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1. Introduction  
Several probability distributions in literature have been used to fit and model lifetime data for the purpose of 
accurate forecasting and planning. Statistical models are useful in modeling and resolving real life problems. 
This has led to the development of new and adaptive model by various researchers in recent times. New 
statistical model has been developed either as generalized models or combination of existing models, with 
intention to create a more robust and adaptive model for real life applications. More so, the development of 
new flexible and highly adaptive probability distributions alongside the means of their estimation has been 
on the background of this development, [1]. Recent developments focus on new techniques by compounding 
of distributions and adding parameters to existing distributions thereby building classes of more flexible 
distributions. 
The Lambda distribution was proposed by [2] using a method based on quantile function, which was generalized 
by [3], [4] and called the Generalized Lambda Distributions (GLD). This family of distributions is defined in 
terms of percentile function. The Dagum distribution was proposed by [5] to fit empirical income and wealth data 
that could accommodate heavy tails in income and wealth distributions. For an extensive review on the genesis 
and empirical applications of the Dagum distribution, see [6]. The four parameter distribution called the Dagum-
Poisson 
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carefully discussed. The maximum likelihood method of parameter 
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(DP) distribution was introduced by [7]. This distribution is obtained by compounding the Dagum and Poisson 

distributions.  

The Mc-Dagum distribution was proposed and studied by [8]. The Transmuted Dagum and the Log-Dagum 

distributions were proposed respectively by [9] and [10]. The Beta-Dagum distribution was introduced and its 

properties studied by [11]. The Exponentiated Generalized Exponential Dagum Distribution was introduced by 

[12]. The history of exponential density function can be traced back to the work from various researchers such as 

[13]. By compounding the exponential distribution and the Poisson distribution, the Exponential-Poisson (EP) 

distribution was developed by [14]. A two-parameter Exponential-Geometric (EG) distribution developed by 

compounding the exponential and geometric distributions was pioneered by [15]. The Exponential-Logarithmic 

(EL) distribution was obtained by [16] compounding the exponential distribution and the logarithmic distribution. 

Nadarajah (2006) defined the exponentiatedGumbel distribution. Mansoor et al. (2018) introduced a three-

parameter extension of the exponential distribution which contains  sub-models to the exponential, logistic-The 

The Log-Logistic distribution is a very popular and widely used model in many areas such as reliability, survival 

analysis, Actuarial science, Economics, Engineering and Hydrology. The Extended Log-logistic distribution was 

proposed by [17] while the Marshal-Olkin Extended Log-logistic Distribution was proposed by [18]. The 

formulation of a flexible statistical distribution with interval (0,∞) is of great importance in statistical research. 

Numerous works in the literature have shown that the Dagum distribution provides better fit for dataset with 

support (0, ∞). This article therefore proposes a new distribution called the Exponential-Dagum Log logistic 

distribution using the T-R{Y} framework. An application of the proposed distribution shows its flexibility in 

fitting real life data set. 
 

2. Methodology 

2.1  The T-R{Y} Family oF distribution 

Let T, R, Y be random variables with their respective Cumulative Density Functions (CDF) given as  

𝐹𝑇(𝑥) = 𝑃(𝑇 ≤ 𝑥), 𝐹𝑅(𝑥) = 𝑃(𝑅 ≤ 𝑥), 𝐹𝑌(𝑥) = 𝑃(𝑌 ≤ 𝑥)     (1) 

The quantile functions for the random variables T, R, Y are denoted respectively as: 

𝑄𝑇(𝑝), 𝑄𝑅(𝑝), 𝑄𝑌(𝑝) 

where p lies between zero and one.  

The corresponding Probability Density Function (PDF) of T, R, Y are given respectively by 

𝑓𝑇(𝑥), 𝑓𝑅(𝑥)𝑎𝑛𝑑𝑓𝑌(𝑥) 

The “T-R{Y} family of distributions” was proposed by Alzaatreh et.al (2014) where the random variable X has a 

CDF defined as: 

𝐹(𝑥) = ∫ 𝑓𝑇(𝑡)𝑑𝑡 = 𝐹𝑇(𝑄𝑌(𝐹𝑅(𝑥)))
𝑄𝑌(𝐹(𝑥))

𝑎
                                  (2)  

and𝑄𝑌(. ) satisfies the conditions: 

i.  𝑄𝑌(𝐹(𝑥)) ∈ [𝑎, 𝑏] 
ii, 𝑄𝑌 is differentiable and monotonically non-decreasing 

iii. 𝑄𝑌(𝐹(𝑥))  → 𝑎 𝑎𝑠 𝑥 →  −∞ 𝑎𝑛𝑑 𝑄𝑌(𝐹(𝑥))  → 𝑏 𝑎𝑠 𝑥 → ∞ 

The corresponding PDF is given as: 

