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ABSTRACT
Let {1 be an open bounded domain in R . A solution to theDirichlet
problem for the semilinear wave equation

LI ODu + gltyxeu) = £(tex) in QU

s = B0 oyl
where Qu = 0 x [o,7] is constructed using the equivalent abstract

formalation

Lu + Nu = 3¢
in the case where L and N satisfy monotonieity conditions. We also
discuss an application to control theory.

1. INTRODUCTION
In this paper, we are interested in the existence, uniqueness, and,
iterative approximation of solutions to the abstract operator equ-
ation
Ix + Nx = £ &)
vhers L is a linear operator, N is a nonlinear operator, and f a
fixed vector. It is known that several problems arising in mathe-
matical physics can be suitably modelled, in the abstract, by (1).
For instance, the one-dimensional Dirichlet problem for the semi-
1linear wave equation
u“-ﬂn+s&ﬁm)=ﬂhﬂgﬁﬁ)E[%ﬂx(mﬂ ;
u(t,0) = u(t,1) = 0,
for a1l t € [0,T] can be put in the abstract form (1). (See, for
example ref [1]). The n-dimensional case
W, - Ou + g(tyxyu) = 2(tyx) in Qp
u=0on oL (P2)
'bu/\nzthm F:B%:{_O,T] X bn

where @, = [0,T] X (), £1 an open bounded domain in ®" with a smo-
oth dary dSL and du/ dn’is the outer normal derivative, can
be treatn&l in tt(xo same Eag. Further, such prf)l‘:lems as

-Au + g(xy,Tuy, Hu) + hi(xeu) = £ in

N R Fama o
can also be put in the abstract form (1). (See, for example, [2]

::::m [3].) We remark immediately that the abstract Hammerstein equa=

x + KNx = h (2)
oan be regarded ms am equivalent form of (1), since on setting K =

’A_———————————;1—-------l..
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1" (or L = K'q), ene obtains (2) from (1) (or (1) from (2)). This
approach has been used by Chidume and Moore 4], and Moore [5] in
their study of Hammerstein equations. It is known that every elli-
ptic boundary value problem whose linear part possesses a Green's
function can, as a rule, be tramsformed into the abstract form(2).
Also, problems of the type

X" o+ ax"' + §(x') +ex =plt); t € [_O,ZK]

x(0) = x(27%

x'(0) = x'(27%) (B4

x(0) = x"{(277)
can be put into the form of the homogeneous Hammerstein equatiom

z + KNz = 0
(see, for example, L6l

2. MAIN RESULTS

Let us recall that a Banach spacs X is called an upper-weak-para-
llelogram space with comstamt t > O (briefly, X is UWP(b)), inthe
terminology of Bynum [ 7], if for all x,y in X and j € Jx (where

7 : x—> 25" ia the mermalized duality mapping and {ese) the
generalized duality pairing) we have that
2 2

Ix + 92 £ I + 2 <3ad> + B3] (3)
The LP or 1P (2 € p < o) are UWP(b) with b minerized by p - 1,
that is, b 2 p - 1. We now prove tha follewing result:
Theorem 11 Let X be UWP(b), b =2 1. Suppose
(€8] T : X— X is a linear bounded and positive definite oper-

ator, that is, for each x & D(L), ||Ix|l £ kflx ly some k >

0, and 2

{1x,3> 2 ||| ; for seme oL > O (%)
(i4) N : X—> X is a nonlinear Lipschitz comtinuous bounded be-

low operator, that is, for each pair x,y in D(N},

INx - Ny|| & m|x = )iy some m > O

and

(Nx = Ny, w> 2 -fllx - 1, BER; w E Fx'=y)y L5
p& P (= = A > O, then the abstract equation (1) has a unique
sclution for each £ € X given., Moreover, this solution can be it-
eratively conatructed using the usual Picard iterations. Further,
convecgence is at least as fast as a geomstric progresa‘on with

