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ABSTRACT

A novel semiempirical tight-binding potential to simulate properties of fcc
metals is proposed. The novelty lies in the fact that the attractive part of the potential is
of the form of an nth power dependence on the effective coordination (or second moment

of the local density of states) instead of the usual fixed choice for n (% or % ). The

repulsive part of the interaction potential is, of course, the standard Born-Mayer type. In
order to use this potential for specific metallic solids, the model parameter n and four
other parameters are fitted on an equal footing to experimental data. It turns out that the
parameter n is not a constant for all metals. This work furnishes an alternative
prescription for determining tight-binding potentials. L

1. INTRODUCTION

A fast and accurate method of calculating total energies or defect energies 1s
desirable for the study of systems of interest to the material scientist. These are large or
small systems including surfaces, extended defects, complex alloys and involving a total
or partial loss of periodicity. Due to the enourmous computational burden posed by these
systems, ab initio methods [1-9] or fast self consistent calculational techniques [10,11],
which are the ideal theoretical framework for handling these systems, may not be
convenient computational methods given the current state of our technology. During the
last two decades several semi empirical potentials [12-29] that include many-body
interaction terms, beyond a pair potential term, have been developed. These
semiempirical approaches have been found to provide fairly accurate results with
considerably increased computational efficiency compared to first principles or ab-initio
approaches. For instance, it is now wisely recognized that semiempirical many-body
potentials can reproduce with good accuracy the thermodynamic and structural properties -
of several metals. In the last years, these potentials have been extensively used to
analyze a variety of problems in materials science, sometimes with the help of molecular-
dynamics computer simulation techniques. It appears then that the only practical way,
currently, to approach the simulation of point or extended defects (vacancies, grain
boundaries, or dislocations), interfaces, and surface properties for metals and -
intermetallic alloys, is through the use of semi empirical potentials. :

In general, semi empirical approaches tackle the many-body problem by
determining a functional form, for the cohesive energy, based on some physical model.
The functional form often contains some parameters, which are to be determined by
fitting to experimental properties. Once these parameters have been determined, the
functional form may then be used to calculate various other properties, such as defect
energies, etc.
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The main advantage of a many-body empirical potential treatment over the
traditional and practically simpler pair-potential treatment is the ability to better
Seproduce some basic features of metallic systems. First of all, the so-called Cauchy
discrepancy of the elastic constants, namely, the experimental evidence that for most
cubic crystals C;, # Cy, cannot be accounted for by pair potentials. Another serious
drawback of the use of pair potentials is represented by the incorrect estimates of the

mono vacancy formation energies, whose predicted values result very nearly equal to the
cohesive energies, whereas the experimental results indicate that they range around %

of the cohesive enmergy. Furthermore, stacking fault energies, surface structure, and
relaxation properties cannot be properly accounted for by means of pair potentials. A
many-body potential scheme usually overcomes these difficulties by including, even at a
phenomenological level, the essential aspects of the metallic bond that are absent in the
pair-potential scheme.

A relatively simple scheme for relating the atomic and electronic structure of
metals, without resorting to the complex treatment of first principles calculations, is the
tight-binding (TB) theory of cohesion [30-33]. The second moment approximation
(SMA) of the TB theory expresses the cohesive energy of a metallic solid as a sum of two
terms, one coming from the band energy Ej (the attractive term) and the other term, Eg,
"being a repulsive contribution. In this TB-SMA scheme [22-29,34-36] the interaction
between two atoms depends on the interatomic distance and also on the local
environment around each atom. Improvements over the SMA have been proposed, first
by Carlsson [37] and later by related approaches [26-29,38] adding other attractive terms
to the cohesive energy. These additional terms depend on higher moments of the density
of states (DOS) in order to incorporate contributions to the energy from changes in the
shapes of the DOS.

On the whole the TB-SMA scheme contains five model parameters, usually
-denoted as A, £p,q, and n. These parameters can be determined by fitting to the
experimental values of the cohesive energy, the mono vacancy formation energy, and the
independent elastic constants, and also by taking the equilibrium conditions into account.

