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ABSTRACT

In this paper, the entropy rate in solar wind flow is analyzed by
considering fluid dynamical models of a spherically symmetric, exp=
anding, and heat conducting gas under gravity. Based on certain
simplifying postulates, the fluid equationsoi’continuity,nolentum,
energy, and a thermodynamic relation that involves entropy, are
obtained and solved analytically. The entropy rate is shown to give
two critical solutions, one increasing and the other decreasing.

1. INTRODUCTION
Existence of the solar wind was not widely acceptedumtil.1962,when
results from the spacecraft Mariner 2 were published (Neugebaver &
Snyder, 1962). Bierman (1951) used the evidence that comet tails
always seem to have & pronounced anti-solar orientation to support
the claim that solar corpuscular radiation is continuous and that
emission takes place from the whole surface of the sun, not just
from solar flares or other areas of intense activity. Chapmen
(1957) put forward the idea that the solar corona is essentially &
static, ionized gas, dominated by thermal conduction, and extending
beyond the orbit of the earth. However, a consequence of this isan
associated gas pressure at infinity which is several orders of mag—
nitude in excess of what was accepted as interstellar background
pressure. Parker (1958) arpgued that the solar corona could not be
in static equilibrium and, inspired by the continuous-emission hy=
pothesis of Blerman, propoesed that the solar corona must necessar—
ily be steadily expanding. Parker named such a continuous expansion
of the corona the "'solar wind", set up a simple hydrodynamical mo=
del incorporating an imothermal corona out to several solar radii,
and predicted that the solar wind would reach supersonic speeds, of
the order of several im/s, at the earthe

In this paper, an attempt is made to study the disorderliness in
the solar wind particles, mostly ions, in the course of its conti~
nuous outflow into interplanetary spaces

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

In order to construct a simple fluid model of the quiet solar wind,
we assume that (i) the solar wind is a fully ionized, electrically
neutral hydrogen plasma, that is, an electron-proton gas in which
electron number density is equal o theé proton qumber density;
(ii) the electron streaming speed o s equal to the proton stream-
ing speed (this assumption preserve charge neutrality of the sun)}
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(iii) electron and proton temperatures are equal, say T (this ass-
umption characterizes the "one-fluid" model); (iv) viscous dissip-
ation is negligible; (v) the magnetic field is carried along by the
flow, without exerting any appreciable force on the plasma, and so
can be omitted; (vi) there are no heat sources or sinks in the co-
rona; (vii) the effects of solar rotation can be neglected; and
(viii) the solar wind behaves as a conventional fluid, since near
the sun, the particle mean free path is small and at greater heli-
ocentric distances, the interplanetary magnetic field causes part-
icles to interact indirectly so that the medium still behaves as a
fluid even in the absence of collisions. The fluid equations, based
on these assumptions, are the equations of continuity, momentum,
energy, and thermodynamic relations:

3P/t + Y. 9a) = (1)
/¥t + (g .V)q = -(‘I/mf)V(RPT) + gg (2)
B(-gfmv2+RfT/(\5-1))/‘ot+ V. puvq ‘

+ YpRr1y/(¥ - 1)) = V. KVD) + pmgg (3)
TVS = ch - (1/m )V(RfT) ()

where m is the mass of the solar particle, ¥ is the ratio of pri-
ncipal specific heats, R is the ideal gas coustant, g, is the solar
gravitational acceleration, K is the coefficient of tﬁermal condu-
ction, and S is the entropy rate for the solar wind. We have assu-
med a scalar gas pressure p, which can be eliminated from the equ-
ations by assuming the ideal pas equation of state:

p = PRT (5)
The solear wind may be considered steady and spherically symmetric,
in which case the variables sy Vy Ty, and S are functions only of
the heliocentric radius r. Then, equations (1) to (4) become:

r_ad(r2P V)/dr = O (6)
Vav/dr = -(1/mjz)d(n ) /dr - GMr—2 (7)
r2(a/ar) [ (v}meB + YRpTV/(Y - 1}]

= r"2(a/dr) G7KaT/dr) - RPpmGMVr (8)
TdS/dr = C dT/dr - (1/mp)d( pRI)/dr (9)
where M is the maSs of the sun, G the universal constant of gravi-
tation, and C is the molar heat capacity at constant pressure.
Equations (6)Pand (8) are readily integrated, and may be elimi-
nated from (7) and (9) by use of the following intezral which rel-
ates the wind flux per unit solid angle F (= constant):

