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ABSTRACT

Let pn(z);n>1bea polynomial of degree n. Methods that not only
enclose , but also isolate the n zeros in a suitable interval have been proposed. See for
examples, Petkovic [7] , Gargantini [12:3]; Gargantini and Henrici [4], Petkovic and
Carstensen [8] , etc. These methods have the disadvaniages of being complicated ,
but they possess as one of their features the automatic determination of bounds for all
zeros. In this paper, we present an interval method and its analysis of the order of
convergence. However, the analysis is presented in circular interval arithmetic
introduced by Gargantini and Henrici [4, 5] . We illustrate convergence of the method
by numerical examples. Extension of the approach to rectangular arithmetic is
analogous.

1. Introduction
Define the complex circular interval

Zz{z:|z—al$r,'aeC,r_ER,r=>0}ﬁ{z;r} (1.1
which is precisely a disk with radius r and centre at a. Dencie this a8
a=mid(Z) ;r =rad(Z) a2

The arithmetic operations {+, -,/ } on the complex circular interval in (1.1) are found
in Petkovic [7] and Gargantini [1]. To fix ideas we adopt the folloWwing notations. Let

2 =mid(Z,)iry=rad(2;);r = maxly 1215 = 1)

I .
e;j=zj"Aj €= max{e.f}; P= n_ti{mizr fs',n'%'rj} (1.3)
J i
i*f
&
where {,1 i1 are the simple ~ #eros of the  polynomial

n ' . . - * -
p.e)=% a;z' i an?* 0.a,€C, which zeres we seek to enclose in circular disks
d e ) L
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From the third order simultaneous point

Z,; {zj,'r‘,}of insignificant radius

(

iteration method
: F(®
ZEV =20-F)1- ¥ ¥, 1 s 8=0,1,20.
3 ] ) et Z(S)'Z. )
Pa (z*)

Pl =
n
1 &-2)
k=1;k=i
of Milovanovic [9] an inclusion method is derivable by the replacement of the point
], §=10,1,2,..to obtain the interval method

n / n
— {with I
i f.'}s:[sz)‘z?j] a=}:;‘:f{z§-‘)-2?)
. b e F()
Z(‘"U = zﬁ\)_p(zﬂ\)/( pX £=012.. (1.4)
] J J i1z sz Z(‘)

\
The replacement is by no means trivial »nd its implementation is guided by the rules

of interval arithmetic , see Petkovic| 7]. A variant is

J

( Y .
F(29
6 e e b)) il 18]
Z7eglbaP N Lag B e i 2 PRl (19
il 26 - 1Y ")
derived by using the fact that
w7 Y oa ) i)r}
> TR c TP = (1.53)
1 g :;, =Ly =l = _’:',}-" / 5
where s is an iteration index. From the inclusion relation
o F( ; ( Ff N b3 ‘Ff':f‘,”
(-, ) 44 | (;., ' . T e ) i
v | = — (1.5b)
N N -z, ‘f lr 1 f&-‘i:.‘ z :.UJ (pr J
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n F(z:)
zi~ F(z,)lL Z [ =2 D
=1 :
s ) (2.5)
2 (ze )F(v) o rilFlz)i
= z;-F(z;) Zj i Z i 21 ;
J=1j=i |Zi‘2ﬂ ‘rJ. j=i J#llZi"ZjI =P
by adopting the disk inversion arithmetic, see a section ahead. In this regard
( o (Fzp e
Rad| z;-F(z;)|1- Z =\Fz)| & ==
j=li=i\ zi=Zj jelieil zi- 2102
Y @6
. e, 1+;] rin-1)
. | F(z,)]
=|F(z)] T < -
i (P +2r)p .

since |e,|=|z,- A;|<r; <r and with the requirement that p > 3(n - /)r means
then that