In several applications of the TB-SMA scheme, the model parameter n is often
taken as 0.5. With such a choice, Cleri and Rosato [25] determined the values of the
other four parameters for several metals, by fitting to the experimental cohesive energy
Ec, the bulk modulus B, the elastic constant Cy, and also by taking the equilibrium
condition into account. For several metals, the predicted values of the monovacancy

formation energy E; as well as the other elastic constants (C,, and C;3) disagreed with
the experimental values.

Guevara et al [26] on the other hand chose the value of n to be % and their
best tight-binding potential was obtained by fitting to the experimental cohesive energy
Ec. the monovacancy formation energy E, . the Bulk modulus By, and also taking the

equilibrium condition into account. Again for several metals the predicted values of the
elastic constants turned out to disagree with the experimental values.
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In this paper, I set out to treat the parameter n on an equal footing with the other
four parameters, disregarding the theoretical justifications béhind the choice of

n= }é or n '=23 - That is, the five paramieters in the TB-SMA scheme have been

\/
determined by fitting to the experimental value of Ec, E;., By, Ci3 — Cyy, and also taking
the equilibrium condition into account. It is shown in the text that the value of the
parameter n does not come out to be a constant for the four typical FCC metals (Ni, Cu,
Au, and Pd), whose potentials are explicitly exhibited. - At the same time the new
potentials lead to good agreement with experiment in the physical quantities whose
values are predicted. This work therefore provides an alternative prescription for
determining tight-binding potentials. : w

This paper is organised as follows: in section 2, the basic equations of the theory
relevant to this work are presented in section 3, results are reported for four typical FCC
metals; finally, concluding remarks are given in section 4. =3
2, THEORY ‘ :

‘ It has been pointed out by Cleri and Rosato [25] that the TB-SMA scheme is
formally analogous to the embedded-atom method (EAM) scheme. The details of the
EAM, which can be found in references [12] and [39-41], are skipped here. However,
the 7 basic equations that frequently arise when working practically with the EAM are
given below. Such a presentation will facilitate our contact with the TB-SMA scheme
later. Starting with a general cohesive function U(r) which is a sum of two terms one gets
in a nearest-neighbour model for FCC metals the equations: :

U, = 64(r)+ Flp,) | @.1)
0=64/(1)+ F (oo (s)] @2)
338 = 64i{n)s P (oo (o) + Fo ()] @3)

F f 1|

#iln) 4 F |
f:-c” | 2!(r:)+ gro)J N :go(’_’e’w”"fn%p( )z @.4)
%Clz = “Sf;(()fo) % ¢|£’0)} % ::;; {Pe)Wu + '4?:-}5‘"(%)1’121_ 2.5)

; |

‘ *}Cu = S:Lgr") + ¢‘£’°)}+ 43 - Fp, )W, 26)

Ey = 12F(11p,/12)- 11 F(p,)- U, @7
In the equations above, U, is the equilibrium energy per atom, i.e; the negative of the
experimental cohesive energy. B, and C; are, respectively, the bulk modulus, and the
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- elastic constants written in the Voigt notation. € is the volume per atom in the solid, ro

is the equilibrium nearest-neighbour distance, and a is the equilibrium lattice constant.
¢, is a repulsive pair potential whose first and second derivatives with respect to the
radial distance r are, respectively, ¢, and @' (all quantities being evaluated at r = 1o);
while F* and F” are the first two derivatives of the embedding function F with respect to
the density, again all quantities being evaluated at the equilibrium density p.. E;. is the
mono vacancy formation energy, while Vy, W, and W, are EAM parameters.

In all of our previous applications of the EAM [39-41], V};, W; and W, have
been considered as free parameters to be consistently determined so that the basic
equations of the EAM are satisfied. Such an approach enables us to overcome the
problem of the elastic constants not being correctly reproduced theoretically (see, for
instance, [42-45]. We shall pursue a slightly different approach here, since it is often
desirable to predict several physical quantities from a minimum set of parameters.

