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ABSTRACT
Given a closed Hamiltonian system of n degrees of freedom, with
Hamiltonian H(p,q) = T(p) + V(g) = E, where E is a constant and n
2, we now know that the system exhibits deterministic (classic-
al) chaos, if H is nonlinear and completely nonintegrable. The
question often arises: How should such a system be quantized, and
is there any manifestation of the (classical) chaoticity in its
quantal counterpart? Seeking answers by the method of reduction of
numbers of degrees of freedom, we demonstrate that some attribute
L (related to one of the momenta p) can be quantized, provided the
coordinates q satisfy some relationships. These relationships are
obtained by the method of the 'Lax pair' - the potential V(q) must
satisfy some '"KdV equation" of "selitary waves". Moreover, the re=.
lationships reveal that the KdV engenders multiple Schroedinger
operators and this is the manifestation of the chaoticity. Hence,
such a quantum-mechanical system has multiple spectra and there-
fore it is noismy.

1o PRELIMINARY
Let the manifold M be the configuration space of a c¢losed dynamical
system with the generalized coordinates q = (q.], Aoy eeey q_n) E M,

qJ = qj(t), with n ) 2 as the number of relevant degrees of free-
dom of the mystem. We assume that dqj/dt =q 5 exists for all j, and

for all time t, To M corresponds a tangent bundle TM with 2n coor-
dinates (q,q). Suppose that the system has the Lagrangian L,
L: ™ ——R (1)

(849) — L(dy) .
Under the assumptiom that p y & JL/Dq 3 exists as the momentum con=

Jugate to gq,, and through the Legendre transformation, we obtain

the Hamiltoﬂian function on the cotangent bundle T*M of M,
(pyq)—— H(p,q)

We also take it that the phase space T*M is a bounded subset of

; Rzn. The classical dynamics of the system is given by Hamilton's
equations of motion (Goldstein, 1950):
dqj/dt = }H/'Bpj

dpy/at = = W/ D3 )
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(A) Deterministic (classical) chaos: As a closed system, H(p,q) =
E is constant. If, for n ) 2, H is nonlinear and H = E is the only
integral of motion, the system is completely nonintegrable (Akin-
Ojo, 1990); the system exhibits deterministic (classical) chaos.
That is, its orbit in T*M is sensitively dependeht on initial con-
ditions. The question that arises is: What is the behaviour of the
quantal counterpart of the system, with the Hamiltonian operator
E = H(-i3/%q,q), or how does the classical chaos manifest itself
it the quantal system? This paper is addressed to this question,
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(B) Conjugacy of t and =H: As a preliminary, we show that just as
b] f is the momentum conjugate to coordinate ds9 =H is the 'momentum'

conjugate to 'coordinate' t. With v, = dq_ /dt, p, = L/ Jv., wee
have d 3 J J
vaL/hvj - L = H(p,q) (&)
(the repeated index denotes summation). Define 9, = t, v, = dt/dr,
gives vj = (dqj/d'f YdzT /dt) = q:'.l/vo, where T is some independent

vagé.?ble (such as proper time). Define (asin Dirac, 1964 Akin-Ojo,
19 : .
L, = voL(v,q) = vOL(—q'/Vo,q) (5)

with the all-important Action remaining invariant,

Action = jLod‘r =jv°L(v,q)d'r
=E L(v,q)vo(d'f /dt)dt

= [L0r,adat 6)
Then, the momentum Py conjugate to 9, = t, is given by
By = M/ dv, = L+ v [0/ dtayv )] Pdcaym /v ]
Noting that I/ h(q‘_']/vo) = vo(bL/bq:'j) zv, Kj' we obtain

» Py

L.+ vi'r\'j(-qé/vi)
raatl

L - (ijvo)(va.vc) =L = Py = -H (7)

(C) Reduction of degrees of freedom: Consequently, with E = -h, if
we solve

H(P1' Poy eeey Pn| q.,g Uy eeey qn) +h=20
to obtain

Iy 7 K(P1s seey P Qq1 ecey ) h) =0 ' (8)
this K = =Py is a 'Kamiltonian' with as 'time?!, so that Hamilt-
on's equations (3) (now Kamilton's equitions) are given by

clq‘_}/dq11 = M(/bpj (9a)
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u(xyt) satisfies some KdV equation such as

(i) u -u =0,
or
(ii) U +ouu o+ Yo =0

(There is an infinite bierarchy of KdV equations; solutions are
required to obey u—s 0 as x — QO ). For (ii), we have

u(x,t) = (3c)uch2(%c%(x - 1)) (14)
where ¢ is the speed of the solitary wave, And for (i), solution is
trivial if x and t have infinite range (Lax, 1968). It is with (i)
that we shall be concerned here: (i) is not trivial if x and t have
finite ranges,

2. QUANTUM CHAOS

How does the classical chaoticity of H manifest itself in the cor-
responding quantum system? Consider a closed conservative system,
with the nonlinear classical Hamiltonian function

