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ABSTRACT
Let £ be an open domain bounded in E® and let L be some differen-e
tial operator. The mixed initial-boundary value problem:

u, +Iu = fx,u) in 22 x (0,T)

Bu = glx,u) on " = Dfrx (0,T)
u(0,x) = uo(x) in £2,

is often a suitable mathematical model for several situations ari-
sing in chemical flows, gas dynamics, heat conduction, and other
physical processes. Using a purely abstract approach, the existence,
uniqueness, and strong convergence of fixed point iterations to a
solution to the above problem is established.

1. INTRODUCTION

Time-dependent irreversible processes such as heat conduction, di-
ffusion, chemical reactions, bioclogical processes, etc, are frequ-
ently modelled mathematically by semi-limear parabolic differential
equations of the form -

u, + Lu = f(x,u) in £ 1)

Bu=0on M = 241
where {1 is an open bounded domain in B" with a smooth boundary I7
and u = u(x,t), The nonlinear term f represents the interactionsof
the process, The solutions to the corresponding semi-linear ellip-
tic boundary zalue problems

Lu = f(x,u) in N

Bu = g(x,u) on 7 L
represent stationary states. (We observe that (P2) is an example of
the so-called Steklov problem, since g = g(x,u)). Typical examples
of (P2) are the cases

(1) Lu = -Au + a(x,u)
Bufi=_u
(i) ILu = =Au + a(x)u
Bu = 3w/ 9n + PB(x)u
and

i1

(441) Lu = -ia D.D.u + »a.,D.u + au
ot B B e
Bu = u+ du/dn
where du/ Dn denotes the outer normal derivative. Here u = u(x),
that is, u is time independent.
Let us consider a modified form of (P1):
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u, + Lu = £(xyu) in R

Bu=0on I (P3)
u(x,0) = uo(x)

where Qn = f1x (0,1, T > 0, and " = AN x (0,1). (P2) with g
= 0 is “the corresponding stationary elliptic problem, If u is tae
ken to be the temperature of the body .£), then (P3) means that we
are given an initial temperature at time t = 0 and the behaviour
of the temperature on the boundary JfL for the time period (037,
that is, either

u=0

Fu + Bu/bn =0

on O for all t € (0,T). (Suppose v > 0 denotes the heat cond-
uctivity of the body 2. Then, j = —vJu/ ¥n is the heat fluxden-
sity in the direction of the outward normale. If u = O is the exters
nal temperature, then @ 2 0 necessarily.) It is known, from obs-
ervation, that stable processes reach a stationary final state of
temperature u where u is no longer time dependent, and hence we
have (P2). This evidence leads to the important main stability quee
stion: Which initial states evolve into stable final states as t
goes to infinity? The accepted way of answering the above question
is to work in ordered Banach spaces using order cones, and to regard
initial states as sub- or super-solutions to (P2), the stationary
problen, and the final states as the corresponding smallest or gre-~
atest solution to (P2), Then, using such kmown results as that if
w is a subsolution and v is a supersolution, then there exists y*
€ [wyv] such that u* is a solution, Details of our efforts inthis
area will be presented in a future publication. The interested rea-
der may, however, consult Deimling [1] and Zeidler [2] , and the
references cited therein. Here, we adopt a purely abstract approach.

To ensure monotonieity of the right hand side of (P2), we carry
out the following medification

U, 4+ Iu + ru o= ru o+ £(x,u) in Qq

Bu=0on [ (P4)
u(,0) = u,(x)

Notice that the Green's function approach transforms (Ph) or (P3)
to the equivalent abstract formulation

u+ KNu = 0 (1)
where K is the linear integral operator on the Green's function as
its kernel, while N is the Nemycleij operator:

Mulxy) = ulx,t) + £(xyulx,t)) (2)
In spite of our abstract apyroach, the conditions we posit are £O=
verned by their relevance to physical processes. Forzexample, K is
often strongly elliptic, that is, <xugu > | ; ¢> 0, and
f satisfies suitable growth conditions which ensure that the Nemy-
ckij operator satisfies certain continuity and monotonicity condi-
tions,

or

2. PRELIMINARIES i ve
Let V be a normed linear space and V* its dual, Let J:V —+2' be

e Bl i



Iterative solution of certain nonlinear operator equations se. 3

the normalized duality mapping and < .,e) the géneralized duality
pairing between V and V*, Suppose T : V— V* satisfies the cond-
itions that there exists a mapping F : V* — V (V**) with R(T) &
D(F) such that for each pair x,y in D(I) and w € J(x=y) we have
Re<Ix - Ty, P> 2 -Alx = 7[5 AE R « (
Then T is called F-bounded below with constant Ae If T : V —»V
then F 3 V—>V with D(T) & D(r) and z & J(Fx = Fy), (3) becomes