ratio
o=t 2o+ -)‘2]’1 € (0,1).
Proof: ¥or each x & X and some cemstant r ) O, defime the opera-
tor
? x=x~r(lx+Nx- 1)
hen, ¥ 2 2
2% - 2y == -5 - r[(6 + Ox - @+ W3]
< ||z = 3l - 20 @ + 0% - L+ Wy, vy
+ 220 + Bx = &+ Oy
£ [1-202 + rzh(k + m)zlnx i ’“2
- [ W v e - o)
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(on setting r = e TR #)one (0,1).) S0, for all x,y € X,
fr,x = T3 £ o=l

where

B L Ry e a2 <A,

Hence, T_ is strictly contractive and thus has a unique fixed point

x* in X, by the well-known Banach contraction mapping principle.

Moreover, the successive approximations x, & X arbitrary, X1 =

T x50 2? 0 converge in norm to x*, and the rate of convergence is
g{ven by e

1%, = x° | &elix, - = I
so that convergence is at least as fast as a geometric progression
with ratio ¢ € (0,1). Now, x* = T x* iff x* = x* - r((L + N)x* -

#) iff Lx* + Nx* = f. This completes the proof.

Remarks:

(1) 1f L is assumed to be nonlinear, Lipschitz continuous, and st-
rongly accretive, the =ame conclusions are obtained.

(2) I L is bounded below with constant -P and N is strongly ace-
retive with constant cA » O, such that o - (‘3’ > 0, we have the

same conclusions.

(3) Condition (4) is often called the strong ellipticity comdition
for differential operators.

(4) The nature of the operators L and N often require that theymap
X into X*, itas dual, so that one uses monotonicity arguments, that
is, one imposes monotonicity conditions, Thus, it becomes better to
discuss such problema in the Hilbert space setting. Moreover, the

weak formulations of (P1) to (P3) and their type show thai the na-
tural setting for their smalysis are the Sobolevaspaces A®(SL) which
.are Hilbert spaces, depemding, of ceurse, on the growth conditiona
satisfied by g and h, Simce a Hilbert space is necessarily mwP(1),
we have the follewing cerollary to theorem 1:

Coroll 1: Let H be a Hilbert space. Suppose

(€3] T : H—>H is a linear bounded strongly elliptic operator,
(1) N : H—>H is a nonlinear Lipschitz continuous bounded-be-

low operator with constant -g .

If & - 8 > O then the conclusioms of theorem 1 remain valid. The
proof follows immediately om sotting b = 1 and J = I in theorem 1,
(5) The natural question to ask is, under what conditions will L
and N satisfy the conditions of thecrem 1 or its corollary? Now, if
we set Lu = u,, - Au, then with appropriate boundary conditions,

it is easily seen that L is linear, bounded, and strongly elliptic.

Suppose that g grows like u, or g gatisfies the -growth conditions:

(i) lgltyxyn) | £ o(t,x) + BlEyx) ful, with & € L,(Q), and
e Lol

(11) glt,x,ulu o’ - §(tyx)ul, with ¢ > O, Se LE(QT)'

Then, the Nemyckij operator N : I.a—b I..2 given by

Nu(o’o} = S(o.o “(.’.))
\ is monotone (mccretive) or at worst, bounded-below and coercive,
Lipschitz continuous or continucus and bounded, and, of course,
ponlinear. Thus, the above results apply, to yield the unique mol-

N ——_
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vability of the Dirichlet problem for the semilinear wave equationm.
If g grows like u®, 0, < 8 < +o0, then the natursl setting for the
problem is the space LP where p = & + 1. However, if £ experiences
exponential growth, that is, g grows like exp(u), then the natural
setting ia the so-called Orlicz space, which need not bereflexive.
Since the Lipschitz continuity of N may not always be guaranteed,
we seek a weaker continuity assumption on N that will work. Let us
try hemicontinuity, which is often called continuity in the rays,
that is, for each pair x,y in D(N), N(x + t y)—Nx as t — 0"
where — denotes weak convergence. All linfar and all continuous
maps are hemicontinuous, as can easily be checked.