(5l )

for an indefinite degree n of P, (2) . Therefore

Rad[sz(z{)l- 3 [F(Zj)} _r(n l)e 3 7—1947734 <2. (2.8
L =il Zi-Zj (p)

w

<3 @7

and the required bound follows. The above theorem still holds good for
p > 4(n-1)r . Furthermore, if it is desirous to adopt the alternative definition

p+= min |z;-z;|inplace of p, the above theorem still holds true. We propose now
I<i isn

to prove the order of convergence theorem for (1.4).
Theorem 2.2 )
Let Z¥ -—{ . ””} be initial non-overlapping disks isolating the simple zeros
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A, v J = 1(I)nrespectively. If

P >3- n >0 (2.9)

L}
then the sequence { Z ?J} s of disks generated by the method (1.4) is such thar

@ P ezW:5=012..j=In
) o < 26°0-1)

2.9
“- ;r(o; ¥

so that the radii {,ﬂ"&‘fi 9 —>0as s - in the asymptotic sense expressed above. This

means that the interval method (1.4) converges with order p=3.

Proof

Assume that A€ Z’j‘j ;8=0,12..;j=1()nfor some iteration index s. By
inclusion monotonicity

X, hy H 2 zf‘}‘ N, 5, F( } =Avi).
’1/}‘:’;!":‘(:(.;}{" ) %#(z((; ;)JJEJJ-F(Z{")/{I-, % {__?; fo}}J-Z.lf o (2.10)

s=012,..

Because A;€ 7{": j=1(1)nthen applying mathematical induction on s in the above,
the first assertion follows. For the second case

;
{ (]:sr ] 5 (s)yd
n n- l
RadZ ) -Rad £-Fii 1 % | f?s ( ‘\’fr L amn
J { ‘ AT J‘Lsh Z{xl} ! )
using theorem (2.1}, where of course
Fubl omn ’51’_}”'-'.{” ""j” ”i(l\ ’”“ rrdtdm (2]2)
Fors

N

&
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r(]) < 2(n - ])(!‘(O))

, 7 »1=1(Dn
' (e

Hence
0 20Dy 2,9
O . 2-1)
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(2.13)

(2.14)

By geometric construction ,Gargantini [1], the disks z0, 20,7z, 7D are disjoint

if
P >] 2D 50| 43
In a worst case scenario |20 - 0| < ™ + ¥ thys
p{UJ > 4,0 40 >| ZS') L ZEO) [+3 D
From the inequality
P2 p® 9.3, 4D 5012
of Gargantini (1978), a narticular instance is
p) 2@ O35 3.1y 0 ©_3,0

Thus from (2.14)

(I)->_ - et
3 {J(n ) o1

It is thus shown in general that by an inductive process

p”” > 3n-1)r"5=012...

6 ;s 6 |3 :
O=3(n-1) 3(n-1)- 1-—— |2 >3(n-1}D
Jr 23(n-1) [(n ) 9(n—i)]22 (n-T)

(2.15)

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

Starting from the recursive inequality (2.17), gVzJ""- V-39 5=0 1 2 and using

(2.14)

[R]
(%]
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FY < __?_rﬂ*-f) & 3,&-1} < lrz’-v--') s=012,... 2.2
9fn-1) 9 4 s
Then

P82 )3 05 6D 6D [+ i‘_ ]

> B (52) 3 (s1) (s-l)(Hi > 452 (s2) ;+.3‘_+_1.[1+§J
P r i r 77 P r 173 4

- p(5-3) = r(5-3) -3 r(s-2) £ r(s-Z)(l —_—— -

222
>p(s'3)_r(s-3![1+4(.l.+—15+—1—3J-iJ ( )
4 4 4

o

SPRC N0 B P (LML B -L) RONUNG!
4 4 4 4m) 4m) 3

This in place in (2.11), the convergence order of the iterative method (1.4) is p=3.
Theorem (2.2) is therefore established. .

3 A COMPARISON OF THE METHOD (1.4) WITH THE PARALLEL

NEWTON’S METHOD AND PARALLEL LAGUERRE’S METHOD.
The method (1.4) is also a paralle] method in the sense that the computation at every
iteration to realize a new disk isolating a zero can be carried out simultaneously and
independently of all other disks. The comparisons shall be in the sense of Gargantini
[3]. To compare the three procedures, parallel Method (1.4), parallel Newton’s and
parallel Laguerre’s method we assume that;

1) the initial disk 7" j=/(I)n represented as 1 in Gargantini [3] is the
same for the methods.

