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ABSTRACT .

The purpose of this study is to examine conditions for the relative controllability
of perturbations of non-linear functional differential systems with distributed delays,
including systems with implicit derivative in the perturbation function. The method of
solution involves the linearization of the non-linear base. With enough smoothness
conditions imposed on the perturbation function and an assumption of the non-singularity
of the controllability map, the question of the relative controllability of the system under
study, is settled in the affirmative using Darbo’s fixed point theorem. The result extends
Chukwu’s efforts [10, 11] to systems with implicit derivative and carries over
Balachandran’s result in [6] to functional differential systems. '

INTRODUCTION ‘

Nonlinear systems present a challenging but fascinating area of study in
mathematical control theory. They represent better approximations of real life dynamics
and pose the obvious difficulty of not lending themselves readily to the standard,
systematic and precise procedure of tackling controllability problems.

However, several studies have been conducted on perurbations of linear
systems. In most of these studies results were obtained by placing boundedness -and
continuity conditions on the perturbation functions; and the Schauder’s fixed point
approach greatly in use. Dauer and Gahl [1], Onwuatu [2], Gahl [3], Chukwu [4] have
independently shown that a linear perturbation is controllable provided, the linear base is
controllable and the perturbation being bounded. Nonlinear systems have been studied
by Klamka [9] and Onwuata [5]. Balachandran and dauer [8], Dacka [7] and
Balachandran [6] have considered perturbations of non-linear ordinary systems with
implicit derivative. In these studies, together with the dynamics modelled by Chukwu
[10, 11], the systems are multi-parameter dependent, necessitating the redefinition of the
fundamental matrix solution and the controllability grammian to take care of these
- gystems’ varying arguments.

The use of Darbo’s fixed point theorem in [6], [7], [8] imposed the calculation

of the common modulus of continuity of functions in a set and consequently the measure

of non-compactness of the set to take care of the rigours introduced by the presence of

implicit derivative.
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From the foregoing, the relative controllability of non-linear functional
differential systems with distributed delays remains unsettled, especially for systems with
implicit derivative, the investigation of which is the main objective of our research here.

1 NOTATION AND PRELIMINARIES
Let E = (-0,) and E" be the n-dimensional Euclidean space with norm 1.1. The

symbol C=C([~h,0],E") denotes the space of continuous functions mapping the ;;
interval [-h,0], h> 0, h € E® into E” with the supremum norm ||e|| defined by

Il =suplg@}pcC-r<b<0
white C' = C'([~h,0], E") denotes the space of differentiable functions mapping the

interval [-h,0] into E" .
Let (X, |/o[) be a Banach space and O a bounded subset of X, the measure of

non-compactness of Q,
#(Q) =inf{r > 0: O can be covered by a finite number of balls of radii less than r}

For the space of continucus functions C(lto,4, ], E"), the measure of non-compactness of
e set Q is given by

Q)= Wo(Q) =4 lim W(Q,h)

where W(Q,h) is the common modulus of continuity of the functions which belong to the
set Q, that is

W(Q,h) = s:g{suplr(t} ~x(s)|: ) ~s|<h.

For the space of differentiable functions C'({~4,0}, E"), we have
Q) =+ Wy (DQ)
where

DQ = {x:xe Q}
Ifte[fo,1,] we let x, €C' be defined by x,(s) = x(r +5);s € [~,0)
Also, for functions u:[f, - h,t,] = E™, h> 0, and te [49,4] then u, denotes the functions

on [-h,0] defined by u(s) = u(t + s) for se[-h,0).

The integral are the Lebesgue Stieltjes sense.

Consider the system of interest
X(0) = L(t,x, 2, )x, + B(t,x,,u, )u, + fi (0, x,, %(0) w(r)) @20
With the following basic assumptions:

L)z, = [ dnt.s gprste+s)

where the » x » matrix function mt.5,4,¥) is measurable in (t,s) €ExE, normalized so
i :
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n(t.s.0,p)=0;, s> 0 forall d.w

7(t,s,¢,9)=n(t,~h,¢,p)foralls <-h
7(t,s,¢,y) is continuous from the left in s on [-h.,0] and has bounded variation in s on [-
h,0] for each t, ¢, y and there is an integrable function m such that

| L(t, 5,8, 9)x%, [<m() |x[|forallte (-,0), ¢,x,eC' yeC
We assume L(t,s,4,y) is continuous. The n x m matrix B(t,x,,u,)u, given by

