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ABSTRACT

Introductory covariant perturbatlon theory for quantum chromody—
namics is discussed, with examples to serve as qualltative illu-
etrative-applications.

1e INTRODUCTION )

Quantum chromodynamics (QCD) is the theéoretical model of strong in-
teractions in which quarks, the constituents of hadrons, are assu-
med to be confined inside the hadrons. The two types of hadronsare
baryons and mesons. QCD is based on the standard SU(3), x SU(2)
U(1) model, and has its experimental foundation in the results of
deep 1ne1astic scattering of leptons on hadrons, in which it is
found that at high momentum transfer, that is, at distances smaller
than the hadronic size, hadrons behave as if they consist of point-
like weakly.interacting particles (quarks and gluons). This obser-
vation is essentially the notion of asymptotic freedom. However, at.
larger distances, that is, at distances of hadronic size, the inf-
eractions between these constituent particles become so strongthat
the particles cannot escape from the hadron. This is the notion of
quark and gluon confinement. Thus, hadrons are viewed as bound st-
ates of quarks whose interactions are mediated by gluons, the gaunge
field of the colour SU(3) group.

Let us note that according to the standard model, the universe
compr1ses the spin % fermions: leptonsandquarkﬂ,eachsetbging
six in number. The leptons are the electron, Y ,.muon, ‘9»-. tauy -
and Y¢ 3 while the types, that is, flavours ofequarkaare down (d),
up (u), strange (s), charm (c), hottom or beauty (b), and top (t).
Only the last type of quark has not been discovered. These fermions
can be arranged 'in three '"generations'" or '"families'. The first ge-
neration are the leptons,.e” and Y ; and the quarks; d and-us The
second generation are the leptons, - and Wy 3 and the quarks; s
and c. The third generation are the leptons, ¢~ and V; ; and the
quarks, b and t. The mesons are made up of one quark and one anti-
quark. In the meson octet, we have the examples 77 (ud ) and
7T=(dW ) Each baryon is hce up of three quarks, for example,
p{uud) and n(udd) in the baryon octets To circumvent problems ass—
ociated with the Pauli principle, for example, in p{uud), each qu-
ark can exist in any of the colours red, blue, and green. However,
only combinations of colours which are additively colourless cons-
titute physical particles like hadrons. The perturbative. approach
is one of the two main methods employed in quantum chromodynamics.
In a nonperturbative method of QCD, the finite-size discrete latt-
ice approximates continuous four-dimensional space-time. This is
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To obtain the QD L.fr angian, let us begin ‘ny .’mtroduoing ap:lnor
fislds forming an 8U(3) triplet:

\# (x)
yix) f(:)
(x)
The free Leagrangian forxthiu triplet wg the form

:.(w‘(a).mJ Y 2x) « 19} ,.V/‘ -uw{ "'. 18

vector ‘F = (\o )3 and the
¢ matrices
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km 1. 2y 3, with 0’ being the 2 x 2 Pauli natrices :
0 1K pre e Sl
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The conjugate apinor is P = Y**YO, and N 1s the nass of the

particle desoribed by the apinor field, For later use, we define
tlu metric tensor ‘ i

M 0 0 0
0 P ) 0 0 .

Epo '(o 0 -1 o)’
(i

The hpugun in eq (1) is invariant under the g:.om non-Abelian
eroup of tranutomtiona:

y'ix) ‘ [oxpC-en, & )],b o iwnis (2a)
8(x) .Q""(x)[mtaigh 3 ’]u . C e A2

In these oqut!.om, g is a coupling constant, and the Gell-Mann
Batrices are : :
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with )\k/ai being the generator of the fundamental representation
of SU(3). The Ak's obey

L Al = L A, hj] =2 Skj (3d)
with fkjn being the totally antisymmetric structure constants and

€ the constant parameters of SU(3). It follows from equations
(2a) and (2b) that the infinitesimal transformations are given by

Y = HsO )P e Y
SWeo = 3\ )™ &, §Pe0

As usual, summation is to be carried out on repeated indices. The=-
refore, the generators of the group are

Ten = “He(A) .

a
With the aid of eq (3d), one finds that

k 2l-ab 2 b
[T [] T ]a "JJCS [hk' )\l]a
~11:32(21)fm(/\m)ab 28ty L

We first note that a globally invariant Lagrangisn can be made lo-
cally (gauge) invariant, that is, invariant under the group of tr-
ansformations

Buy ) = 2%, € Gou (0
1 13 e
by introducing the gauge fields AAM (x), which are then found to
enter L in the combination
k

Yeog = By - Ty
known as the covariant derivative. With nj replaced by the spinor
fields Ya, the covariant derivative is

i ab. b
vﬂ/’(x) = hﬂyﬁm + Hig( A )y OLACON

the gauge fields Vi (x) forming an octet called gluon fields. We
may note that the simplest locally invariant Lagrangian for gauge
fields is a function of Ffy only. It is the Yang-Mills Lagrangiam

Ly = #ko s

By = Wy - AR - Fet, W VR VP - v VD)

being the gluon field tensor. The infinitesimal transformations of
gauge fields are given by

W@ =e R E ) e .

