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ABSTRACT

Polynomials especially those with coefficients of the same sign or strictly of alternating signs
are of great importance in the approximation of many mathematical functions that occur in
mathematical physics. Two standard algorithms namely the Clenshaw,and Homer's
algorithms for evaluating polynomial are examined with respect to the propagation of error.
Using process graph, it is established that the quantity | y'(t)/¥(t)| controls the upper bound in
the relative error in the value of a polynomial at t.

INTRODUCTION ;

Most mathematical functions are approximated using polynomials and apart from the
truncation error incurred in such process ( due to the replacement of the function by finite
number of terms of a polynomial ) the need both to quicken the evaluation process as well as

to reduce the error propagation during evaluation of such polynomials has being a major

concern. Three standard algorithm namely the Horner, Clenshaw and Reinsch algorithm
have been devised for polynomial evaluation and have been studied by many researchers.
Among such researchers are Newbery, Oliver, Razaz and Sconfelder. Newbery[1] compared
Homer and Clenshaw algorithms and demonstrated that(a) the accuracy of the Horner
scheme (like the Clenshaw scheme ) is highly sensitive to the magnitude of the value,x, at
which the polynomial is evaluated.(b)When a polynomial has coefficients of constant sign
or of strictly alternating sign, a translation into chebyshev form will not bring any
improvement in the accuracy of evaluation. The first hypothesis prompted Newbery to
suggest the modification of Horner algorithm in such a way as to efficiently reduce the range
( interval within which the polynomial is evaluated ) of the argument of the polynomial to [-
1/2,1/2].Oliver [3] in agreement also showed that Horner's algorithm is most accurate for
small values of |[x| ( the absolute value of x ) and that the potentially serious error
magnification near the value |x|=1, which the Horner's algorithm exhibits could be avoided if
Newbery's modification of Horner scheme is used instead. Since the Newbery scheme is
less accurate elsewhere except near [x|=1, he suggested the use of Horner/Newbery scheme
for polynomial evaluation.Oliver [4] went further to obtain an absolute error bound to be
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for monomial form ( where p. are the coefficients of the polynomial) and

n
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for chebyshev series form.He further concluded that for smaller values of |t/ the inaccuracies
in the coefficients may affect chebyshev form rather more except near [t=1.
Razaz and Schonfelder [2] examined the relative error incurred during polynomial

evaluation and concluded that the quantity
| 200 b
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plays an important role in the control of the relative error in the process. This paper apart
from investigating the contribution of each of the three typical sources of error ( namely,
thexact coefficients of the polynomial, and of the value t, at which the polynomial is
evaluated and the round off error ) to the total relative error on the computed value of a
polynomial the paper also establish that the ratio

p) ™
rather than the exaggerated value
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is essential in the control of the relative error in & polynomial evaluation. This result is
obtained using a process graph ( which follows the process a computer uses for its
computation ).A brief description of a process graph is given in the next section and the
sections that follow this contain the relative error analysis of Homer's and Clenshaw's
algorithms. The discussion is restricted to polynomials with all its coefficients having the
same sign or of strictly alternating sign. Since a polynomial with negative coefficients can
be copverted to the one with positive coefficient by multiplying through by -1 ( with the
result of the evaluation of this polynomial negated to obtain the needed result ) and that of
the coefficients strictly alternating transformed , by a transformation such as t=x, to a
polynomial with polynomial of constant coefficients or of positive coefficients ( depending
on whether the coefficients of odd or even powers are negative ) it therefore suffices to
consider polynomial with positive coefficients and this we did.

PROCESS GRAPH
A process graph is a pictorial representation of the sequence in which the arithmetic

operations in a calculation are carried out. it consists of a tree in which the arithmetic

operations concerned are contained in the nodes.
Entering each of these nodes are lines from two other nodes that carry the operands. The
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lines carry the factors with which the relative error in the operands needed multiplied. For
example the figure below is a process graph for the expression R=z+(y+x)
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If the absolute errors in X,y and z are gx.¢y, &, then the relative error in R is
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where r+, and r. are round-off error at the nodes containing * and +.

HORNER'S ALGORITHM
The Homer's algorithm for evaluating a polynomial

y) = sz‘ti
il

~ where t is assumed to lie in [-1,1] is

vnsz
Vn:rVn+l+bn nzN"I, ....... ],0
YO = v

The graph process for this algorithm is
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Let E, denotes the error in v, and r,,', I, the absolute round_off errors at nodes with * and +
respectively. If B, is the relative error in b, then at A the relative error in tva. is
Sy, Sored g3
i Vn-i

| where ¢, is the relative error in t.
At B we then have the relative error ( Ey/V,) as

; . ty,. " .
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.The solution of which is
N-1

N
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where y' is the first derivative of y with respect to t and can easily be establisﬁed to be
' N-1
y'(f) = ZVr-Ifr
The first expressiorn t;s the effect of error in the value of t .
The middle term
N-l
IZ(r;.-:‘Lr;)r"vn-:* roy
n0

is due to the round off error and the last, from error in the coefficients.