𝑓(𝑥) = 𝑓𝑇(𝑄𝑌(𝐹𝑅(𝑥)))  × 𝑄′𝑌(𝐹𝑅(𝑥)) × 𝑓𝑅(𝑥)(3) 

2.2   The Exponential Dagum Log-Logistic Distribution (EXDAL) 

Let T be an Exponential random variable having CDF and PDF given respectively as: 

( ) x

T exF −−=1      (4) 

( ) 0, = −  x

T exf                                                     (5) 

where𝜃 is a rate or inverse scale parameter which is defined as the reciprocal of the scale parameter.  The quantile 

function 𝑄𝑇(𝑝) of the Exponential distribution by equating its CDF to p and solving for x. Hence, we have 

𝑄𝑇(𝑝) =
−log (1−𝑝)

𝜃
     0< 𝑝 < 1                                                           (6) 

Let R be the Dagum random variable whose CDF and PDF are defined respectively as: 
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𝐹𝑅(𝑥) = (1 + (
𝑥

𝜆
)

−𝛼

)
−𝛽

     (7) 

𝑓𝑅(𝑥) =
𝑑𝐹𝑅(𝑥)

𝑑𝑥
=  

𝛽𝛼

𝜆
(

𝑥

𝜆
)

−𝛼−1

(1 + (
𝑥

𝜆
)

−𝛼

)
−𝛽−1

  (8)              

𝛽, 𝛼, 𝜆, 𝑥 > 0,where𝛽, 𝛼 𝑎𝑟𝑒 𝑠ℎ𝑎𝑝𝑒  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑛𝑑𝜆 𝑖𝑠 𝑎 𝑠𝑐𝑎𝑙𝑒 parameter. 

The quantile function 𝑄𝑅(𝑝) of the Dagum distribution is obtained as: 

𝑄𝑅(𝑝) = 𝜆 [𝑝
−

1

𝛽 − 1]
−

1

𝛼

                                                                         (9) 

Let Y be a Log logistic random variable whose CDF and PDF with are given respectively as 

𝐹𝒀(𝑥) =  
1

1+(
𝑥

𝜆
)

−𝛽 =  [1 + (
𝑥

𝜆
)

−𝛽

]
−1

(10) 

where𝛽, 𝜆 = 1 

Then, 

𝐹𝑌(𝑥) = [1 + 𝑥−1]−1 = [
𝑥+1

𝑥
]

−1

=
𝑥

𝑥+1
(11) 

and 

𝑓𝑌(𝑥) =
𝑑𝐹𝑌(𝑥)

𝑑𝑥
  = 

1

(1+𝑥)2
(12) 

We now obtain the quantile function of the Log logistic distribution   𝑄𝑌(𝑝) as: 

𝑄𝑌(𝑝) =
𝑝

1−𝑝
                                                                                       (13) 

Thus, the CDF of the EXDAL distribution is given as: 

𝐹𝑋(𝑥) = 𝐹𝑇 (𝑄𝑌(𝐹𝑅(𝑥))) =  𝐹𝑇 [
𝐹𝑅(𝑥)

1−𝐹𝑅(𝑥)
](14) 

which gives: 

𝐹𝑋(𝑥) = 1 − 𝑒𝑥𝑝 [−𝜃 (
(1+(

𝑥

𝜆
)

−𝛼
)

−𝛽

1−(1+(
𝑥

𝜆
)

−𝛼
)

−𝛽)](15) 

 
Figure 1:  Plot of the Cumulative Density Function of the EXDAL Distribution for some selected parameter 

values 

 

The corresponding PDF obtained by differentiating equation (15) w,r,t,x is given as:  

𝑓𝑥(𝑥) =

𝛽𝛼

𝜆
(

𝑥

𝜆
)

−𝛼−1
(1+(

𝑥

𝜆
)

−𝛼
)

−𝛽−1

(1−(1+(
𝑥

𝜆
)

−𝛼
)

−𝛽

)

2   𝜃𝑒𝑥𝑝 [−𝜃 (
(1+(

𝑥

𝜆
)

−𝛼
)

−𝛽

1−(1+(
𝑥

𝜆
)

−𝛼
)

−𝛽)]  (16) 
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𝑤ℎ𝑒𝑟𝑒    𝛽, 𝛼, > 0 𝑎𝑟𝑒 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝜆 > 0 𝑎𝑟𝑒 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝜃 > 0  𝑖𝑠 𝑡ℎe rate parameter 

0 < 𝑥 < 1 

 
Figure 2: Plot of the PDF of the EXDAL Distribution for some selected parameter values.  
 

2.3   Statistical Properties of the Exponential Dagum Log-Logistic Distribution 

In this section, we carefully study and discuss some of the statistical properties of the EXDAL distribution. 