The total locally invariant Lagrangian, which is the Lagrangian for
quantum chromodynamics, is then

L= i?mﬂ}; h)“va - H?’awa = ’3’8‘?& !)u ( hm)ahv?ivb
WD - dR - e RV RO
Given the Lagrangian density Ly the quantity

with
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I ) = /34 0
is called the current. We have current conservation if and only if
bPJ‘; (X) = 0,

k = 142y0004n. Corresponding to the Lagrangian in eq (4) is the
conserved current

I @) = L)/ IVRY ) HeAH =Py ()

- 2g(dL(x)/ ar}‘w )TN (x) (5)

The Greek index M = 0,142,3 ie the Lorentz group index, while the
index m enumerates the generators of the colour SU(3) group.

3e COVARIANT PERTURBATION THEORY P

Since the effective (or running) coupling constant o (q°) issmall
for 19.1-52 momentum transfer, perturbation theory is agplicable for
large q° transfer. However, for large diszancas. perturbation
theory is no longer applicable since of (9°) becomes large. The
transition amplitude for the gauge field can be written as

Sirs S;I:Lm’p (x)det M_ exp{1 de[&r“,, r“p
= i ‘o,,..p.‘} /et 6)

where

The amplitude in eq (6) is said to be written in the o -gauge, In
the path integral in eq (6), N
k S k
DAy (x) = Limit ( day (x,)
Hc K N— 00 11:[ -:!.T.ﬂ e
is the integration measure. In eq (4), the part of the Lagrangian
involving the gluon field can be written in the o -gauge as the sum
of two Lagrangians
2
Lo = 0 Q' - 3% - 20 )/
= D 2 J yp
Yos = Epnl Dpy TR W - e L son 1nm'p % vf]‘. w .
where the former represents a noninteracting gluon field, while the
latter represents the self-interaction of the gluon fielde., In the
path-integral formulation of quantum field theory, a Green's func=-
tion is written in terms of the vacuum expectation value of the
chronological product of field operators, where the term "chronol-
ogical" refers to the ordering of the time argument of the field
operators such that it increases from right to left., For example,
with T denoting the chronological product, the propagator of two
operators of a scalar field, that is, the two-point Green's funct-
ion, is 1 0| T(P(x)P(y) |0) . A most useful way of deriving
Green's functions is to introduce an auxilliary current J;(x) for
each field u,(x), to obtain the generating functionalW(J), For n
fields, this™is defined as

¥, = E]Bklargeklm(A“‘F),A + BPA",‘.\).

and
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w(J) = S";[Dr*(u.‘(x),...,un(x))exp{'iS‘dx[L(x) +

+ u (x)T, (X) + eee + u_(x)J_(x)
The identity Vel i It

exp( Zkaknk + Ju) = exp[zkak(g/‘t;J)k]exp(Ju)

where % / ®J is the functional derivative with respect to the cur-
rent, gives the quantum chromodynamics generating functional in the
o -gauge as

W =&§ o} (x)n?a(x)nyﬁcx)n‘é;‘(x)nc“‘(x)exp 1 foxla +
where fen G (?)
R = exp {1 fax (7S /6] 0y}

A= 8™ gy - (- &™) DpdyIVY (x)
B= P00 8P - myP + 376, U
¢ = ThGIVR G0 + 7260 YR + PR N

+ @™ + 30X x)

By performing certain transformations, the generating functional
can also be written in the form:
~8

w(J?Q Wy ﬂa' %", 7‘m)
= Rexp { -1 axay [0} O - 07 0
+ PPN - 3 °(y)
+ PP - X (8
where K;R; (x - y) and P;;(x - y) are differential operators deter~

mined by the form of the free Lagrangian density. Since the gener-
ating functional can also be written as

W) = explt § (171 $/ 85,00 400eyi™ S/ 85 (0)]exp(@),

Q= wdi dedyJi(x)K;;(x - 194,

then, within the framework of perturbation theory, the S matrix
elements are given by

s(uﬁ) = exp(Gq}exp(Ga)|J1=

and

where

e meest. =0
n
where

G

R LTl VAT NI ol VA TN OB

-1 f a0, G0 = 31 fanayd; GOKT (x - 1T,

G
2
and ug(x) are arbitrary functionse. The S matrix elements are given
in terms of eq (8) by

