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ABSTRACT

The oscillation criteria for certain odd order difference equations are established.
Indeed, we generalise the results of Smith [4] on the oscillatory and asymptotic behaviour
for certain third order difference equations to a class of general odd order difference
equations.

INTRODUCTION
Smith [4] studied the oscillatory and asymptotic behaviour of third order
difference equations of the form '

AU,-PU,,=0 (D
Here A denotes the differencing operation

AU,=U,_, -U, foreach nx1 (2)
The results of Smith [4] are the discrete analogue of the results of Taylor [5] which are
the’ e extensions of the work of Hanan [1]. The method is concerned with a

characterization of the existence of oscillatory solutions of (1) in terms of the behaviour
of non-oscillatory solutions.

In the present study equation (1) is generalised to the form

AU, . -P.Upm =0 ' 2
We show that (2) has both oscillatory and non-oscillatory solutions for Prims > 0 for in
any odd number greater than or equal to three.

Definition (1) ‘

By the graph of a solution {Uy,} of (2) we mean the polygonal path connecting the points
(n, Uy, n 2 1. Any point where the graph U = {U,) intersects the real axis is called a
node. ‘

Definition (2) _ .
A solution of equation (2) will be called oscillatory if it has arbitrary large nodes;
otherwise, it is said to be non-oscillatory.

Lemma 1
IfU = {U,} is a solution of equation (2) satisfying
U, 20,AU, 20,........ AU, >0

for some choice of k 2 1, then
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U, 20,AU, 20,.....,A"'U, >0

for some choice of k = 1, then
U,>0,AU, >0,....,A"U, >0

foreachn=k +2
Proof
We show that the lemma is true for n = k+2.
Note that
A(AIUHM-I) i e sl
Thus '
AU 2 XU, wnd
We have
AzUhm—! > 0

Similarly, A’U,,, , > 0 implies that AU,,,, >0 which in turn implies U,,,, >0. Hence
the result holds for each n > k + 1 proves the lemma.

Remark
The above result shows that equation (2) always has non-oscillatory solutions.

Furthermore, the positivity of the sequence coefficients {P,..,.;} places rather stronger
restrictions on the behaviour of the non-oscillatory solutions of equation (2).

Theorem 1
Let U= {U,} be a non-oscillatory solution of equation (2).

Then for all sufficiently large n
UANUANU,.....A"U, %0

‘and either

U, >0,AU, >0,A'U, >0,.....,A"'U, >0 j 3)
or

U, >0,AU, >0.......,A"U, > 0,A"'U, <0 (C))
Proof

Assume that U = {U,} is a non-oscillatory solution of (2), where U, > 0 for eachn > N.

Form m = 3, equation (1) becomes
A!Un = A(Azljn)= PnUmrz > 0

folr all n 2 N, hence A?U, is increasing and eventually of one sign. So it follows that M
exists, M 2 N for AU, and A’U, are sign definite for all n > M., Hence

UAUAU, #0
foreverynzM
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For m = 5 equation (2) becomes
8(U,.)=8(80,,)= BLU,., > 0

n+2
Hence A’U,.; is increasing and eventually of one sign.
So, it follows that M exists, M >N

From equation (2), we have
AJUnw—:' = A (fAzUnH,—]) - A(AZU:H&-S + 2A Un—vk—.‘i * Un-hku]) >t

hence A*U, 4., is increasing and eventually of one sign.

Since it is true for m = k + 2 it is true for all k.

Clearly

8 (v,..)=a0'U,,,.)= B, U, >0
hence A*Up g is increasing and eventually of one si%n.
So it follows that M exists, M 2 N for which U,, A*U,,....., A™?U, and A™'U, are sign
definite for alln = M.
Hence
UAU AU AU,,.....A™U, %0
foreverynzM, |
The cases
U, »0,AU, <0,A'U, >0,A’U, <0.........
AT, <0 ATUL>0 nz M.
and
U, >0,AU, >0,A'U,AU, >0, AU,>0.....A"'U, <0 n20
are clearly impossible since
AU, A"U,>0 foralln
Sufficiently large implies
Sgn A"U, =Sgn AU, i>1
eventually and the proof is complete.