2y we are considering the iteration on a disk at first iteration step

From these. a conclusive statement on the complexities of the algorithms afteran M .

iterations can casily be inferred. The relevant details of the comparison of the parallel
Newton's and parallel Laguerre's method are in Gargantini [3]. for the purpose of
including (1.4) in the comparison we take the case i

P by oz 2 (3.1)
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for which the sequence {rm }10 converges to zero in the three methods in the long

run on the iteration index s. In what follows we establish a relation on the dependence
of the number of iterations required to reach a given tolerance n for two cases of

different initial separation for the starting disks Z0 ;. j=1()n.

Theorem 3.1
Let
p(ﬂ)
(a) r(U)S]S ,'n22
6(n-1)

(b) 1<®< B s

Then in each case of (a) or (b), the tolerance 1 is attained in M,y steps where

1
logn +10gD4 4 }

M1.4) 2 log; T (3.2)
logr(o) + lOgD€l4)
with the definition that
2(n-1
Day= —-—(—7“—)— (3.3)
( pm) L0 )2
3

The proof of (3.2) is made available from the fact that for the iterative method of
order p=3, ¢ = Dy.y(r® )" . Thus

$

o

|

]
-

(© = D(l'_ ](rw})v' i p=3 (3.4)

(1.

ES
—

in (2.9"). Equivalently

.25
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AS

(55) o[ o7 |
pLl-p S5 M) = D(ll_;)'p M p=3 (3.5)

(1.4}

Derive the relation (3.2) from this by setting s=0 and r™ = 77 and obtaining
M .y . It is worth remarking that convergence can be inferred from having

I, ST S - p=3 (3.6)

P 2
DL]AfJ 20-1) |

T i
©0-31 )*J

One wonders how computationally useful this implicit requirement may be? The
similar result of (3.2) is:

i
logn+ilog D,
M g, oD G.7)
log ™ +log D5
for Newton's
n-1
p=3:D=py= i b=3 (3.8)
P2p"-4n-1),")

and for Laguerre’s

p=4,-D=DL=-M-b=4 3.9

(p"-2/")"

Conclusively, for the tolerance n=10™;m >>1 and such that the logarithms in
bracket in (3.2). (3.7) are computed in base ten for the same initial disks z’f” then for
the methods, m correct significant digits can be attained in ()7 log,m) steps for the
method (1 41 and Newton's method, while it will requirc un Oflog,m) steps for
1 agucrre’s method. The order of steps appear to be bigger tor the case of Laguerre’s
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methéd. This is attributed in part to the fact that the method requires the root of a disk
which computation may be ambiguous.

Theorem 3.2
o . ,
Let ™ < - £ ; for which the initial error in the starting disks is such that 77 < p
-

then

[ Y ; Newton's Method

log(—)

7

logls

AY ; Laguerre's Method
log(—
7

Mz2{— 3.10
< logi130 ( Gl

0 : Method (1.4
log( =) etod (149

log4

For a proof of the first and second cases see Gargantini [3]. The third is seen from

HU = max{r?’)}<§rm),‘j= I()n (3.11)
J

in (2.21). It is then that

1 &
A= [ ;] 19 (3.12)

and the third relation in (3.10) follows. The comparison of these methods continues in
what follows.

4. COMPUTATIONAL COMPLEXITY
Consider now the computational complexities of the methods. In this regard let

27
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2=z} z=kinkizo=foain)

The relevant disks operations to realize (1.4) are listed as follows:

(1) c+Z={c+z;r} ;, ceC
2) cZ={cz;1c|r}
3) Z;+Zz={z.u+zgir.'+r2}

: = 1
z r
(4) e Bl J0¢2Z
|z -p2 |2 -2

where z is the conjugate of Zz. The computational complexity of these disks
operations are shown in table (3.1). These complexities are optimized in the sense of
Gargantini {3]. The method of Newton is given by

] ;
s-1) = 1%,
N @

—— E SR
F{zﬁ‘)) 1= j# '-_,-‘ff) = Zf‘}

-

and that of Laguerre is

1

Zi Y=ol ; (42)
. 1
o]
£ 5 Fia 5 Z(\J
with
2( P,,(:’;’)T_ Po(=) 08
POAPEY)) PalZY) !

