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ABSTRACT

The governing equation for the E-parameter which features in the ‘
density function in classical phase space is solved in low and high

dengity regimes for the special case of the hard particle systems
The results obtained for the equation df state are shown to colﬁa.re
favourably with those in the literature, The new solutions also
suggest a re-examination of the nature of critical behaviour in the
presence of hard-core interaction close to "Bernal" density.

1 INTRODUCTION

The density function in canonical phase space may be written as
f(p,q), where q represents a point in canonical coordinate subspace
and p represents a point in canonical momentum subspace. In the
canonical 2nsemble,

P24a) = exp(~ BH)/( [exp(-pHy)dpda) sl ot

where @ = 1/kT, k is Boltzmann's constant, T is temperature, and
KN is the classical Hamiltonian. It is usually easy to integrate
‘over the momentum subspace. On doing this, the resulting demsity
function may be written as f'(q). The following functiomal form is
proposed for P(q) for a hard particle fluid of N particles in vo-
lume V:

_'f(q) = {[a(v - rulwucvc,)]'“'/bl!}"I (2)

where a is some fixed constant with the dimension V-1, which thus
ellows f(q) to be dimensionless. Eq (2) is valid when no two or
‘more hard cores of particles overlap, otherwise [(q) is zerc. The
particles are point-like, hence € is a dimensiondless quantity
which is independent of location in phase space and depends onlyon
N and V, Because f(q) does not depend on location in coordinate
subspace, this implies that all allowed partitle configurationsare
equally probable, .V is the volume of the hard core of each parti-
cle and KV, is the average volume of space per particle at "closest
parking' of identical hard particles. (This paper is restricted toa
consideration of identical hard spheres,) Eq (2) shows that the
solution for the € function gives the complete statistical therm-
odynamics of the problem, Introducing Boltzmann's factor (see eq
(1)), allows the extension of eq (2) to systems with soft core in-
teractions, ,

2. RESULTS AND DISCUSSION
Ref [1] gives details of the derivation of the differential equae
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tion which governs g in the hard particle case, A similar differ-
ential equation can be derived for the moft core interaction case,
The differential equation, accurate at all allowved densities, in -
the hard core case, is : : .

e q‘?xdﬁ/df) = exp-{n(1 - 6']70'1[“'- '-k

2 knin - 1)ae/aq]} (3)
where R{ = 'c'Vo is the packing fracti Ny and t is the number den~
sity N/V. Thiz®is a nonlinear equation, for which analytic soluti-
ons at arbitrary densities would be difficult to find, At extreme
ends of the density regime however, simple closed form solutions
are possible. One observes in eq (3) that € = /K is & trivial
solution, To obtain nontrivial solutions, we expand eq (3) as a
power series in n, To allow for systematic successive approxima-
tions, the power ‘series will be developed on one side of the equa-
tion, that is,

(1+ n’kde /a0 Jexp(- €N - rlac e3? . bek

*XA€ /AN ) + ... ) = exp(-kN),
This allows the rewriting of eq (3) in series form as

1- €WK+ 2(hek - 1}12!(2) + aos ® axpl-4n) (4)
At low densities, one may keep terms of order f] on the left hand
side of eq (%), yielding _

€ = (1= exp(-‘i-l‘]))/ K : (5)
In the "very low" density limit, we find that we obtain the trivial
solutione Eq (5) leads to the result

fla) = ((aVexp(-Ml))N/N!)"' (6)
The partition function obtained using eq (6) agrees with results in
the literature (see ref [2]). To obtain results which are valid at
high densities, we need to keep more terms in eq (4), As this leads
to nonlinear differential equations which are difficult to solve,
some other means of solving eq (3) mist be sought, Note that the
Daximum value N may have is \1 = 1/K. Also, because the volume
in configuratio space is expe 8% to tend to zere at maximum den-
sity, we may expect €— 1 for | —w o If, for inatance,
the quantity in souaye brackets in eq (3) nonzero in the high
density limit, w- find, instead, that dg /dl‘l—--h =Ko Inverting eq
(3), we find