Define by S’ the n-dimensional vector space of solutions of equation (2) for each U E §
define ;

g =cv)-(av...) - 20, 40, ®)
Lemma
IfU = {U,} is a solution of equation (2), then the functional defined by (5) is decreasing.
Proof |
From (3), we have

a[v]= (av,..) - 20,,.00,...
Taking the difference, it is easy to see that
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s =) ~28, U ©)

nm—2

The proof is complete

Remark
There can exist at most one value of n such that U= Uy, =0

Theorem 2

‘There exists UE § satisfying G™,> 0 for eachn > 1

Proof ‘

Let x', X%,.....x™ be a basis for S".

For every positive integer, K, define
U' = A'x" + AL x>+ Aox”

where A, are chosen in a way that
Uy, =U;,=0 and

‘Let U*, >0. It follows from lemma (2) that G"[U%]> 0 forall 1< n< k.

Put 4, = (A,‘ ........ ; A,:) where A" are as defined earlier on. Then || Ax || = 1 for each k.

Due to compactness of the unit ball in IR™, it follows that the sequence {Ag} has a
convergent subsequence {Ay} such that Ay — A Z(Ay,....Ap)asi - o
Where

Z(Ar)2 o
i=l
Let U be defined by
U, =Ax' +A4x" +. . +4x"

Then clearly it is a nontrivial solution of equation (2).
Now G™[U,] > 0 for all n > 1, for if not there is an integer j such that G"[U,] <0, since

U* % U,. Wecaninferthat G*[U* | &*[v]<o.

Choose a positive integer M such that for all i> M,G"'[U f] <0 and k, < j.

Since G™[U,] is decreasing and G“'[U o ] > 0, we have fori>M
0<G~(vz)< 6"[ur]<o

From this contradiction, we see that G"{U,J > 0 for each n.

This complete the proof.
We now introduce a quasi-adjoint difference equation
A’V..-" + Rl-ﬁ-lVlM-l = 0 (6)

m = 3 is any odd number
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The adjoint of equation (1) is defined as

A3 e m-3 +Pn+m-2 Cpem-2= 0 i (-n
M = 3 is any odd number ) ;

The remainder of this section contains results which show that the solutions of the
difference equation (2) and (%) satisfy relations similar to those that exist between two
adjoint differential equations. :
For this reason, we say equation (2}, and (6), are quasi-adjoint.

Turning to equation (6), we show that it always has non-oscillatory solutions. A proof
based on the following lemma is given. '

Lemma (2) &
If v= {V,} is a solution of equation (6) satisfying

V>0, AV > 0, AV, <0 A’V >0........ A"V, <0, A"V > 0
for some integer r > k > 1, then

V, >0, AVy > 0, AW, <0 AV, >0.......A™V, <0, AV >0
for each1 2k <r

~ Proof
We show the lemma is true for k =r-1
Note that
A(AIVW_,) =-P V. ,50
Thus
A%, <AV, and
We have that
AV, >0
Similarly
AV, >0

— AW, <0
which in turn implies that V.4 > 0.
Proceeding this way we have Vg > 0.
Hence the result holds for k =r-1,
Repeating this process for each 1 <k < r-1 proves the lemma.

Theorem 3
Let k= 1. There exists a solution

V = {V,} of (6) satisfying

V. >0, AV, <0, AV, >0, AV, <0, A"V, >0 8)
foreachn=zNz=r
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Proof :
Let oc,, ocy, s,.....,¢, be a basis for S the solution space of equation (6). For each
positive integer C, define

V:=Bf < +B; «,...+B <,

where B°; are chosen in such a way that

Ve=V: =0 and
&)=
i=l

Assuming V°, > 0 and proceeding as in the proof of theorem (2), we can find a sequence
{C:} of positive integers such that

Limit V¥ =V,
Ci—>w©
Defines a non-trivial solution of equation (6).
We see, by lemma (4) that
V,20,AV, <0,....,A"V, >0
AJKHW—J = _R-m-uynm—z <0
for all n. :

If V0 = 0 for ny 2 r then since V, is non-increasing V, = 0 for all n = n,.
Contradicting the fact V is non-trivial. Hence M, > V exists such that V, > 0 for every n
> M, in which case

AV, .=
for all n > M,. It then follows from another application of lemma (3) that
V, AV, AV, A™'V, = 0 for all n > 1 and furthermore and furthermore

V,>0,AV, <0, AV, >0,...... LA™V, >0 for each n
This completes the proof.
Following Taylor [5] we term solutions of equation (2), which satisfy equation (2) as
strongly increasing and those which satisfy (3), as minimally increasing. Those
solutibns of equation (6) which satisfy equation (8) we term as strongly decreasing,