SVl grees) = Rexp(A, + A2)|J-l;l o te. (9

where

e I



44 0, A. Odundun
b= -t Sah g v Vot oy
A, = -4 f dxcw[ia'lﬂ G (KPS (x - B
+ FPLE - 3) 0°)
+ Y@ x - y) Xy
[KFJ,} g ~melen Skl(aﬂ)'hSk'?‘dk[g’w
- (1= N epky A)]e K E=7)
Popx - 3) = 6 (270 fap o ipx =)
P (x = 3) = - T e R e
Kptx -3 = § @™ fac o ikx - )2 _ 42

]

u -

and
R\ RS RS |
When the differential operators appearing in eq (9) are expanded in

series in the coupling constant gy we obtain the following expre-
ssion within the perturbation theoretic framework of QCD:

SV gaeee) = 1+ 2g faxm, - Bt faxs,
- %geijmjpmfm% ‘g defp Bl

g ""]e"P(BS) lJ,T Zeee=0 (10)

g B, = (57 802 Y A ™S/ § ooy b/ Sk o)
B, = dh/855 8/ 87 (87838 )
By = (5/83] cor($/8a2 @8/ 80y @b/ 83 )
I AR MR VAD SCMNEVAS ARINEVAS LIe0)

Ja . a na
135 = -i jdx(\"po(x)Jmﬁ(x) * VYo * N Y/g)
1 san=1,0  Tm-1_n

3 dedy[%\]';ﬂ (I(m'fo) Jp + Ylapabr\ « YR xR
We may note in eq (10) that apart from the fact that functions of
free particles (that is, quarks and gluons) occur in various comb-
inations, propagators (for quarks, gluons, ghost fields), and int-
eraction vertices (for example, for three gluons, one gluon and two
ghosts) are evident. The expressions for the propagators are listed
in table 1, which is taken from ref [1]. Correspondence rules for
the amplitudes in momentum representation have been derived, and
are summarized in table 2 (see ref [1]). Note that the photon, the
gauge field of quantum electrodynamics (QED), is replaced in quan-
tum chromodynamics by eight gluons which, in contradistinction from
photons, are also self-interacting. The other differences with QCD
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are as to‘.l.lw-: Tho non-Abe:l.:I.-.n antun of QCD manifests itself Wy
the preaence of structure constanta and generators of the gauge
group in the expressions for QCD. Moreover, the fact that gluons
are aelf-interacting, results in additional interaction verticea
 such as three-gluon and four-gluon vertices. On account o! this,

 we find, in QOD, diagrams uith no analogues in QED,
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We may note that renormalization refers to the removal of diverge-
nces from wvarious quantities appearing .in the theory. This process
Presupposes the existence of an intermediate regularization invapw
ient under gauge transformations, Theories exist, however, with no
invariant regularization, and they include those such that the gauge
transformations of the fermion fields contain- the matrix YS. Such

theories have certain éharacté_ris{ics'. As s.n .example, the three-
point vertex Green's function r' vou can be directly calculated in
a model invariant under the si_mpgest group U1 to give

e+ Ay Moya (@) = (/6re2) e PY4P 1

When the right-hand side of this equation is nonzero, such theories
are said to display anomalies, meaning that different gauges are
inequivalent. In this model, a unitary renormalized S-matrix does
not exist. QCD does not display anomalies since its Lagrangian and
currents do not contain the % matrixe. In conclusion, we now men-
tion.a few processes to which gerturbation theory can be applied.

%o SOME BASIC PROCESSES

Haxrd prgces.se are processes in which either a large momentum tra-

nsfer q< is involved in the final state of a particle (hadron, ph-

oton, lepton) or a system with large virtual or actusl massregults
in the final state. Perturbation theory is applicable to hard pro-

cesses, of which the following are examples: . e i

1o Deep inelastic lepton scattering on nucl ons. o i sk

2. Lepton pair annihilation, for example, e e —». h and e e —» h
+ X where h stands for a hadron while X stamts for all other
particles, - ; :

3¢ Following the collision of hadrons, the production of _
(a) a muon pair with large effective mass, pp —» JpX (this
is the Drell-Yan process); .

(b) “charmed particle pairs, pp —»c & X3,
(c) 77 mesons with large momentum” transfer, PP — 17X,

L, The formation of jets. Particle fluxes which are concentrated
within small.solid angles are called jets, and these may be in-
itiated by quarks and gluons. : il

In order to study a process in QCD, ome first calculates, the cross-

sections for the subprocesses involving quarks and gluons, before

going over to hadrons, ;
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