Re <‘1‘x - Ty, 2 2 -)\"x - yﬂz : (W)
For a linear T and F with w € Jx, z € J(Fx), we have

Re {Tx,> 2 = \|x|f (3a)
and >

Re {Tx,2) 2 -Alx| (ka)

Several classes of operators such as the classes of K*-positive-
definite, positive, bounded below, and invertible operators are
subclasses of this class of operators. See, for example, Petryshyn
[3], Chidume and Aneke [4], and Moore [51 . We now give an
example to show that such operators as defined above do actually
exist,
Example: Consider the operator

A = x4+ xt - ox(xl).
Tt is straightforward to see that A satisfies the following condi-
tion on a Hilbert space over some given interval I = [ayb] where
x(a) = x(b) = Ot 2

;_IRG x> 4 -l
or, which is the same thing,

R dAx = Ay, x - 3> & [k - 3l

so that A is dissipative. But if we define

Kx = =2cx; ¢ 1,
then we have that 2 -1 2

e {Ax, kx> = 2c|k| = (2¢) llkxll

Re (AJ: = Ay, Kx = Ky) p] 2c“x - 3‘“2 - (23)-1 "Kx = KV"?--

Thus A is K-positive-definite (K-strongly accretive) but it is not
positive (mcoretive or monotone). If Kx = cx, ¢ » 0, then

o {oyxY 2 =cfpe]®
e {Ax = Ay, Kx = KyD 2 =clx - vlF.

or

or

3. MAIN RESULTS
Pml_*l Let X Ve a real reflexive Banach space and X* its dual.

me X § X*~—» X is a bounded linear operator and N 3 X—>»X"*
is & hemicontinuous K*~bounded-below operator with constant A €
(=09,1), Then for each fixed £ € X, the Hammerstein equation

x4 Kix = £ (5)
has a unlqu; polution, (K* is the adjoint or conjugate of K.)
Frooft Let 8 = I + KNo Then,
= 8y, W = x=yiw> o+ {ix - Ky, WD

= {x =3y wy # N - Ny, KD
2701 = Ml - v,

g
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Hence, the Hammerstein operator S = I + KN is strongly monotonic
with constant 1 = A > 0. Observe that § is hemicontinuous since
N is, by hypothesis, K is linear, and I is the identity operator.

Moreover, setting y = 0, we havP
Y e e Tl S
so that

$sxy w2/l > (1= Mlixll + <Bo, Wy /lix]l

a8 x —>00. Hence, S is coercive. Thus R(S) = X since S is mon-
otone, hemicontinuous, and coercive. Therefore (5) is solvable for
each given f € X fixed,

Suppose u and z are solutions to (5), that is, Su = f = Sz, Then,
with w € J(u = z), we have 5
0= <8u=58zwy 2 (1=-MNh-xl.
Hence, u = z and the solution to (5) is necessarily unique. This
completes the proofa : :
Remark: Let V be a normed linear space. Suppose N :'V—>V* isg
everywhere defined in V, that is, D(N) = V. Then, S=I + KN : V
=—>V is also everywhere defined in V, that is, D(S) = V. (Of cou-
rse, K : V*—>V and I : V—> V). Now, if N is K*-bounded-below
with constant A & 1, then S is strongly accretive (monotonic)
with constant 1 = N > 0, Thus

llsx = syl ;e - 5] Lsx = sy, w> 2 (1= Mflx - ylP.