-P_V <0

nem—4" nHm-1

Oscillation Properties of Equation (2)

In this part, we examine the asymptotic behaviour of certain solutions of equation (2), we
will also consider some general relationships that exists between the solutions of equation
(2) and those of equation (6). In the event that equation (2) has oscillatory solutions, our
main result will show that even stronger restrictions are placed on the non-oscillatory
solutions of equations (2) than required by theorem (1). In fact, we will show that
minimally increasing solutions cannot be introduced into the solution space without

forcing out all of the oscillatory solutions,
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=’I‘heorem 4 )
Let U = {U,} be a solution of equation (7) satisfying G",>0foreachn=1andmz=3
fixed odd number, then '

0) i(a*um)’ <o and

n=l

(R 3 B ¢ s

n=l

Proof
Since G™, > 0 for each n > 1, differencing G™, and summing from 1 to (r-1) yields

r=i

r—1
0<G"=G"- Z(AZUW)Z BB . B
Jj=l

J=1

Thus
r=1 2 r=1
Z,(Ww) " 22; P Ui, <G
J= J=i

letting r —» oo establishes each of (i) and (ii), since G™, is dependent ofr.

Corollary
Suppose
Limit inf Pysms > 0
‘ n— o
If U = {U,} is a solution of equation (2) satisfying G", > 0 for fixed m 2 3 any odd and
each n then

2
ZU::-MFJ <w
=l

we can now exhibit the discrete Lagrange bilinear concomitant for solutions of equation
(2), and (6) for (U,V) € S'x S" define

Fr=Fluy] =v...87

n+m-2 n+m-2

-AU

n+m-2

AU, +V,

=2

AU,., ©
for m = 3 any odd number and n 2 1

Theorem 5
IfU € S and V € S* then the function defined by (9) is a constant that is determined by
the initial values of U and V.

Proof
Differencing (9), we obtain

AP:M = Az Vnm-—.‘! AUn-m—Z . AUnm-‘.' A’ Vn-m—l
Using the fact that -
AV, =NV,  +AV,

n+m—] n4m-2

_AUn«n—I AVnﬂt—I +AVMm—2 AUH.—:
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Therefore
AFT =0
The proof is complete. )

Let X, X, Xs......... Xm.1 be independent solution of (1), the wronskian

i B L
Wr=w (xl,x,x,,......xm_l)

xl xz xu—!
Ax, Ax, ... Ax,
-2 -2 m-2

Ax, AT, e ATTX

It is known that w” is a nontrivial solution of (6).

Moreover, if X;, Xz,....... Xa.1 d0 enjoy the same oscillatory character, then W = {W™.} is
a non-trivial solution of (6).

Similarly, if y1, ¥2,-..-¥m1 are solutions of equation (6) that are of distinct oscillatory
nature then W(¥;, ¥2,....¥m1) is @ non-trivial oscillatory solution of equation (2). We
therefore have the following result which is a discrete analogue of Hanan (11

Corollary 6

Equation (6) is oscillatory if and only if equation (2) is oscillatory.

Let 2,, 2y, ...Zm be solutions of equation (1).

Expanding the wronskian &

R’ =R [z,z, ......... ,z_]
along its mth column, we obtain the following relationship between
F~,w" and R"

L

Theorem 7
If V is non-oscillatory solution of equation (6) then (m-1) independent solutions of

equation (1) satisfy the self-adjoint (m-1) the order difference equation

2
A[AU,...z)+{ AV, )U....._L"-O (10)
V;nl—l an-ZVu-H
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Proof

Since v is fixed in S*, we have
K, = {U es”|F[u,.7,]= 0}

is the kernel of the linear functional
E"S"— IR

where IR denotes the set of real numbers. If V,>0n = N then
xek, >

NES N0
Ko Vot Vs
The result follows, since
dimK, + dim IR = dimS"
We now derive an oscillation condition for equation (2) in terms of equation (9)

Theorem 8

The following two statements are:
(1) Equation (2) is oscillatory
2) Equation (10) is oscillatory

Proof

Suppose that condition (i) holds then by theorem (6) equation (6) is oscillatory,
Let x, be an oscillatory solution of (6).