B(, Xty Ju; = f}. d H(t,x(@ + s),u(t + s)u(t +5)

is continuous on all the variables and is of bounded variation in s on {-h,0]. Also the
function f is continuous and satisfies the Lipschitz condition in all its arguments. Enough
smoothness conditions on L and f are imposed to ensure the existence of solution of
system (2.1) and the conditions dependence of same on initial data. :

Definition 2.1 _ ‘
" The set y(t) = {x(t),x,,u, } is said to be the complete state of system (2.1). ‘

Definition 2.2

System (2.1) is said to be relatively controllable on [f,,4], if for every initial complete
state y(to) and every x; € E", there exists a control u(t) defined on [, ] such that the
corresponding trajectory of system (2.1) satisfies x(f;) = x, .

‘Definition 2.3 (Darbo’s fixed point theorem) :
If S is a non-empty, bounded closed convex subset of X and P:S—S is a continuous
mapping such that for any Q < S, we have

#(pQ) < kp(Q)

where k is a constant 0 <k < 1 then P is a fixed point.

2 MAIN RESULTS _ _
To solve the relative controllability problem for the system (2.1) we consider the

linear approximation of

x(6) = L(t, x, ,u, )x, + B(t,x,,u,)x, (3.1)
given by '

x(t) = L(t,z,v)x, + B(t,z,v)u, ‘ (3.2)
where the arguments x,, u, of L and B have been replaced by specified functions ze C'.
veC. System (2.1) can thus be approximated by
' x(t) = L(t, z,v)x, + B(t, z,v)u, + f(t, %, (), u(t)) _ (B3
For each (z,v)eC! xC . One can deduce the variation of parameter for system (3.3)
using the unsystematic Fubini theorem.
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Let X(t,s)l= X{t,s,z,v) be a transition matrix for the system x(t) = L(t,z,v)x, so

%X{:,s)ﬂ(r,z,v)m)

(3.4)
-where

0 s—h<t<s
X(t,5)= ;
5 {I t = s (1 identity)
and where

X,(o,s)0)=X(t+8,s) —h<8<0
The solution of system (3.3) is given by

x(t) = x(t,2,0,0) + J: X, s)[ f . dg H (s, z(6),v(6)))u(s + G)LJd_‘

+ [ X095, 3,,3(), 1),

Using the unsymmetric Fubini theorem which gives impetus to the change of the order of
integration, (3.5) can be written as

x(t) = x(ty,49,0,0)+ X (t;,15) + j: ”{ f;. X(tg,5-0)dy[H(s-6,2(6),v(®)},, }m
+X(t,15) _[ '{ f  X(to,5-6)d, [Fs-6.20), v(G))])u(s)}ds (3.6)

L X ,ro)[' Xkt 511 (85,5 58 deti o0l

(3.5)

where

. H(s,z,v) fors<t

0 fors>t
Let us now define the following theorems at t = t,
g(‘l, ) = g(y(lo )’x('[ )i z! v) = x(ll )—I("I !’0 L] ¢70)

N fo{ f,. X(t),s-6)d8[H(s -6, (0).vO)u, }ds_ (3.7

. f X(t).5)1 (s %, 5(s), u(s))ds

From

Z(ty.5,2,v.0) = jﬂh X(tg.5-0)dy H(s -6, 2(8).v(8))

3.3
Thus, the controllability grammian of system (3.2) at time t, is

90



ON THE RELATIVE CONTROLLABILITY ...

W(ty,t,) =W(ty.1,,2,v)= _rlZ(tﬂ ,5,z,)Z7 (tg, s, z,v)ds (3.9
(
where T denotes matrix transpose.

RELATIVE CONTROLLABILITY RESULTS

Given the system (3.3)

x(#) = L(t, z,v)x; + B(t,z,v)u, + (¢, x,,x(),u(t))
with conditions as spelt out above that L, B, f are continuous functions in all their
variables; and that _

IL(t, Z, v,)xe <m(t) ||| - (3.10)
where m(t) is an integrable function. B(t, z, v) is of bounded variation ins on [-h, 0].
The function f satisfies the Lipschitz condition with respect to the state variable, the
response is uniquely determined by any control. )

Furthermore
(a) I L(t, z, v) || <M for each s € [-h,0]
(b) | B(t, z, v) || < N for each s € [-h,0]
(c) || fit, x., X(t), ut) || <K for each t € [to, t1]
zeC'ueC(ty,41,E™)
where M, N and K are some positive constants. AIsb, for eirery X,
xeClueCandtelty,t] ' ,
(d) | t, x,, X(t), u(t) - &, %, x(2), u(t) | <k | x(®) —x(1) | (3.11)
where k is a positive constant such that 0 <k <1
1 Theorem 3.1 _
Assume that inf det W(tg, t;, z, v) >0 (3.12)

z e C! then system (3.3) is relatively contrdliable on [to, t1].

