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__ABSTRACT: This paper solves the discretized 3 — dimensional Poisson

equation. The method of Alternating Direction Implicit (ADI) is applied as a
preconditioner with the Conjugate Gradient Method (CGM). A fast convergence
to the solution is attained.

1. INTRODUCTION:

In optimization studies, one of the current research interest is to solve large
system of equations. Many problems in practice require the solution of very large
systems of linear equations. The wide range of areas includes econometrics, stress
analysis, metreology, fluid flow problem, semiconductors and aerodynamics. Also,
the current developments in space technology tend toward the deployment of ever-
larger structures in space. Partial differential equations when discretised using finite
element or finite difference method often gives rise to large scale systems. The
characteristics of the resultant discretised systems and the large systems of equations
are that they either sparse or dense. Fortunately, many of these large systems of linear
equations Ax = b have 4 as sparse i.e. relatively few nonvanishing elements. The
solution of these linear systems can be accomplished by direct or iterative methods.

Direct methods can lead to high computational complexity and 1o
considcrable memory requirements both of which limit the practical size of the
discretization that can be used to solve the system. These memory requirements rise
from filling in to form the matrix factorisation and from pivoting which may be
required in solving other than positive definite symmetric problems. As an alternative
approach iterative methods have been considered which permit the maintenance of
the sparsity pattern, reducing storage requirements while decreasing computation time
as well. A variety of techniques use a combinatiot of direct and iterative approaches
to obtain the advantages of both methods. iiejerink and Van der Vorsk [1], and
Kershaw [2] had successfully used iterative met Js for the approximate solutions of
such problems. Since then, the interest had been sustained. When the size of the
matrix A is large, the convergence of the iterative process is slow. It is necessary to
accelerate the convergence process. A weil known technique to accelerate
convergence is known as preconditioning.
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2. THE MODEL PROBLEM
Mathematical Formulation
Our model problem is the 3-dimensicnat Poiszon sguation of the form
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V(KVu)=F; xv,2) e 2.1)

Where K and F are given functions of the three spatial variables.
From (2.1), we have

VK. Vu+KVau=F. (2.2
Assuming K is a constant, then (2.2) becomes

V= F, F=F/K. (2.3)
If F =0, we have the Laplace equation. Let u(x, y, z) represent the equilibrium
temperature distribution in a 3-dimensional heat- conducting medium Q defined on a
cube 0 < x,y, z<1.To obtain a system of finite difference equation for (2.2),[3] we

approximate the derivatives by the central difference schemes to get the following:
Where we have assumed equal grid size h on all dimension.
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= —2h2[sin% x+Cos% y+z] 23

Defining approximations Ujj to the exact solutions u(x,y,z) at the N interior grid

points, (2.5) gives
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=_2h2[sin%x+Cos%y+z} 5 i, j,k =12,:++,N.
If we assume the Dirichlet boundary conditions;
u(0,y,2) = u(x,0,2) = u(x,y,0) =0
u(ly,z) = u(x,1,2) =uxy,1) = 0, s (2.6b)

- Equation (2.6) is therefore a system of N® equations in the N unknown Ui . . .
i,i,k=12,..,N corresponding to the interior grid points, h = I/N.

Analysis :
Equation (2.6) is written in matrix — vector form. For this purpose, the interior grid

points are numbered in a form called the natural or row — wise ordering.
Corresponding to this ordering of the grid points, we order the unknown Uy, into the

vector.

(Unu Uz, - -+ » Ui Uiz Uzans « - s Unazis - - - 3 Unnts Unnze <« oo Uniw) 2.7

In this wise, writing the system of equation (2.6) in block form, for N = 3, we have
the coefficient matrix become:
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A= | 1 I I (2.8)
B

Here, the biocks B are square matrices of order n and I denote the n x n identity
matrix. Equation (2.6) becomes the N° x N° coefficient matrix in block tridiagonal
matrix (2.8)[4].

3 METHOD GF ALTERNATING DIRECTION (ADI)

Application of the Alternating Direction implicit iteration method to our model
problem (2.1), and with the central difference discretization given in (2.7), the
matrix A can be splitted into

A=B+C+D (3.1)

Here, B. C, D are defined throngl: their actions on a vector u:

Wik = U5k — Vip i = Uisi i, if W = Bu
Wik = 21— Ui jork — Uijer k, if W =Cu
Wi = QUi — Uijer — Uike, if W = Du (3.2)

3. C. D are symmetric and positive definite block diagonal matrices. In the ADI
method of Peaceman and Rachford [5] the system of equations

Ax = b, in accordance with the decomposition A=B + C + D, is now
transformed equivalently into

"B 12D+0l=0l-C-12D , (3.3a)

and also
C+12D+~wl=wl1-B-1/2D (3.3b)
where o is an arbitrary real parameter which is chosen in such a way that the method

converges as fast as possible. As a relaxation method, we chose 0 < @ < 2[6]. With
the abbreviations B, = B+~ 12D, C,=C + 172D, the first half-step of the ADI

method corresponds to the splitting



A=W-R \yithW:col +B, R=0I-C,

Interchangeably the roles of B and C, that is, alternating the direction, we
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generate the splitting of the second half-step

A=W-R withW=01+C, R=01-B,

Hence, the complete ADI method is the following

M, =(@1+C) (@I1-B)@I+B) (@I-Cy).

We have Bu in blocks as

B
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B
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B
B
also Cu in blocks as
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I is the 3X3 identity matrix
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From which we have equation (3.4) becoming

14

.~

~ |~




(koro, F.

4. COMPUTATIONAL RESULTS

Table 3.1: Number Of Herations For The Convergence Of The 3-Dimentional
Poisson Equation (2.1) Using The Method Of Alternating Direction (ADI)

r NUMBER OF ITERATIONS
‘: . W=4% W =09/5
N =3:27 X 27 MATRIX 1 1
N =4: 64 X 64 MATRIX 1 2
N =35; 125 X 125 MATRIX 2 2
N =6: 216 X 216 MATRIX 2 2
N =8:512 X 512 MATRIX 2 2
L etc.
5. CONCLUDING REMARKS

From the convergence result presented, it is interesting to observe that the
preconditioning technique worked very well with the computational exposition
carried out. The condition number ranged from 1.5 to 1.8 for all sizes of matrices
considered.
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