Let C be a bounded submet of a Hilbert space H andlet L : Cc—>cC,
N: C—>C, and 8 : C—>H be such that Sx = £ + x = (L + ¥)x.

1

llsx - syll <lix -3l +l|x = Lyl + lI¥x - Nyl

<3 56(C) = 3diam C,

Hence,
:‘g’cjls:g - Sy|| < 3diam C,

Thus, R(S) is bounded since C is bounded. We then have the'follow-

ing result:

Theorem .: Let C be a bounded closed convex nonempty subset of H.

Suppose

(1) N : C——>C is a hemicontinuous bounded-below (with constaat
-P) nonlinear operator,

(ii) L': C—>C is a linear strongly elliptic (with constant o
? 0) operator.

Il = = A > 0, then (1) has a unique solution. Let M = L +

N and define S : C—H by
Sx=f+x~-Mx,x €C

for some fixed f. Let {t } be a real sequence such that

(i) Oétnﬁ'\.foralln}_(}

g;) Ztn = +0Q

(i) Y2 € voa

Then, the sequence {zn} C H recursively generated fromarbitrary

X € Chy

o
z = (1 = thxn +tSx 5 >0

where {xn} C C is the sequence of points satisfying
Wner - 2all = xedlx = 2l
n+ n x€ n
that is, xn+1=R(zn). converges strongly to the unique solution to
(1), where R : H——>C is the proximity or retraction map.Horeover,
if g =2 A+ 07 torn 2 n > 0, then the rate of conver-

gence is of the form O(n™°). 5

Proof: {Mx - My, x = ¥> > A|[x - 7|I“. So M is strongly monotone
and hence monotone and coercive. L is linear and N is hemicontinu-
ous, so M is hemicontinuous, Hence, the equation Mx = Lx + Nx = f
has a unique solution, say x*, in C. Moreover, x* is necessarily
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the unique fixed point of S. Also, {Sx - Sy, x -y> & (1 - Afx
80 > >
||zn -2 = Il¢1 - tn)(xn - x*) + tn(an - x|

£ (- ), - =
+ Etn(1 - tn) (an =Rt S >

2
+ sx - =¥
£ [(1-¢ 3= 4 20 - At (1 -t ) lix, - x*||?

+ tac{2
£ (1= M, - =P + 24
where -
d = n>0||5x - x|l € +0a.

We then have, since R is nonexpansive in Hilbert spaces,
2 2 2.2
llzg = x*[5 € (1 = Az, 4 = =7 + td
so that setting fﬂ = ”z - x‘|]2 and r = )\tn, we have,

2.2
fix-ﬂ < 1-r)fn+td

from which we get, after induction, that
fn < Awn; niba

where R 0 is recursively generated by

2
w =(1—r)w +t5sw, =1
ad n+1 n 1

A =ll&.‘.({ ,d}
We then have that w — 0 as n—» oo, and hence f ——»0Oasn

—» o0, S0 that By x* as n —»0o0 as required., Now, for n, =
(N2 = W)+ 1, et =22 (0 + 17", Then {t } satisties
the requisite conditions for alln > n_. From (6) we have
=1 -2.2
o S-2+N™)P + @+ 1

B = max {ﬂlo,df}.

Then we claim tha

Let

£ Bn” for alln 2 n (7
Suppose that (7) is true for n. € n £ k. In particular, suppose
< B -
Then, L 202
el — e RONE. + (k + 1) d,

< (o = WK 1)"131:"1 + Bk + 1)'2

SR 1 < e DR
so that (7) is true for n = k + 1. Hence, by the inductive hypoth=

7;;‘
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esis, {7) is true for all n > n_o Then, as required,
|2 = x* || = O(n'%).

This completes the proef.