Hi

ence i 7\)" “
Sx - Syf| 2 (1 = X = ¥l
is, tl‘w "

5 refore, injective, amnd so, uniquely invertible. Observe

that s™1 € Lip(k), k = (1 = 3)4. Now, since S is injective and
D(S) = V, then S is necessarily surjective, that is, R(S) = V. Thus,

for each fixed £ € V, q = S™'£ is the unique solution to (5)a.
Coroll 1: Let V be a normed linear space and V* its dual, Let
K: V*—>V be a bounded linear operator and N : V—>¥* be a
nonlinear-everywhere-defined K*-bounded-below with constant A ¢
1 operator. Then, for each fixed f € V given, the Hammerstein eq-
uation (5) has a unigue solutione

The results above are topological. The next result is both topo-
logical and algebraic.
Theorem 2: Let X be UWP(b), b > 1. Let m » O and K, N be as in
theorem 1, with N € Lip(m). Set L = 1 + [[Kllm and assume that

NG (1N a2 1,
Then, (5) has a unique solution. Moreover, the Picard iterations
for (5) converge in norm to this unique solution at least as fast
as a geometric progression with ratio

¢ = (1= (1= NPudi,
Proof: N @ Lip(m). Then,

[Isx = 8yfl =llx + xx -~ y - Ky ||

Sl = i+ Wil - nyl)

LG+ jjKlm)lx - vl = Llix - ¥l
Let us define the auxilliary fixed point operator
Tx=x-x(8x -~ f).
Obvimmﬁ, Trx‘ = x* iff 8x* = £, Now,

1
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Iz - 23]? = e = 9) = vz - sp|F
' <k - y"a -2r Sx =Sy, w + erIISx - Sy"z
<L1-201 - r o+ w?)x - 5P
= [ = (e o 2f) |l = 1P,
on setting 0 { r = (1 = 7\)/}:1.2 { 1. Hence,
T - 27l £ e - vl
o bty (1~ MPWAE € ot
by hypothesis. Thus, T is a strict contraction and hence has a
unique fixed point whikh is the unique solution to (5). For x, (=]
X arbitrary, let
X 1= Trxn' n.> 0.
Then, we have, by the Banach contraction mapping theorem, that x

—ax* as n—-)o% and
I - =) <k, - x|

or
n
"xn - x| £/ - c)"x,1 - xoll.
This completes the proof.
Remark:_A solution to (P3) is a function u € ¢([o,T]: C(ﬁ))- Now,
since € ®’® is bounded, then S% is compact. Also, [0,T] is a
compact interval of R. Hence, since every continuous function on a
compact set is bounded on the set, we have the following continuous
embeddings: = -
cClo,r1 : 1) C»1® (fo,r 1: ° QAN
G 1P(fo,r ] :_LP(2))
< p £0Q). Hence, we work in the P spaces. Observe that Lo
£ p < oo, spaces are UWP(b) with b minorized by p - 1, that is,
2

p-1e
rem 3: Let X, K, and N be as in theorem 2, Define T : X—>X

by Tx = £ - Klx, Let {tn} be a real sequence satisfying

(W 0rs & (1 =N/ +w2-2%) <1302 0

(11) Jt, = +o0. 7

Then, the iterative sequence generated from x, & X arbitrary,
L B tyI%, 4 t 0% 0 2 O

gonverges strongly to the unique solution to (5). Moreover, if tn

w (1= )\)/(hLa - 2N+ 1), then the convergence rate %:Ls at least
an famt as m geometric progression with ratio (1= fl) '
BRI 0" - 2h + 1) € 01,
where L'is the Lipschitz constant of KN and X~ & bL%.
Proof: Tx* = x* if and only if x* + KNx* = f. Also, for each pair

Xy X
&ox - Ty, v

where

H o
=
(]
o

- {INx - KNy, w)
- {Nx - Ny, K*w)

2
x - ¥l -
é"J(xn !!x‘) to get

unn

I~

Set fn - "xn - x* ua; .
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A [¢1 - tn)z +2 £ (1-t)+ mati]ﬁr ]
S - x 1P, (using conditiom (i))
£ (1-01= Nt )] P.
Thus, i ['*P 5 ]ﬁ!

Loy & Lemtr - (= N3]

which goes to zero as m goes to infinity, by condition (ii). Hence,
X b X* 88 n——p 00, Tt t_ = (1 = N/(L® - 2N 4+ 1), then,
Lowr S B - - NP - ah + 0] P

and the result follows, completing the proof.