Hz %(pi + pg) + V(q,] ,qa) = E = constant (15)
that is, > >
Aoy 7Tyx,y) = 3 + IT°) + V(x,y) = E

Solving for JT, we have
= -K(p,x,y) (16)

where H is defined on (x,y) &€ R°
o= 2
n= {om- [p= + Ev(x,y}]}
that is, Z
T = (2B = L)% = =K(p,x,y)
where L = p'2 + u(x,y), and u = 2V. Thus with Y= Ty by eq (9), the
classical dynamics of the system is given by
dp/dT = - J}K/Vx = -1 /X

[V

(17)
dx/dT = ¥K/d¥p = p/K
the solutions of which are expected to be chaotic,
Now, to quantize H is to quantize K, or y which in turn is to
quantize L, through the Schroedinger equation,
(<2 + uCx, TN Y = W) (18)

where D = d/dx. This, as aforementioned, requires that u(x, ¥ ) sat-
isfy, nontrivially, the equation

ux = u.r (1 9)
in the finite configuration space M defined by |x] < a < 00, and

ILl < b £ 00, The solutions to eq (19) are in classes () e GBS

and (iii) of possibilities:

(i) Eq (19), U, = Uy o may lead to a tautology, O =20. Thg.s is
the case in a linear system, such as 1G5 HINES Uy i
2xT, which we are not here concerned with.

(i1) Eq (19) gives x = kT as the only solution in M, This is the
case for nonlinear but integrable systems, For example,

u(x ) = axt e ¢H & 22y 2
with u_ - YW = 0 gives

X
20 + 6xT° = 272 4 6x°T 3
with the unique solution (x = ¥)” =0, or x = T,

1
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(iii) Eq (19) leads to multiple solutions
;‘r) = V,.(x), (20)
T = 142434000y in which case there are multiple operators
L(r) = o + u(x, \)r(x)),
with multiple quantum -spectra { Aér)% given by
[-/ax® + utx, 9,6 1PT 0 = APy (21)

This is the case for nonlinear nonintegrable systems. The
multiplicity of spectra is the mamifestation of the noninte-
grability of H, that is, of deterministic, classical chaos.
We take the Henon-Heiles potential (Henon, 1964) as an exa-
mple:

ulx, T) = 2+ T2 xr - 513.

The equation u, = up = 0 gives

T2 (e 20)E wilz e at) = 0
or
t('i)'(Z) = %[(1 - 2x) + (1 =8 + 8x2)%] (22)

Here, there are two solutions provided that 8::2 -8x+1 >
O. This provision is feasible depending on the value of E in
the equation

2H = {p2 + )'(2) + 2V(x,y) = 2E.

3« REMARKS AND CONCLUSION
(i) In the Hamiltonian function H(p,a) = T(p) +V(q) =E = constant,

where n >
T(P) - j.{:“i?‘.j >/ 0y

it is the case that the configuration space M defined by V(g) &
E is necessarily bounded for |E| < 00, Thus on M, V(q) is defined;
and outside of M, V(q) is zero as |g| —> 0d, but it is not €%, so
V(x, T) is a pseudo wave. That is, our u(x,T) is not a true sol-
itary wave. We have only utilized (here, the nontrivial) equation
u -y = O, in the method of '"Lax pair' used in nonlinear wave

analysis, to exhibit the inherent multiplicity of Schroedinger eg-
uvations for a nonlinear nonintegrable classical Hamiltonian on fi-
nite phase space T*M. 5

(i1) The recent analysis by Kaushal and others (Kaushal, 1991)
shows that a Hamiltonian of the form

Hs -}(p?l + ps) + V(x,y)

in which V(x,y) is enharmonic (and neonintegrable) in x and y cammot
be quantized unless there is some inverse term such as 1/x in V(x,
¥)e Again here, his analysis refers to cases.in which x and y have
infinite range. For finite range, work is in progress to show that
this conclusion does not apply.

.(144) The hydrogenic atom in a very strong static magnetic field has
received a lot of attemtion recently in the context of classical
chaos. The transformed Hamiltonian, with € o¢c 2, and angular momen-
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tum 1 = 0, is
Eg=30" + TO) = £ + T2 + 321208 + 7d) = 2.
Here, up -u = 0 gives

T2 m o s G2+ B0
which, for &€ » 0, has the multiple solutions

T = ;[(xu + 8¢ )% - xa]'}.

This system must have multiple spectra and therefore it must be
noisy, in agreement with the theoretical and experimental results
of Delande and others (Delamnde, 1991) and Iu and others (Iu, 1991),
(iv) Since it is hard to know whether or not a given u(x, T) sati-
sfies any of the infinite number of KdV equations, this U =u =

0y lowest in the hierarchy, enables us perhaps only qualitatively
and semi-quantitatively to quantize a nonlinear nonintegrable two-
degree-of-freedom system. As a preliminary finding, multiple and
hence noisy quantum spectra are the manifestation of its determin-
istic chaos.
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