3o APPLIGATION TO CONTROL THEORY
Let Hy and H, be Hilbert spaces and let X = Ly([o,r] : E,) and Y =

L,([o,r] : H,) be the corresponding evolution (function) spaces,
0 £ T < od. (See, for example, [8]). Consider the semilinear

control system
x(t) = Ax(t) + Bu(t) + f(tg x(t)) } (8)
I(O) — xo

where =A : H,'———a- is a linear strongly elliptic operator with A
(possibly) generatifig a C_ semigroup S(t). f : [o,7] x H—H is
a nonlinear operator satiSfying the Caratheodory condition (measu-
rable in t for each x € H, and continuous in x for each t [0,
T]), and some suitable growth conditions; snd B : B—H, is a
bounded linear operator, Y is the space of controlsS Let us now
assume that for any given control u € Y thera exists a unique mild

solution to (8) which can be expressed as
x(t) = S(t):l:o +S: S(T - s)Bu(s)ds

&
+S S(T - 8)f(s,x(s))ds (9a)
0
Let us also define the operators L : I-——éH_l and N : ){-—--va,1 by
Lv =3T S(T - s)v(s)ds (9b)
0
Nv =f S(T = 8)F(Wv(s))ds (9¢)

0

vhere v & RZBS, F: X——=X is the Nemycki] operator defined by
[Fx](t) = £(t,x(t)), and W : X~——>X is the solution operator def-
ined as W(v) = y, where y(t) is the unique mild solution to the
system 3

y(t) = ay(t) + w(t) + £(t,y(t))

¥0) ==,
that is, W assoliates each givern control with the corresponding
mild solution. If the solution operater W is continuous, which is
guaranteed by the strong ellipticity of -A and the growth conditi-
ons on f, then N is continucusm and bounded below or Lipschitz con-
tinuous. Also, N im at worst bounded below. Let R(B) = Z (— X and
consider the operators L and N as defined in (9) from Z into H,.
We now see that the conditions of theorem 2 and its corollary are
satisfied so that the existence, uniqueness, and iterative approxi-
mation of the aolution to Lz + Nz = h are guaranteed. Hence, for

.

each h € H,‘, there exists a z € Z such that
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h = Lz + Nz =SZ s(T - 8) [2(s) + F(Wz(a))] ds (10)

1f we now define Wz = y, then we have that h = y(T). Now, z € 2
= R(B) implies that for any € » O glven, there exists a control
u € Y such that ||z - Bu{lx < Eo This immediately yields the
controllability (or at worst approximate controllability) of the
gystem (8). In particular, if B has a closed range, that is, R(B)
= R(B), then we have that for each z € 7 there exists au € Y
such that Bu = z are slements of the evolution space X.
Example: Let us now look at the control system for the semilinear
heat equation

zt(t,x) = zxx(t.:) + £(t,2(tyx)) + Bu(t,x);

0 <t <T0<£x < 7 (P5)
2(£,0) = z2(t, 70 =05 0 £ t 1T &
2(0,x) =0; 0 = x & X

We make the assumption that for each t € [0,T], ultyx),and z(t,x)

belong to L,([0, 7]). Let H = L,([0, 7)) and X = LZ([O,T]: H). We

define the operator A to be A = —a7( )/d:):2 with domain
D(A) = {vE€H: v € Hand v(0) = v(70) = of.

Then, (P5).transforms into the equivalent problem
v%t; = -Av(t) + Fr(t) + Bu(t) } e
v(0) =0

where v(t) = z(t,x) with z(t,0) = =(t, ) = O for all O £t <7
and Fy(t) = £(t,v(t)). As can easily be checked, -A is strongly :
elliptic and A generates & compact semigroup s(t). Suitable growth
conditions on £ (for instance if f grows like z) ensure that the
Nemyckii operator F and hence N possess the requisite properties
that yield the oxistence, wniqueness, and iterative comstructibi-
lity of the corresponding abstract equation Lz + Nz = h, and hence
the controllability of the system,
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