Remarks: In (3) and (4), if A € O so that 6k = - > 0O, then Tis
said to be F-positive definite. Or, to distinguish this class of
operators from the class studied by Petryshyn [ 3], we say that this
T is F-positive bounded below, We tLus have the following cerollary
on noting that we may take & & (0,1) without loss of generality.
Coroll 2: In theorem 3, let N be K*=-positive-definite with cone
stant § & (0,1) and let the real sequence it _} satisfy, inplace
of condition (i), ‘s -

(1) o0&t £ (1+)/(b" +2& + 130 O,

Then, the same conclusions are obtained with

J ,.1 = (1 + 002/(1:1.2 + 200 + 1)
d
t g (14 /(L2 + 266 + 1).

Proof: Set of = -A in theorem 2 and the result follows.

e: Consider the 2-dimensional elliptic problem
)(pu*)/bx + 3(puy)/By = wx,y; ulx,y)) (6)

with p(x,y) » O and prescribed appropriate boundary conditions so
that the linear part possesses a Green's function k(x,y;r,s). Obv-
iously, (6) has the equivalent formulation

s 1 Ui glxyy; ulx,y)) = hix,y; ulx,y))

-1 =1
where g = p wand h=p (pxux + pyuy). We then obtain
u(x,y) = -&c(x.y;r,s}f(r,e; u(r,s))drds

where L) is a bounded region :i..nlll!2 and f = g = he So that defining
the linear integral operator

KV(-|-) - Sk(x.y; .,.)V(.,.)drds
£

and the Nemyckilj operator
Nu(..-) = f(-|-i “(-|-))
we then have the abstract form
u+ Ku =0
which is a homogeneous Hammerstein equation. Let us now state and
prove theorem U,
Theorem k4: Let E be a Banach space with a uniformly convex dualE*,
{ £*~—p 1 be bounded linear and N : §E —> E* be K*=bounded
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below. Let C be a symmetric bounded closed convex subset of E (for
example, C = B(0,d), d < ©0) and suppose that K : N(C) —>C, that
is, K maps the image of C under N into C. :Define T2 CG——2>C by Ix

= -KNx, Let {tn} be a real sequence satisfying the conditions
Gy g $tn &1, m1ln > 0,
(i1) 2t = o9,
and
(ii8) Y () £ +o0.
Then, the iterative sequence {xn} converges in norm to the unique
solution to (7).
Proof: 2 "2
- = - - - x*
I - = i (1 - £ )G, = x*) + £ (T = x )

& (s ty) Elgen w2

+2t (1-1t) Lex - x*y §lx, = x*))
- max[('T - tn) 2= o 1]tn"1‘xn - x*”.
- o(t flme - =P

<£0- tn)auxn - x*"2

+ atn(’I - tn) <Txn - x*, j(xn - x*))
+ max[(‘1 - tn)“xn - x*", 1] .
o max[|Jzx, - ||, Qex - =]t pCt)
< B-- W]k, - x)® + mepte)
PIE-SCEE SN A T4
where r = (1 - h)tn, ﬁ1 = “xn - x“'"2, and 0 = tnb(tn). Well-

known arguments (see, for example, ref [6] ) now show that
~+0 ag n=——> o0, that is, x —> x* a5 n —> ©0. This completes
the proof.
%Ml 1. If N ia Lipsehitz continuous, then the requirement thau
maps the dmage of C under N into € can be dispensed withe
Be I2 4 = a/(A(n +1)); 1 € 8 £ 2, then a convergence
patd of the order 2718 = V)
Ity = x4 = 0t
Nenoe, for B = Lps 1 £ p £ 009,

[O(n‘%(p P 1)3; ir1 £ p £2

-x'ln

“x" I o(n-&); if 2 £ p < o9,

Gorollary 3: In theorem Ly let B = Lp (1 € p & 2) and replace

gondition (1ii) on the real sequence {tn} by (iii)': Ztﬁ <
#00, Then the mame conclusion is obtained.

and henco‘g

is obtained. That is,
B = 1))
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Corollary 4: In thecrem 4, let E = Lp (2 £ p € o0) and replace

(iii) by the conditiom (iii)': th < +00. Then the same conclu-

sion is obtained. s

Remark: If R(N) is bounded, them the boundedness of C is no longer
required. Hence, in this case, we may take C = E. And in this case,
the Hammerstein equation need not be homogeneous. That is, we will
be solving (5) instead of (7).
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