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ABSTRACT ;

Discrete Optimal Control Problems arise in many ‘multistage and
scheduling problems. In principle also, continuous optimal control problems may be
discretized appropriately and subsequently be formulated as discrete optimal control
problems. Herein, we propose an algorithm, based on the conjugate Gradient
method for solving discrete optimal control problems with constraints on the states
and controls of the dynamical system.

1. INTRODUCTION

Many efficient computational algorithms are now available in the literature
for solving continuous optimal control problems, such as Gradient Methods: Miele
[16], Ibiejugba and Onumanyi [10], Ladson et al [14], Damoulakis [4], Miele et al [17]
etc; the multiplier Methods: Ibiejugba [11],, Ibiejugba et al [12], Miele et al [18] and
Di Pillo et al [5] etc; the Gradient restoration methods: Miele and Wang [19], Miele
[16] and Pritchard [26]; the Control parameterization methods: Goh and Teo [9], and
the Factorization methods: Miiman and Schied [20] and Milman and Schumitzky
[21]. Thus the discretization of continuous optimal control problems seems to be no
longer warranted. %

Nevertheless, there remains much interest in the numerical solutions of the
generically discrete optimal control problems. The fact that the confinuous optimal
control problems require us to determine measurable functions, which cannot be
generated by digital computers makes the search for numerical solutions to discrete
optimal control problems worthwhile.

Many methods are now available in the literature for solving such problems.
Loosely, the available methods for Discrete Optimal Control Problems can be
grouped into four main classes:

(a) Methods based on the maximum principles: Boltyanskii [2], Dolezal [6];

(b) Methods based on the Mathematical programming techniques: Cannon et
al [3], Polak [24], etc;

(c) Methods based on a hybrid of the maximum principle and Mathematical

programming techniques, Evtushenko [8], Mehre and Davis [15], Polak
[24], Polyak [25], Teo et al [27]; and

(d) Methods using dynamic programming techniques, Bellman and Dreyfus
[1], Dyer and Mc Reynolds [7], Jacobson and Mayne [13], Morin [22], Ohon
(23], Yakowitz and Rutherford [28].
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In this paper, we propose an algorithm, based on the conjugate gradient
method for solving discrete optimal control problems with constraints on the states
and controls of the dynamical system. It is important to note that, apart from the first
class of solution techniques mentioned above, all the others employ at least a bit of
mathematical programming. This is basically due to the relationship between
Nonlinear programming problems and optimal control problems. We shall start by
showing that, ordinarily, the Discrete Optimal Control problem can be viewed as a
Nonlinear programming problem with some special structures.

The Nonlinear programming problem can generally be stated as follows:

Problem (P1) ;
Given continuously differentiable functions £ R" 5 R", g: R" 5> R"and r: R" -, RY,

finda Z inthe setQ={z g(z) <0, r(z) = 0}, such that for all z £, f(z) < f{Z).

We note here that the functions g and r have components g4, gz, ..., gm and
ry, fa,..., Iy respectively. Thus, statements about g and r hold componentwise.
Problem (P1) can, however, be stated in shorthand form as:

Minimize {f(z): g(z) < 0, r(z) = 0}. (1.1)

The need for problem (P1) in this paper will become obvious when our problem of
interest (the Discrete Optimal Control Problem) is shown to be a form of Problem
(P1) with special structure. This is the concern of the next section.

2. PROBLEM STATEMENT
Consider a dynamical system, described by the system of difference

equations
Xie1 = GilX;, Ui), 1= 0,1, ..., k, X(0) = Xo 2.1

where X = (X1, Xz, ..., Xa)' and U = (Uy, Uy, ..., Uy)' are respectively the state and
control vectors; gi R" x R™ — R" is a continuously differentiable function and x, =
(X1.0, X20, .-, %n0) €R" is @ given initial vector and x; stands for the i-th component

of xg.

Problem (P2) :
Given the system (2.1), find a control Us R™ and a corresponding

trajectory x & R", such that the cost functional

J(xvu)m_zofi(?ﬁuui)a : . (22)
=
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is minimized over a class of all feasible control and state vectors, where f:R" x R™

— R, is continuously differentiable and k is the duration of control process.

Problem (P1) is clearly the simpler and more studied of the two stated
problems. Not surprisingly, therefore, the largest fraction of existing algorithms deal
with Nonlinear programming problems.