For an FCC lattice, r, = %—2- and Q, = ay , and expressions for Vy;, Wy; and

W, in terms of the derivatives of the density may be got from reference [12] or [46],
after some algebra, in the form

V,=ro'(n)f3 2.8)
W, = %[ﬂ”(n,)+ p'(n,)/ru] 2.9)
W, = g;[p”(r..)— SP’(n,)/r:,] | (2.10)

: It is clear from Egns. (2.1) to (2.10) above that the EAM has three basic
functions, i.c., ®(r), F(p), and p(r) which generate the 8 EAM parameters:

4ir0). 810 ) o) F(2). F (2). 7 (0.). (), and (o).
All other parameters like Vi, W, and W,, are dependent on these eight. The
experimental input data required for the solution of the 7 EAM equations are the cohesive
energy E. (= -Uy), the lattice constant a, the bulk modulus By, the three independent
elastic constants (C,;, Ci2, and Cy4), and the monovacancy formation energy E;.. The
determination of the 8 EAM parameters, in the absence of explicit functional forms for
the three basic EAM functions, is a nontrivial problem and the interested reader should
consult the relevant literature [12-13, 39-41]. Suffice it to state here that once the 8 EAM
parameters have been determined, then various other physical quantities of interest can be
determined from our knowledge of the functions ¢,(r), F(p), and o).

In an obvious correspondence with the EAM scheme, the expression for the
cohesive energy Ug in the TB-SMA scheme is

Uo = ER s EB (2.11)
where the functions Eg and Eg can be written in a generalized form as
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E,=64¢(r)= AZexp[—p(ry/rn - 1)]

and

E = Flp)= —{[zj:exp{—Zq(r,j = 1)]) @.13)

It is clear that the density function p(r) is -

p(r) = ZeXP[-flfI(f,-,- /ro- 1)] @149
and hence (2.13) can be recast in the form
E, = F(p) =—¢(p)’ (2.15)

The sum over j in Eqns. (2.12) to (2.14) is actually a sum over neighbours r;; being the
distance between atom j and atom i (the reference atom). In this study the summation
was carried out up to the 5™ nearest neighbour . '

The TB-SMA expressions for the functions ¢;(r), F(p) and p(r) as contained in
the Eqns. (2.12) to (2.14) are governed by only 5 parameters [A, p, €, q and n), instead of
the 8 parameters

[¢1(r0),¢{(r0),¢{’(r0), F(pe), F '(Pe),F"(Pe),P'(fo) and p”(ro)] which are encountered in
the EAM scheme. Hence, the 7 EAM equations can be immediately solved if we
substitute the expressions (2.12) to (2.14) and their derivatives for the functions

#,(r). F(p).o(r) and their derivatives, encountered there. That is, the TB-SMA scheme

developed here has a total of 5 parameters that must be determined from the 7 equations
(2.1 to (2.7). L
In the initial development of the TB-SMA scheme, the 5 basic parameters were
determined by fitting results from ab initio calculations for high symmetry structures, the
only experimental input being the lattice constant. The fitting procedure is quite
cumbersome since the ab initio results are not so easily available.. Physical quantities like
the elastic constants, the vacancy formation energy, etc., were subsequently predicted by
the theory. Unfortunately this ambitious program [28-29] is yet to reach the much
desired perfection stage, since several predicted quantities are still in conflict with
experiment.

In several applications of the TB-SMA scheme the parameter n is specified a

1 2
priori to be oy [ 22, 25, 26]. In this situation the four remaining free parameters of

the TB-SMA scheme can be determined from the EAM equations either using Egs. (2.1),
(2.2), (2.3) and (2.7) or Eqgns. (2.1), (2.2), (2.3) and any one of (2.4) to (2.6). We pursue
a different approach in this study. The parameter n and the four others are determined on

an equal footing from Egs. (2.1), (2.2), (2.3), (2.7) and the equation
no(cu _Cu) = F"(pz) Vl’l. (2.16)
which is got directly from (2.5) and (2.6).
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3. RESULTS
The results presented here for FCC Cu, Ni, Au and Pd are preliminary. Much

- more comprehensive results covering several metals will be reported in the future. The

general problem studied here is the problem of determining tight-binding potentials for

FCC metals within a generalized TB-SMA scheme. The five parameters of the TB-SMA

scheme, as determined in this study, are exhibited in Table 1, along with those obtained

from other studies [25,26]. The first row for each metal shows the parameters obtained
by Cleri and Rosato [25]. The second row gives the parameters obtained by Guevara et
al [26], while the third row gives the parameters obtained in this study.