These methods iterate disks directly. In particular, consider (1.4) in the beginning

iteration
n f”l
\ AT,

rfJ/
“Z,7))
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The number of real arithmetic operations to compute F( zﬁ,”) ) is in table (3.2), (cf:

Gargantini [17)

Table 3.2 Computational Complexity of F(z”)

Number of real F( zf,‘-’) )
Additions 14n-1
Multiplications 6n+2
Divisions * : 2

The total number of real arithmetic operations to compute a component of
{Zf.“,Z;“,...,Zn_’i,zf)}is given in Table (3.3).

Table 3.3 Computational Complexity of the Methods

Gargantini [1]

Number of real: Newton Laguerre Method (1.4)
Additions 21n-5 33n-10 27n-7
Multiplication

and Divisions 12n+4 20n+9 18n-2
Elementary functions

evaluation/Square root n+3 n+2

Total N7=33n-1 L=54n+4 M=46n-7

The rating here, with respect to the number of arithmetic operations is
O<Nyr<Mip<Ly 4.5)
This implies that the Laguerre’s methods incures the highest computational

complexities per iteration step compared to the other methods. This is due to the need
for the squaring of the disks and the subsequent computation of square roots of disks

29
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or of the method. The method (1.4) presents an advantage over
it o this regard. The Newton’s method appear superior here,

. ANCY MEASUREMENT
“nother performance measuring parameter for iterative methods is
« E given by

2L Mo .1 -

where p is the order of the method and M is the total number of multiplications and
divisions per iteration step. It is logical that the smaller the E the more inefficient the
method and the larger the E the more efficient the algorithm. If on the average we
estimate six multiplications or divisions for the computation of square root,
elementary functions then the computational complexities of Newton’s is estimated at
I2n multiplication/divisions, that of Laguerre’s is 26n and that of (1.4) is 24n,
Therefore

0.13  ; Newton's Method

: ; Laguerre's Me
E=. 00? aguerre's Method 5.2)

0.066 . Method (1.4)

Again, the Laguerre’s method appear to be the most inefficient of these algorithms,
while the Newton's algorithm is most efficient of all. In an asymptotic sense of (2.9
the computational work required to attain a prescribed tolerance 1 will be far more
than that of (1.4), again the Newton's algorithm is superior. In a parallel machine of a
K number of processor capability, Gargantini [ 1] has conjectured that for K = 2n the
parallel Laguerre’s method becomes superior from a computational stand-point to the
varallel Newton's algorithm. However, the validity of this lies on the implementation
of these methods on ar actual machine of parallel architectural design.

6. NUMERICAL EXPERIMENT

To show the convergence of algorithm (1.4) consider the following polynomials ; the
method (1.4) was applied for the computation of the eigenvalues of the Hessenberg's
matrix Petkovic [7, p. 51];
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g+12 1 0 0
= 0 6+9i 1 0
Tl o 0 4+6i 1
1 0 0 2+3i
for which

PL Det (A- AL} = .
A — (2030103 +(~175+4201)p7 +(2300- 4501 —2857-2880i

starting initially with the Gerschgorin's disks

2= {3+12f;R<°>} Z= {6+9s;R(°>}
Z = {4+6i;R(0)}, B {2+35;R(°>}

R® =0.4,0.0,0.8,1.0,1.2,1.4,1.6,1.8,20, r =max {v‘}‘)}

isjsn

The results are in table (6.1).
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setkovic [7, p- 51] .
he next problem considered is the calculation of the roots of the polynomial

equation; Petkovic [7,p.94]
PIi: 25+(-4+z')z*‘+(6—4i)z3+(—4+6i)32-(f5+4i)z -15i=0
The exact roots and starting disk of equal radius, are

:—1 823—1+2l 84-3 35 =—1
)-—07+05; z)2 ) = 13-234, 2(3)”14+241
A = 26+04i, 2% = 0213, i = 08, j=1(1)p

The roots from computations are found in table (6.3).