Now, we consider problem (P2) and let

Z= (X0, X4, -.., Xi; Uo, Uq,.., U)" (2.3)
k

f(z)=- §0fi (xi>ui)s (2.4)

r(z) = Xi-p‘] - gi(xi: Ui), i= Os 11 sy k (25)

Then, it is not difficult to see that the Discrete Optimal Control Problem (P2)
assumes the form of Problem (P1), without the inequality constraints. Thus, it
becomes clear that, at least in principle, all nonlinear programming algorithms are
applicable to the Discrete Optimal Control Problems. However, the very high
dimensionality of the vector z in Equation (2.3) makes the transcription of the
Discrete Optimal Control Problem to the Nonlinear programming form,
unsatisfactory. Other forms of transcription are available, where for instance we let

Z = (Xp, Ug, ..., Ux) and xi(Xp, U)

denote the solution of Equation (2.1) at the ith step, corresponding to u = (uo, Uy, ..,
Uy). Although the nonlinear programming problem obtained via this scheme
substantially reduces the dimension of the vector r(z), the story remains the same
as we still have in our hands, a large dimensional problem to solve. Polak [24]
contains other forms of transformation.

As a general rule, we may be better off, formulating the original control
problem in discrete form when we are interested in on-line control of dynamical
systems by means of a small computer, since in such cases the solution of
continuous optimal control problems may not be practicable.

From the foregoing, our discrete optimal control problem of the form (P2)
are usually encountered in constrained form and penalty functions are often used to
cope with the constraints on the states and controls of the dynamical system.

In the next section, we put our problem of interest in a form suitable for the
application of the Extended Conjugate Gradient Method, by constructing a matrix
operator H, which proves useful in our subsequent developments.
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3. CONSTRUCTION OF THE MATRIX OPERATOR H.

Our intent here, is to attempt to provide a direct numerical solution to the
linear quadratic optimal control problem (LQOCP), given by Equation (2.2), subject
to discrete time linear dynamical equation over the set, R, of real numbers.

For a start, we consider the one-dimensional case of Problem (P2). Thus
our problem of interest is

Problem (P3)

k
Minimize 3’ (ax} + bu?) (3.1)
i=l
Subject to
X = CXp.1 + duiy, Xp given, (3.2)

where a, b, ¢ and d are constants with a, b, >0, candd are not neCessarily positive
but nonzero.

The introduction of a penalty constant u(u > 0) converts the constrained
problem (P3) to an unconstrained problem given by

Problem (P4)
k

MinJ(x, u)= Minimize{ b axi2 + bui2 + X - exi. - du;. ]2 } (3.3)
i=l

If the problem can further be written in the form < Z, HZ>, for a given matrix
operator H, and for the ordered pair z = (x, u)', then the Extended Conjugate
Gradient Method due to Ibiejugba and Onumanyi [10] can be applied to solve the

problem.
Our concern now is to construct the required matrix operator H, which

renders problem (P4) amendable to the ECGM algorithm. We start by associating
problem (P4) with the matrix operator H as follows.

k > B
<ZHZ>w= % [axiz"'buiz*'.u(xi-cxi.|-dui-1)2l (3.4)
i=1

where W is a real Hilbert space and <.,.>y denotes the inner product in W, which in
this case is taken to be the Euclidean space, and

Z = (Xg, %1, ..., Xu, Ug, Ut ..., Ug). (3.5)
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Without much difficulty, we obtain

F £ B
H=| .. : . (3.6)
BT 5 D

Where F,B, and D are block matrices, whose entries are defined as follows:
F is a tridiagonal matrix of order k + 1, with entries given by,

fy=-pcprovided || =1, f5 =a+u(l+c),
i M ]

j=1

j2k+1

fi= ]J.Cz, frike1 =@+ pand f; = 0 otherwise.
B is a square matrix of order k + 1, with bj = -d vi,j such thati= 1+,

bjj = sed, b= 0 otherwise.
jEk+1

D is a diagonal matrix of order k + 1 with

dy = pda, di+1x+1 = b and djj =b+pud?.
j=1
jzk+1

As usual, B" denotes the transpose of B. Itis then very easily seen that

<Z HZ>=Z7"Hz,
with Z and H given in Equations (3.5) and (3.6) respectively, restores the right hand
side of Equation (3.4)

4, AN EXTENDED CONJUGATE GRADIENT METHOD FOR THE
DISCRETE OPTIMAL CONTROL PROBLEM
The philosophy of the ECGM algorithm, due to Ibiejugba and Onumanyi
[10] would be extended to cope with the minimization of problem (P4).
Let P; denote the vector of the descent direction at the ith step of the ECGM

algorithm, then using the matrix operator H, constructed in the previous section, we
obtain HP; as follows:

79



OTUNTA, F.O.