Table 2 displays the experimental data used for the parameter determination of
the tight-binding potentials, and the three elastic constants predicted from the potentials.
Clearly the agreement with experiment is quite good. This work therefore provides an
alternative prescription for determining the tight-binding potentials. It has already been
stated that the results presented here are preliminary. The results are, infact, part of a
much more comprehensive study, currently going on, to try to answer four important
questions:

[6))] How well do the TB-SMA parameters, obtained via the prescription reported in
this study, perform in reproducing the results of ab initio total energy
calculations? It must be recalled that the parameters of the TB-SMA scheme are
often determined by reference to ab initio total energy calculations [27-29].

(ii) How well do the parameters of the new generalized TB-SMA scheme perform in
correctly reproducing the various physical properties of pure FCC metals, alloys,
and defects?

(iii) How sensitive are the parameters (and calculated results) to the number of

neighbours taken into account in the definition of the functions F(p), ¢,(r), and
p(r) [see Eqns. (2.12) to (2.14)]?. In this study the summation over j in these
equations was carried out up to the 5% nearest-neighbour,

(iv) How well will this new generalized scheme perform for bee metals? According
to Cleri and Rosato [25], the application of their TB-SMA scheme (e, n=%
type potentials) to bee transition metals was found to be unsuccessful.
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TABLE 1: Parameters of the Tight-binding Potentials

Metal | Reference n A(eY) | E(V) P q

Cu [25] 1/2 | 0.0855 | 1.224 | 10.960 | 2.278
[26] 2/3 0270 | 1222 | 7345 | 2.562
This study | 0.5075 | 0.0884 | 1.2003 | 10.8107 | 2.3000
Ni [25] 12 0.0376 | 1.070 | 16.999 | 1.189
' [26] 2/3 0.344 | 1.544 | 7267 | 2.562
This study | 0.3881 | 0.0234 | 1.4682 | 21.0000 | 1.2319
Au [25] 1/2 0.2061 | 1.790 | 10.229 | 4.036
[26] 243 0.417 | 1.654 8.497 3.628
This study | 0.7242 | 0.5532 | 1.7038 | 8.3464 | 3.6739

Pd | 25] 12 0.1746 | 1.718 | 10.867 | 3.742

[26] 2/3 0318 | 1443 |9.076 3.317
This study | 0.7152 | 0.4301 | 1.5035 | 8.4250 | 3.3160

TABLE 2: Experimental data used for the parameter determination and calculated
properties. The first five rows give the Experimertal inputs:

E..El..,a,B,, and C,-C,, taken from the compilation of Ref. [39]. The last three

rows give the calculated or predicted quantities in this study, compared with experiment
(the values in parenthesis).

Physical Quantity Cu Ni Au Pd

Ec (eV) 3.50 444 378 3.94

E" 1.30 1.60 0.96 1.40

w (V) 3.61 3.51 4.07 3.89

a( 4) 1.420 1.876 1.803 1.955

By (Mbar) 0.431 0.191 1.243 1.049

Cu — C44 (Mbar) ’

Cy1 (Mbar) 1.913 (1.762) | 2.741(2.612) | 2.084 (2.016) | 2.390 (2.341)
C,2 (Mbar) 1.172 (1.249) | 1.466 (1.508) | 1.663 (1.697) | 1.720 (1.761)
C,q (Mbar) 0.740 (0.818) | 1.275(1.371) | 0.420 (0.454) | 0.671 (0.712)
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4, CONCLUSION . -
A novel semi empirical tight-binding potential to simulate properties of fcc
metals has been discussed in this study. The novelty lies in the fact that the attractive part

_of the potential is of the form of an nth power dependence on the effective coordination,

and unlike other works in the literature, the value of n is not set a priori to be a constant
for all metals. The five basic parameters of the generalized TB-SMA scheme were
explicitly exhibited for four typical fcc metals — Cu, Ni, Au, and Pd. The predicted
elastic constants for these metals were found to be in good agreement with experiment.
This work therefore furnishes an alternative prescription for determining tight-binding
potentials within the generalized TB-SMA scheme.
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