€ = [1n(1 + rlaKdG/dq) 4N o4 I‘\ax(‘ﬂ

; . 1)d€/dr'1]L1K(1 + 11+ ke an )] (9)
An iterative scheme for soly eq (7) is now ‘proposed, As a firat
guess for dE/dg » We choose -K, and this ensures that the reault-
ing expression for € ig accurate near qmax' On the first iterae

tion, we therefore obtain the expression
€= [ntl=T0 « 40« 932 _ 42k qx(a
+ 1n(1 = 21{2))]'.l
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hoped for. The equation of state is derived from the expression

P=-(2F/ bv)T

where P is pressure and F is Helmholtz free energy. From eq (2), we
deduce that the equation of state is

P=1- eqr) (14 al(de/drk) (9)
where @ = P/T kT. At low densities, eq (5) may be substituted imto
eq (9) 'to obtain the result

p=14+1n (10)
This is a two-term series which reproduces the first two terms of
the virial expansion for the hard sphere fluid [3]. Figure 1 shows
that eq (10) is an approximation which compares well with low dena-
ity computer simulation results, up to a packing fraction of about
Oe2e In the van der Waal approximation, we have

R CI Y, D P 1877 + 610> % ...

Although the first two coefficients in the expansion agree exactly
with eq (10), higher order terms allow the equation to deteriorate
more rapidly than eq (10). Figure 1 shows that the van-der-Waal
(VdW) curve compares well with computer simulation (CS) results,
only up to a packing fraction of about 0,15, In figure 1, curve
(B) is from an approximate equation of state (see ref 1 ), and
(C) is from a high-density linearization of eq (7).
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In eq (7), if our initial choice for de/dn is €' in the iterat-
ion scheme introduced earlier, and if €' is taken as some constant
(independent of 1) in the range from -K(1 = 1/e) to -pa, eq (7)
will become singular at

n= (1 - 1/e)/(K|e'l))’}.
which is a point within the relevant q region, implying an undes=
irable initial expression for € . (Note that the 'pole" of eq (7)
at the above il value is not cancelled by a "zero'). Hence, the
e

initial choice' €' = -K, was not entirely appropriate, as it leads
to a singularity in € at
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n= K'1(1 - 0'1)%,

28 is seen in figure 2, For initial choices of €' outside this
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range, we find that the initial expression for € will not have the
proper limiting behaviour near » Hence, the resulting iterg.
tion process for such choices maymg’ec poor. Alternatively, some ini-
tial functional, form for ¢° may be employed in Place of aconstant
value, and this may be expected to allow the initial expression for
€ behave correctly at the limiting ends (Y =0 and = Ml
while also allowing the possibility of avoidance of a singuldf¥ty
in €. We may conjecture that € apg €'l are continuous functions
which are monotonically decreasing. At =0, g' is correctly
given as -8/K, If this value were employed as being valid for all
M in eq (7), this would lead to a singularity at Mg ® 0.223, If
smaller values for et are employed, larger values will be obta-
ined for N.+ (For example, it is already clear that for g' = -k,
is appr ximately 0.589). Hence, as N increases continuously
fr8m 0 to 1 (% 0.,74), | €'| should decrease continuously from
8/K to K, ani™¥ne corresponding Ne values will increase fromo,22%

to 04589, Hence, the value of N under consideration and mst
correspond somewhere, necessita ing that ¢ be singular somewhere,
which is unphysical, Hence, the initial conjecture concerning the
functional form for E and €' myust pe false. More generally, we

have that similar difficulties are also encountered if one conjec=
tures that € ang e are continuous functions (not necesaarily

monotonic) satisfying the conditions that at 1 =0y, € = 4/K ang
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e' = -8/K, while at | = 1 ., € =1 and €' = =K. Therefore, it

is necessary that discontinuities in € and/or €' must be allowed
if € must always be finite. If € is taken as discontinuous at
some point, then eq (7) shows that a discontinuity in €' is also
necessary. We may ask whether it is possible to have a discontinuity
in €' if € is continuous, If &' has values a and b at some value
= "', then the assumption that € is continuous at q' would
imply that eq (7) yields the following:

evl'K(‘l + 1n(1 + r\'l{a)) In(1 + Y\'aKa) LB
+ PGy - Da
In(1 + szKb) + h(\'
T (S LR

i

eq'x('l + 1n(1 + \'\'K‘b))