ue’ Py~ HCPy, + HEdPy,
- Py H(a+ p(1+0)) Py - HCPy, - Hd Py, + pedPy,

- HCPy, +(@a+ p(1+C) Py, - HCP, - pdpy + pedpy,

- pedPy,  F(1+ )Py - pdPy, -1
HP; = (4.1)
' 4Py, - APy, + 1d> Py, ¢

pedpy - pd Py, + b+ udd)Py,

pedp,, - pd Py +(b+ ud?) Py

bP,,

fori=1,2,3, ...k
. Furthermore we define the descent step size at the ith step as

<g.,g>
= Bpbic (4.2)

o~
<PJJHP.‘>

where the step size between the controls are given by

< g ,gu =
. (4.3)
<Py P
and similarly we have [ 1}
< > e
g8,
o Tl (4.4) .
L Py HP,, >

for the states vectors.

By virtue of Equations (4.1), (4.2), (4.3) and (4.4), we construct the
Extended Conjugate Gradient Methods suitable for solving the control problem (P4).
The algorithms are as follows:
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Algorithm (4.1)
Step 1:

Select xo, U arbitrarily from the domain of the given problem, and compute
the remaining members of the paired descent sequence with the aid of the formulas
described by subsequent steps of the algorithm.

Step 2:

Compute the partial derivatives of J. Equation (3.3), with respect to X and

u; respectively for all i, viz:

gx; =A'!Xi’gui =AJU§
9a nd set i=0,1,2,...k (4.5)

Pxo = ngu’ PHO - -guO

Step 3:
Compute
Xi+1=Xitayg Py uiv1 =uitay, Py, (4.6)
< >
g?('+|’g)(‘+l
Prie) = 8+t M (4.7)
o . <gx1’gXi> §
<g,. .g >
Pyjy == gyt p (4.8)

»
bR, R

where ayandg, are given by Equations (4.3) and (4.4) respectively, and HP;
given by Equation (4.1) with

HP,, = HP; 'Pu; =0 (4.9)
and
HPy; = HPilp - (4.10)

Step 4:
Stopping Criterion: Terminate iteration if g~ Oor/and g, =0, otherwise

stop when i = k, the specified duration of control process.

Clearly, Algorithm (4.1) is a discrete version of the ECGM originally
Constructed for penalized cost functional for Continuous Optimal Control Problems.
In what follows, we propose an iterative scheme for Computing x; and ui(i=1,2 3,
k) from a first approximation, arbitrarily taken as in step 1 of Algorithm (4.1)

81



OTUNTA, F.O.

Algorithm (4.2)
Step 1: Same as step 1 of Algorithm (4.1)
Step 2: Same as step 2 of algorithm (4.1)

Step 3:
Compute
g g v
X=X0=— 2 = Uy = — (4.11)
Hc Hd '@
<gxa’gXi><gXi-|’gxa.1>
Xi+1=xi+
i=1 1
[a+p(1+c)] <gxi’gxi >[ " <gxi-l’gxi-l >j§0g_ ]‘ <gX;-| ’gXi.1>gX| }
Xj
i=23,..k
(4.12)
and :
<gui’gui><gui-1’gm.i>
uji+1-u;t
5 i-1 1
(b+pd9) <8y 8y, >(-<gui-n’gua=1>j§0g—]—<gu1.|’gui.|>gu1J
uj
i=23,..k
(4.13)
Step 4: Same as step 4 of Algorithm (4.1).
Equations (4.11), (4.12) and (4.13) ‘are obtained as follows: For i = 0, :
Equations (4.6) become &
)

xi=xota,P,andu=u+a,P,, (4.14)
Substituting Equation (4.5) into Equations (4.14) yields

X1= X0 Ay, 8, @Ndu; = U0~ ay,8,,
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But

L “BxoBrg” _ 1 (4.15)
X0 <ng’Hng> <gx0,ng0> 'uc2
Hence
X1TX0" gxo
pe®
and
of B
: uTut T 5
ad
from the fact that
|
; e = <guo’guu) = <guo’gua> - 1
| 0 <PysHPy> <8, Hg,> wd
i Fori=1, Equations (4.6) become
| &
x2=xitay, Py, @d uw=uite,Py:
Using equation (4.1), with i = 1, we readily obtain
<Py, HPy, > =[a+p(1+0)]P2,
! so that
< g .2 >
=X X ___ 4.16
“aPa T i olp,, e
'r @ Using Equation (4.17) in Equation (4.16) and simplifying, we obtain
v ]
* fgx1’gx1><gxo’gxa> 2 (4.17)

i Py ™ —
T T4 (14 0)]| - 8 <80 B < BBy Ex )

