [3] wé have the following on
transformation from the interval (-2, 3) to (-1, '4).
We have t = % +5v , and

x="Y%+5w oan

substituting (11) in (10) we have

u (:_lz—+5w)=1+IOW+E§}4(W-v).l[(-%q-Sv)de] (12)
on putting u(%+ SwJ = ¢(w)and u[ + SVJ d(v)
then (12) becomes
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¢(w)=1+10w+5[f2(w-—v)¢(v)dv (13)

replacing the integral with Gauss formula we have
o(w)=1+ 10w + S[R(w - v, Jo(v, )+ Ry (w = v3) + Ry(w = va Jo(vs)] (14)

since (14) must hold for all values of w from — 2 to % it must hold for w = v|, w = v,
and w = v;. Hence on substituting in (14) we get the equation.

¢(v|)= 1+10v, +5[R2(V1 - Vzk’("z)* Rs(vl _"’3)¢("3)] _
¢("'2)= 1+10v, + S[Ri("'z -V )?s(vl)"‘ Rz(vz _vzb(vs)] (15)
9(v,)=1+10v, +5[Rz(v1 “W )ﬂj("l)"' R,(v, _Vz)]

F;)rﬂle Gauss 3 point formula v, =-;l; %,vz =0, v, = %
5 4
R=—, R ==, R=—
1877 977 s

s;.ubstiluting in (15) ¢(v,) = ¢, #(v.)=¢(v;)= ¢, and solving (15) -we get

) =-337(19+9J§)

38
b= (16)

¢ = ..%(]9—9\/3)

substituting in (14) these values of @, ¢, and ¢, R’s and V’s we get

180 38
_____ 17
élw)=— an
1
x—_.
and since w = 52 the final solution of (10) is

-
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1
X —-—
180( 2) 38 36x 56__13_(9){_]4) , (18)

METHOD USING CLENSHAW-CURTIS

RULE

FORMULATION OF THE NEW
| Clenshaw Curtis formula in [4] states that a given ﬂjn@:tion' f(x) can be

V'expaﬁd-ed in terms of Chebyshev polynomial such that

f(x).-—_ F(t):-;-au +a‘ﬂ(t)+a27;(t)..—2aaNTN(t) (19)
a. < x £ b whereT, =cos(réos“' t) and t = 2x ;(b + “)
: -a

with the séttin’g above Clenshaw Curtis rule states that

i S = 2(B, + b, +b;..) | | 5 @)
. where b = ko T 2 P (21) o
X 2r :

i = -i; S c0s _' @

and X denotes a finite sum whose first and last terms are to be halved. So using a2
point Clenshaw Curtis rule with bs being negligible we have

!, f(e)dr =2(b, +5,) : 23)
using (21) in (23) we get :
JI,F(r)=[9—"-‘£,§ﬂ) L

fors=1,2,3,.4, m{—’:-):lfors=0
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cos(n—sw =.70710681, 5§51
4 )
=0 s=2
=-70710681 §=3
el s=4

u_sing (22) in 24 we get

7
ﬂ,F(z)dr=i+—l~",+Fz+fi+~5uF4
6 6 6 6

APPLICATION OF THE NEW METHOD
Applying (25) to equation (10) with the transformation

_2-(b+a) andl s 2w~ (b+a)

I
s b-a b—a

We have

¢<u)=.m+1+;{(w-v.,)%%(w—m+(w—v2)fz+§(w-v3)fa+§<w4>f;,}
(26)
putting
Wo ooV, W= v, W= v, w = vy oand o wo = vy
and

£= 0l F = ¢(v, L Fy = ¢(vs L Fy = ¢(vi ) Fy = ¢(vy) and ¢(v,)= o, in (26)

Wl
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5(7 ;s 5 )
b =5V +1+ Z{g("o - “’1)4’1 + (Vo - Vz)¢2 + E(Vc - V3N’3 + E(vo e V4)h}
1, ' 7 5
g("l = Vo)¢’o * (Vi "'Vz)% + g("l = Vs)‘ﬁs +'6"(V1 7 V4)¢4}

1, 7 7 8
§y =5vy +1+ i E(Yz — Voo + g("z — Vi + ‘6“("'2 = v3 )03 +'6‘(V2 ‘_WN’A}'

¢, =5v; +1+

w Bl

511 7 7 5
by =5vy +1+ 2 g("a ~ Vo) + “6“("3 -V )y +g("’3 -v3 )b, +—6“(V3 - V4)1’4}

by =5vy+1 ,‘*% %(W =V Ko +%(V4 i V1)¢1(V4 - "2)2¢+ %(Vd —"'3)1’7}
@n

substituting vo = 1, vi = 70710681, v, = 0, v; =-.707106781 and v, = -1 into (17) and

solving for e & dn &5, and ¢, we again get U(x)= 547(9;: ~14) which is the

solution of (10).

CONCLUSION .

' The attraction for applying Clenshaw-Curtis rule is that the a’s are generated
automatically and an increase in the use of quadrature point saves time as only the
additional points ay be generated unlike the Gauss rule where an increase in the
number of quadrature point requires an entirely new set of points. Moreover whether
the system of equations (27) is large or small (which depends on the number of
quadrature points) the Clenshaw-Curtis rule which is more condlstent gives miore

accurate result.
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