THE EFFECT OF INEXACT COEFFICIENT
The effect of inexact coefficient is obtained from above by putting r, . Is-1, Io and g equal
zero to have
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so that if the maximum attainable round off error in b, is ¢ then
Bl ¥t)
vyl y®]

It should be noted that if t>0 then this reduces simply to ¢ so that the bound is wt g'éater
than ¢ , the maximum absolute error in the coefficient initially started with. Now ift is less
than zero then it is obvious that the error bound

YD
| y®)|

is greater than one since the coefficients are positive which thus warns us that the error may
be magnified for this case.

&£

THE EFFECT OF ROUND OFF ERROR
The effect of round error is

N-1 '
Eo=&y Tt (rtra)t"vautroy

| Bl &ty 1 +21t1 Y At D+ v}
<gf3/0t)+ |y}

where g is the machine accuracy parameters.

Consequently . ‘
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It can be seen that the round off error may be severe on the evaluation sometimes than that
due to coefficients. This result also informs us that the error may be magnified except when

_£<Zﬂt_|)_<0'
b)

A condition which is never satisfied since the ratio is positive.
The total bound on the relative error in the interval [-1,1] is
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ERROR DUE TO INEXACT VALUE t
Error due to inexact value of t is simply
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COMBINED EFFECT OF ALL THE ERROR
We have this to be

| EolS &1 ¥ | +21¢1 21" vas | +2| ¥ |}
| <&fly|+21t]y'(eD+2]y|}
| <e{3y'(etD+2|yl}
| so that

Eﬂ S€{2+3y(1tl)}

; |y®) 0]
: showing that the expression
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' plays an important role in controlling the error during evaluation.

CLENSHAW ALGORITHM
With the polynomial y(t) expressed in the Chebyshev form,
N

y)=Y'aT.00

I
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where T is a chebyshev polynomial of degree s, the Clenshaw algorithm takes the form
vn.a=0vy=ay :

I

i Vn=2n’n-l+an'vn-.‘

| }'(')= 'fv'(v"'v.")

‘ with n=N-1,N-2,...0.

The process graph for the algorithm is given just below.
We would assume that the integer 2 could be represented exactly without truncation of
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digits. this is reasonably as almost all types of computer could represent 2 exactly.

D
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If we denote as foy Tec Tna the round off error at B, C, D and E, the error in vy ' then, using
the process graph above, the relative error Ey, in v, satisfies the recurrence relation

E,= 2tEn+} En+2+2t(£+rm+rnﬂ+rnc+rmi)vn+l

(an* Prc ™t Tna) n=Voi2Pna
If ey is the relative error in y then it is easﬂy shown that

{gty +(r +r’)y+2tz (r|a+r|ﬂ+r:c+rnd)Vr+lTr

i=0

Z’(ar+ric+rmi)a;Tr+z rldvrv-zTr}y

i=0
The first term again represents the effect of round-off error in t.
Apart from

Z aiaili

i=0
which shows the effects of inexact coefficients the other terms represent the effect of round -
off error during calculation.

119




SHOLA, P. B.

EFFECT OF TRUNCATION OF COEFFICIENT
The effect of truncation of coefficients is

ey:(zaiaj Tl)/y
so that
6‘Z|a.-Tf|
|y

~ EFFECT OF INEXACT VALUES IN t
The effect of inexact values in t is given by

le, 1<
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which is the same as that given by the Horner's algorithm.
This indicates that both are equally affected by the inexact values of't.

COMBINED EFFECT
The relalive error due to the total effect of al the types of error is
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Though we may not be able to simplify this further, the expression shows that the error
bound is dependent on the ratio y'({t)]y(t). This bound is obviously greater than the

produced by Homer's algorithm,

CONCLUSION

The analysis of relative error propagation of Homer's and clenshaw's algorithms for
evaluating polynomials was undertaken using process graph. Three sources of eror namely
the eror due to inexact coefficient, round off error and inexact value, of t, at which the
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polynomial is evaluated, are identified and the contribution of each of these to the overall
relative error is determined.

It is also shown that the important quantity that controls the error bound in the polynomial
evaluation is max ( y'({t)/ly(t)]) rather than the exaggerated value

pACI™
| Y® i
given by Schonfelder and Razaz[2].
The magnitude of the effect of error due to the inexact coefficient is dependent on
t
max 2020
| y®|

which simplifies to g for £>0.
It therefore follows that the error due to inexact coefficient when t>0 is not greater than the
maximum error in the coefficient started with.
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