Hence

x2=x1F oy, Py,
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becomes
< > ¢ >
r gm +8y, k gxo’ X0

la+u+ol|-g, <g, .8, >-<g .8 _>g_

Xa=xj+

T (4.18)

Similarly, we obtain
f&,,agu, = <gu0:guﬂ>

2 |
[b+#d ]['gul<guDaguD>'<gu]:gul >g.:]

uz=up+ (4.19)

Simple inspection shows that for | = 2, Equations (4.12) and (4.13) reduce to
Equations (4.18) and(4.19) respectively. For i > 2, we follow the same lines of
argument as shown above and the principle of mathematical induction to verify
Equations (4.12) and (4.13) for each .

5. NUMERICAL EXPERIMENTS

In this section, two numerical examples are solved to illustrate Algorithm
(4.2) proposed in section 4 of this Paper. For each of the examples, we compute
and report the values of the objective functional (cost functional) for indicated values
of k (the duration of control process) and some penalty constants (arbitrarily
chosen).

Example 1
Consider the following first-order system x; = 0.5%..¢ + U4, x(0)=1
wherei=1,2, .. k(k specified). The cost functional

k
OBJ= ¥ (x?+u?)
i=1

is to be minimized with the control bounded by -1 < u; < 1, fori = 0,12 . k

This problem had been considered by Teo et al [27], who solved the
problem by employing some even and uneven parametrization partitions before
introducing a simple constraint transcription to approximate each of the all-step
constraints into a single constraint, cast in a canonical form similar to that of the
cost functional, to simplify computation of gradients.

Table (4.1) depicts the numerical results obtained via our scheme
(algorithm (4.2)), while Tables (4.1.1) and (4.1.2) show the results of Teo et al [27].
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Table (4.1)
Numerical Results For Example 1 via Algorithm (4.2)
Value of k OBJ Value [ Penalty Constant (y)

1 0.472222 Independent of
2 0.81720134 05
2 0.97984404 0.05
4 1.15931778 0.5
4 1.22022389 0.05

Table (4.1.1)

Numerical Results For Example 1 via an even Parametrization Partition
(Teo et al [27])

No of lterations OBJ Value No of Steps (Np)
10 1.2934773 5
16 1.2484346 10
31 1.1327822 50
Table (4.1.2)

Numerical Results For Example 1 via an Uneven Parametrization Partition
(Teo et al [27])

No of Iterations OBJ Value No of Steps (Np)
15 1.1327825 10

Example 2.
‘ k
Minimize Y Xi2+'-'§2
i=0
subject to
Xi = Xig = Upqy %o = 1.
Algorithm (4.2) is used, with initial guess of u(0) = 0.5 for the optimal

control. Table (4.2) shows the numerical results obtained for k = 1, 2 with the
parameter 1.0, 0.5, 0.25 and 10.
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Table (4.2)
Numerical Results For Example 2 via Algorithm (4.2)
Value of k OBJ Value Penalty Parameter (1)
1 10.25 Independent of |,
2 16.10030511 1.0
2 16.244495¢8 0.5
2 16.36777588 0.25
2 15.84573272 10
8. CONCLUSION

We have, in section 3 of this paper given a scheme for determining the
matrix operator H, for any Discrete Optimal Control Problem of the type given by
problem (P2). Furthermore, we have given expressions for the direct computation of
the state and control variables for this class of problems.

Although no theoretical resuits are available for comparison, the results
published by Teo et al [27], indicate that an OBJ value of 1.1327825 is quite good
for our Example 1. This is based on the fact that Teo et a] [27] accepted that an
uneven parametrization partition is more expedient, as it reduces significantly, the
required computational effort in solving Example 1. Table (4.1) shows that the
results obtained via our Algorithm (4.2) are not out of place.

It is important to note that the determination of the state variables via our
proposed scheme involves implicit equations that may not be solved accurately.
Solutions of such equations may be achieved via any convergent one-point iterative
scheme. The Newton-Raphson scheme is recommended here.

For better approximations, we require higher values of k. This is clearly
revealed by Table (4.1). However, the use of high values of k leads to the
manipulation of very large matrices. This snag is currently being investigated and is
one of the points to be reported in a forthcoming paper, where 3 generalization of
problem (P3) is also given,

In conclusion, we note that our scheme is a penalty function method, and
SO largely depends on the choice of the penalty parameter. From the foregoing,
however, it is observed that for k = 1 our scheme is independent of the penalty
parameter. Unfortunately, the value of the cost functional at k = 1 remains the worst

approximation. This again, is clearly seen from the results shown in Table (4.1).
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