These then lead to > >
e\‘\'Kln((1 + \‘1' Ka)/(1 + n' Kb))

TRl q’zl{a)/H b Y\‘aKb))

+ KGN = Dla - b) (11)
Clearly, the maximum value € may assume for any given Y] is 1/ Y‘K.
Hence, we may assume €Y|'K < 1, Then, for a > b, the left hand
side of eq (11) will be some positive quantity which is less than

or equal to 1-((1 + q'EKa)/(1 + ryaxb)). It is conjectured that
a discontinuity in € or €' may not occur at a density as low as
= 1. Hence, ' is expected to be greater than #. It follows
then that the second term on the right hand side of eq (11) is po-
gitive. This implies that the right hand side of eq (11) isgreater

than In((1 + 'aKa)/(1 + 'ZKb}), which ie not in conformity with
the left hand side of the equation. Hence, the statement that €
may be continuous at V|' cannot be correct. (A similar conclusion
is also arrived at if & is assumed less than b). It therefore imp-
lies that at some point, both € and €' must be discontinuocus.
This suggests a dramatic change in the geometric behaviour of the
hard sphere assembly. Hence, the point(s) of discontinuity may be
referred to as 'critical point(s)'" of 'geometrical phase transit-
ion", which is expected to be the fundamental basis for "thermo-
dynamic phase transition" of the hard particle fluid. From eq (9),
discontinuity in € and €' indicates discontinuity in pressure at
the point of phase transition, and this is not in keeping with no-
tions of first order phase transition usually conjectured for the
hard particle fluid. One may therefore conclude that the phase tr-
ansition in the hard sphere system must involve at least a discon-
tinuous pressure change, It is the author's opinion that the resu-
1ts reported in this paper form the first fundamental theory which
is able to predict phase transitions in a realistic three dimensi-
onal model for a fluid.

In the very high density regime, we may look for a simple linear
expression, such that d€ /dy = -K and € —> 1 at - Such a

n
linear function is easily obtained as € = 2 - K . Thi& function
is close to the €& = 1/NK curve (which gives the maximum possible
value for € at any W value) in the high density regime, as is




52 U. ¥, Edgm1

evident from the Plot in figure 3e

for € , we obtain the equation of
densities, as

$=014+ )/ -
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Finally, in view of the results reported here, it will be useful to
re-evaluate the notion of a possible singularity in pressure at
"Bernal density", a conjecture widely seen in the literature, and
which is somewhat supported by results of computer experiments (see
_ref [3])s Prom inspection of eq (9), we have that a singularity in
pressure at some density ?| < Mgyt Would require that either

d¢/dn be singular at or tﬁK be equal to unity. The latter .
condition requires that' the partition function be zero at ] < "
v\n“. As this is unrealistic (since Zy, which is simply a measure

of the size of space of the allowed set of configurations, m&y not
be sdted to be zero at any allowed density other than r[ =
Mgex)t ¥© 8T only left with the possibility d€ /dn —> 00 ‘at %

We already had that € is discomtinuous at cne or more points in
the region 3 4 -‘l . Therefore, it is possible that for finite
N and V, regions Bafd suon points of discontinuity may constitute .
regions of sharp gradients in €, allowing the possivility of large -.
pressures in the neighbourhoods of such points for "gmall" finite
systoms, Hemoe, this may explain observations of computer experim-
ents; and in the thermodynsmic 1limit, such point(s) of discantimu-
ity in 6 may well be interpreted as isolated point(s) of infinite
pressure, contradicting the idea of a gradual approach to infinite
pressure ss is usually suggested in the literature.
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