PV =F (10)
and the rélation
K = K 177/2

for the therfial conductivity. Then,

mVdV/dr = ~RroVd(T/r2V)/dr - mcmr"a (11
F(;}mv2 %RT/(% - 1) - n@M/r) - r g TE/adT/dr (12)
45/ar = (C /T)aT/dx = (Re 2y /iy (e /e20) far (13)

where E (= constant) is the energy flux per unit solid angle. The
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terms on the left hand side of eq (12) represent the convection of
kinetic energy, enthalpPy, gravitational energy, and thermal condu-
ction respectively. Rewriting equations (10) to (13) in dimension-
less form, we solve the resulting equations subject to the boundary
conditions that as r goes to infinity, T, p, S, and V go to T, ,
Py 1 S0 s and V respectively; and V goes to zero as r goes to
zero. Introducing the variables

x = €FmGM/Er (1ka)

z = EFmV‘?'/ZE (1he)
and

w = €FmS/E (14d)
equations (11) to (13) become

(1 - y/2z)dz/dx = 1 - x —d(xy)/dx (15)

2+ 57/2 = % + ¥ 2dy/ax = € (16)

dw/dx = (1/y)dy/dx + x-ad(xzy)/dx - (y/2z)dz/dx (17)

where € = {KOmGM)ZE/K‘?FB, GP = E/€Fn, and Y} is assumed to have

the value 5/3. Thus, the solar wind problem reduces to solving the
differential equations (15) to (17) with dependent variables y, z,
and w; the independent variable x; and the parameter €. In terms

of these, the boundary conditions become that as x goes to X o ¥,

wy, and z go to y_, L and Z, respectively; and z goes to zero as

% goes to infinity.

3o METHOD OF ANALYSIS

In broad terms, the topology of solutions of equations (15) and
(16) is such that there are two critical solutions (one increasing
and the other decreasing) passing through their singular point,
which ts the point at which

¥y = 22 (188)
Pdly/ax® + 2xdy/ix = 2y = O (18b)
x + 5y/2 - x + ys/adyfﬂx =€ (18¢)

These monotonic critical solutions separate families of whelly su-.
bsonic, wholly supersonic, and unphysical solutions. It can be
shown that all critical supersonic solutions to the solar wind eq-
uations (15) and (16) are characterized by one of the asymptotic

SOlutm;S;.- a7 (19a)
2~ g - 28727 - a7 (19b)
T (35:/4)2/5 (208)
z~ E = 6(35::/&)2/5 (20b)
and, as x goes to zero,
¥y ~ Bx (21a)
z~ E +X - 5&::4/3/2 (21b)

where A and B are undetermined constants. The solution in eq (19)
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corresponds to an energy flux at infinity which is partly thermal
and partly kinetic; whilst for the solutions in equations (20) and
(21), the energy at infinity is entirely kinetic (Durney, 1971 and
1973). Combining equations (15) and (17), we integrate the outcome
to find:

W=c¢C+X~3z+ logy) (22)
where ¢ is an undetermined constante. Consequently, all the critical
supersonic solutions for the entropy rate in solar wind flow are
characterized by one of the asymptotic solutions:

W~ x o+ 8877 4 10887y + 20270 s - g (23)

W x4 6035877 + (2/5)108(35/) + C - & (24)
and, as x goes to zero,

W o 5Bx4/3/2 + log(Bxk/3) 0 (25)

L, DISCUSSION

Despite the fact that solar wind models based on the assumptions in
section 2 will be idealized, such models can be remarkably effect-
ive in describing some of the gross features of the solar wind. A
solar beam of particles of one sign must necessarily disperse bef-
ore reaching the earth, as a result of mutual electrostatic repul-
sion. But it has been observed that certain geomagnetic disturban-
ces tend to recur with the 27-day solar rotation cycle. This dist-
urbance is related to the existence of the solar wind and isbetter
explained by taking into consideration the entropy rate of the so-
lar particles as they travel away from the sun. From our calcula-
tions in this work, we observe that in regions which are at small
distances from the sun, the entropy rate is very high (these regi-
ons are referred to as the collision-dominated regions). Also, as
the wind moves away, up to and beyond the earth's orbit from the
sun, the entropy rate drops sharply, that is, as r gees toimfinity,
S goes to zero (these regions are referred to as the collision-free
regions of the solar wind). One usefulness of models of the colli-
sion-free region, compared with the collision-dominated regions, is
that they may help to predict phenomena described by the more com-
plex Boltzman equatione
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