Proof
Define the control u(t) for t € [to, t,] as follows

u(t) = 27 (19,5, 2,VIW " (80,1 (Y (£ ), x(¢), 2,V) (3.13)
where Y(ty)and x(t,)=x, € E" are chosen arbitrarily. The inverse of W(to, t;) is

possible by condition (3.12). substituting (3.13) into (3.6) to replace u(t) and using (3.7)
and (3.9) it is clear that the control u(t) defined by (3.13) steers the initial complete state

Y(t) to the final state x(1,) =x, € E" . The actual substituting of (3.13) into (3.6) yields
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(1) = x(t),10,,0) + [ { _[]h X(ty,s-0)dy[H(s-6, z(B),v(O)]u,o}ds

+5

+ J:' ‘( f». X(,s —a)da[ﬁ(s -8, 2(0), v(9))]rZT (to, 5,2, VW (85, 1))g(t;)  (3.14)

+ J:' X(t,9)1 (s, x5, %(s), u(s)ds

Consider the right hand side of (3.14) as nonlinear operator which maps the banach space
C'([- 0} £”) into itself. Hence we can write (3.14) as

x(@ty=T(x)1) ' ; (3.15)
This operator is continuous since all the functions involved in the operator are

continuous.
Define the closed, convex subset G by

G'={r:xeC'([——h,O],E",ﬂx"SN,,||D.t{|5N2 (3.16)
where the positive real constants N, and N, are given by
Ny = (e Nexp M(t, — to) + a+ (8 —to )b cky + k(t; —to)exp M (¢, —1,)
Ny = MN, +bcNigk, + & '
ki = | +@to N exp M8, — ty) +a+k(t, — 1y )exp2m(t, —t5)
k, = max variation H(t,s, z, v)
tse[-h0]

a = supremum srelty, ]

J:' {-[)h X(fo o 5 —a)dg [H(s —9, z(a)’ v(g)}‘m

b =sup|z(t,5,2,v)ze C'

c= supﬂW“'(to,r, ,z,v)"
The constants a, b, ¢ and k; exist since the Lebesgue Stieltjes integral with respect to the
variable @ is finite.

The operator T maps G onto itself. As clearly seen all the functions T(x(t) with

xeG are equicontinuous since they all have uniformly bounded derivatives. Now, we
shall find an estimate of the modulus of continuity of the functions

DT(xX1) for t,s€[ty.1,]
IDT (X0 - DT(xXs)| < (m(o)x, | - mCs)e, )+ f , AOH (1), 2(¢+8), v( + ))u(t +6) L

)
- d@H (s, z(s +8),v(s + @))u(s + 9)|+| St x,x,u)- f(s,x,,x, u0|
The first two terms of the right hand side of ineguality (3.17) can be estimated as

' ﬂnﬂr - sl)wherc B, is a non-negative function s
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Lim By (R)=0
h—=0
In the same manner, we find that the term of the right of (3.17) can be estimated from
condition 3.11 (d) as
kfx(t) = x(s)|+ By ﬂt - s|)
Letting 8 = B, + f, , we finally obtain
IDT()(e) - DT()s)| = kxtrs - s+ B —))
Hence we conclude for any set QeG

w(TQ)< kal(0) u
Consequently, by the Darbo’s fixed point theorem, the operator T has at least one fixed

point, therefore, there exists a function x* e C ! ([- h,(}], E" ) such that
x(6)=x3(t) =T(x")(®) ‘ (3.18)

Differentiating with respect to t, we see that x(t) given by (3.18) is a solution to system
(3.3); for the control u(t) given by (3.13). The control u(t) steers the system (3.3) from

the- initial complete state Y(to) to the desired vector x; € E” on the interval [fy,#] and
since Y(to) and x, have been chosen arbitrarily, then by definition 2.2 the system (3.3) is
relatively controllable on [fy,4].
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