Table (6.3) : Results of Algorithm (1.4) on PIL ¢

207 = (-0.99999999857175 - 0.0000000371269i; 0.792565107563 (:23)}

Z{) = {0.99999999999666 +2.00000000003234i ; 0. 0065054604878 (-23)}
Z0) = (1.00000000000093 - 1.99999999999926i ; 0.00010861564408 (-23)}
2= (2.99999999999980 - 0.00000000000026i ; 0. 00002974135506 (-23)}
7{) = {0.00000003860108 - 0.999999973992401 ; 0.5306323443032 (-23)}

I

[ —
The next problem is ; Petkovic and Carstensen [8]

PII: Py(z) = 2° +82% 27 +92° +3z° +97* +992 +z 7z% ~100z-300=0
29 = {£3.2+02i;035} z\‘” —{-11-02:;035} z) = {1.7i;035},
0)-{-19+13: 0.35), z ={-1.8-0.8i; 035} %" {2.3-1.1i;035},
“ = [2.9+1.9i;0.35}, é’) ={-1.1-0.2i;0.35) f°)—~ 1.7 035}

(") —{-1.9+13i; 035}, =) ={02-22i;035}

The roots are -3, -1, 2i, -2 £i, 2+ 1, 1, -2i and the i ical results after seventh -
iteration are in table (6.4) , although with some & 5.4y different startmg |terates
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Table (6.4) : Results of Algorithm (1.4) on PTIL

2 = {-2.9999999933049 - 0.00000000563166i; 0.00244675715176 (-19)}
() = {-1.00000000352870-0.00000001404681i ; 0.00883916034499 (-19)}
z{0) = {0.00000006302689 + 1.99999998789414i ; 0.01664763542100 (-19)}
Z{) = (-2.00000000083152 +0.99999999934021i ; 0.00027472017235 (-19)}
7{) = {-1.99998881561758 - 0.99999999929793i ; 0.170237713236 71(-19)}
Z0) = {2.00000000026917- 0.99999999929793i; 0.00014203749817 (-19)}
Z0) = {1.99998202238249 +0.99998141223742i ; 0.18966744840734 (-19) }
z{) = {1.00000000202584 +0.00000000455847i ; 0.00211408239406 (-19)}
z0) = (-0.00800000185156 - 2.00000000057268i ; 0.00037414193826 (-19)}

From the numerical examples, it is deductive that algorithm (1.4) converges, in fact,
these results compare’ with the references cited, although the radii of disks obtained
from computation over estimates the error bounds on the zeros. This may be corrected
by adopting a disk inversion with bigger radius. In this regard therefore the disks

inversion
'{! ) r } ,'v = I
2zl z)-n)

{:.‘r}" =4 r

{_f_ 2r }_5‘:2
| ¥ Lol «v*

defined in Petkovic and Carstensen [8] in place of that in (4) in section (4) may be
founa useful.

7. CONCLUSION
Conclusively. the need to compute the zeros of polynomials arises naturally

in the stability analysis of initial value solvers in ordinary differential equations and
more so in other areas of practical applications. We have presented a new interval
method in (1.4) along with its convergence analysis. The performance, efficiency and
computational complexity compares with results from Petkovic [7] and Gargantini [3].
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Flz))

In the implementation of (1.4) the definition F(z,)= - —( —) was employed, although
2y
the alternative definition F(z;)= ——L(-—) —— yields improved results. However,
; n ( N
i=l, j=l

we remark that because of the inclusion relation

F(z“ 3 )) As) P(Z(}nn“ r

obtained by appealing to (1.52), the interval method (1.4) is faster in convergence than
its new variant (1.5)

Wl =20 _r(:0]1-1% F(‘;)) o D)

ZS.}'A—]) = WJ(‘) ) Zgb))l’ = l(l)n’s = 0,1,2,...

considered in Ikhile [10].
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