Consider ;

R" [x1, X3,.....X2] [X2 occurring (m-1) times]

Where X, is oscillatory solution of (6) whose existence was shown in theorem 3.
Thus

(m — 2) times

W"'(x, . R— xl) is an oscillatory ~ (m - 2) times
solution of

' AV,
FESNE P

n+m=-3 n+m=3 © pm-2
This proves the first part of the theorem. Suppose that condition (ii) holds where V is a
non-oscillatory solution of equation (6) with V,>0n = N.
If U is an oscillatory solution of equation (9) then U € Kr and in particular U & §".
This completes the proof.
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Remark

Since the nodes of linearly independent solutions of (10) separate each other and those of
linearly dependent solutions coincides, it follows that either all solutions of “(10) are
oscillatory or all solutions of (10) are non-oscillatory. (See McCarthy [13]).

We therefore have the following corollary of theorem 8.

Corollary 2

If equation (2) is oscillatory then S has a basis consisting of one non-oscillatory solution
and (m-1) oscillatory solutions. '

Theorem 9

The following two statements are equivalent.

(i Equation (2) is oscillatory

(i) For every non-oscillatory solution U of equation (2) there exists an integer N
for which U of equation (2) there exists an integer N for which
U,>0 4U,>0, AU,>0, .., A™'U,>0 n2N

Proof
Suppose that condition (1) holds and equation (1) has a solution satisfying
Yu>0, 4y,>0, Ay, >0, .., 4"y,>04"y,<0 n2N
By corollary (6) and the latest remark, there exist (m-1) independent oscillatory solutions
of equation (2), every linear combination of which is oscillatory.
Let £, £,.....,f" be such pair of selutions with

-fN =0,f; #0,f; #0,f; #0,...., [ #0.

H "
b=y~ 2T,
where di are constants chosen in such a way that ¢y = 0.

Consider
w(4.€) 1ci<m-1

Let

Now

w(¢,.£2)= 0
here there exists constants C;, C,,
with
Cl+C; #0
_ such that
Cé.+Cf,=0
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CAg, +C,Afy =0
|
|
I
|
I

CA™ ¢, +C, A" =0
put
Un = Cl ¢N + CZ fﬂ
Then U has a double zero at N and
. Up=cont B
where

. m-1 .
¥, =Cf) -2 ¢, dif]
i=2

is an oscillatory solution of (2). Since U is non-trivial, we may suppose without loss of
generality that '
AU, ,>0
As a consequence of lemma (1)
{4_{21 AlUnﬂn—l =®
Moreover, the relations
y, >0,A'y, <0,A’y, >0,.....,A'y, <0,....A"y, <0A"y, >0n2 N
imply that 7
{A y,‘,"} is asymptotic to a finite constant

Now
T{q,Aum_s)': (A’UM_E)(9— n)+Au,, , nsqgsn+l, nsl, defines the graph of {Us}

Let {q;} be an increasing sequence of nodes of {A'¥n}.
Then at each g; we have

T(qi’ Aun-un-a) = CII(qJ ’+Aynm—3) £ (1 1)
We have arrived at a contradiction since the left member of (ii) becomes unbounded as i

— oo. This contradiction proves the first part of the theorem.
Suppose that condition (ii) holds and every oscillatory solution of equation (2) I strongly
increasing. if u is a non-oscillatory solution of equation (2) such that the condition (i)

holds for each n 2 N. 7
Then differencing G™n, we obtain as a result of (4) the inequality

G <-(au,,.,) (12)
Summing both sides of (12) from N to k-1, we obtain ‘
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sG-S,y
N

r—1
<G'- (AzUm_J)IZI -5 ®
N
asr — .
Hence
L_i_r;_lit G =w
holds for every non-oscillatory solution of equation (2).
By theorem 2, there exists a solution of equation (1) that satisfies G, > 0 for eachn > 1
such a solution clearly satisfies
Lj_r.r_yit Grz0

and hence must be oscillatory.
We record as our final result a sufficient condition for equation (2) to be oscillatory in
terms of the coefficient function {Pym.3}. This resultisa discrete analogue of Jones [2]. ’

Theorem 10

If
Sh., =

then equation has oscillatory solution

Proof
In the light of theorem 2, it is enough to show that

Limit G ==
for every non-oscillatory solutions of equation (2).
However, this clearly is the case of

z I:ltn—l =w®
A=l
for conditions of theorems (2) and (3) imply
r-l
G $GL-2W! 2P

as r— o
where U is a non-oscillatory solution of (2). Hence the proof.
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Example
Consider the fifth order difference equation

AU, 0

2o2™-1)
The solution U, = 1-2™ is a minimally increasing solution.
As a consequence of theorem 9, every solution is non-oscillatory.
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