2.3.1.  Quantile Function of the EXDAL Distribution 

To find the quantile function of the EXDAL distribution, the CDF obtained in (15) is equated to p and then solved 

for 𝑥 to get: 

𝑝 =  1 − 𝑒𝑥𝑝 [−𝜃 (
(1+(

𝑥

𝜆
)

−𝛼
)

−𝛽

1−(1+(
𝑥

𝜆
)

−𝛼
)

−𝛽)]   (17) 

log(1 − 𝑝) =  −𝜃 (
(1 + (

𝑥

𝜆
)

−𝛼

)
−𝛽

1 − (1 + (
𝑥

𝜆
)

−𝛼

)
−𝛽

) 

𝜃 (1 + (
𝑥

𝜆
)

−𝛼

)
−𝛽

 =  − log(1 − 𝑝) + log (1 − 𝑝) (1 + (
𝑥

𝜆
)

−𝛼

)
−𝛽

 (18) 

1 + (
𝑥

𝜆
)

−𝛼

=  (
log (1 − 𝑝)

log(1 − 𝑝) − 𝜃
)

−
1

𝛽

 

𝑥 = 𝜆 ((
log (1−𝑝)

log(1−𝑝)−𝜃
)

−
1

𝛽
− 1)

−
1

𝛼

   (19) 

So that 

𝑄𝑥(𝑝) =  𝜆 ((
log (1−𝑝)

log(1−𝑝)−𝜃
)

−
1

𝛽
− 1)

−
1

𝛼

   (20) 

Setting 5.0=p gives the median as: 
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𝑄𝑥(0.5) =  𝜆 ((
log (1−0.5)

log(1−0.5)−𝜃
)

−
1

𝛽
− 1)

−
1

𝛼

  (21)                       

2.3.2.  Survival Function of the EXDAL Distribution 

The survival function of the EXDAL distribution is given as:  

𝑆(𝑥) = 1 − 𝐹(𝑥) 

= 1 − [1 − 𝑒𝑥𝑝 [−𝜃 (
(1+(

𝑥

𝜆
)

−𝛼
)

−𝛽

1−(1+(
𝑥

𝜆
)

−𝛼
)

−𝛽)]]  (22)   

which gives                                     

𝑆(𝑥) = 𝑒𝑥𝑝 [−𝜃 (
(1+(

𝑥

𝜆
)

−𝛼
)

−𝛽

1−(1+(
𝑥

𝜆
)

−𝛼
)

−𝛽)]  (23)                                        

0,  are shape parameters while  , are scale parameters

 
Figure 3: Survival Function of the EXDAL distribution for some selected parameter values. 

2.3.3.  Hazard Function of the EXDAL Distribution 

The hazard function of the EXDAL distribution is expressed as 

ℎ(𝑥) =  
𝐹(𝑥)

1 − 𝐹(𝑥)
 

=  

𝛽𝛼
𝜆

(
𝑥
𝜆

)
−𝛼−1

(1+(
𝑥
𝜆

)
−𝛼

)
−𝛽−1

(1−(1+(
𝑥
𝜆

)
−𝛼

)
−𝛽

)

2 𝜃𝑒𝑥𝑝[−𝜃(
(1+(

𝑥
𝜆

)
−𝛼

)
−𝛽

1−(1+(
𝑥
𝜆

)
−𝛼

)
−𝛽)]

𝑒𝑥𝑝[−𝜃(
(1+(

𝑥
𝜆

)
−𝛼

)
−𝛽

1−(1+(
𝑥
𝜆

)
−𝛼

)
−𝛽)]

   (24) 

Figure 4: Hazard Function of the EXDAL distribution for some parameter values 

 

2.3.4. Moments of the EXDAL distribution 
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Before examining the moments of the EXDAL distribution, we first study the relationship between the 

Exponential and EXDAL distributions using the transformation technique. This is given in the theorem below: 

Theorem 1: 

If T is an exponential random variable, then the random variable 𝑋 =  𝜆 [(
𝑇

1+𝑇
)

−
1

𝛽
− 1]

−
1

𝛼

  is an Exponential-

Dagum Log-logistic random variable having parameters  ,  and   

Proof 

If T follows an exponential random variable, we can show that from 

𝑇 =  𝑄𝑌(𝐹𝑅(𝑋)) 

𝑄𝑌(𝐹𝑅(𝑋)) =  
(1 + (

𝑋

𝜆
)

−𝛼

)
−𝛽

1 − (1 + (
𝑋

𝜆
)

−𝛼

)
−𝛽

 = T 

𝑇 = (1 + (
𝑋

𝜆
)

−𝛼

)

−𝛽

 + 𝑇 (1 + (
𝑋

𝜆
)

−𝛼

)

−𝛽

 

𝑋 =  𝜆 [(
𝑇

1+𝑇
)

−
1

𝛽
− 1]

−
1

𝛼

                                                                  (25)    

2.3.5. Moment of the EXDAL Distribution 

The non-central moment of the EXDAL Distribution is given by 

𝜇𝑟 = 𝐸 [(𝜆 [(
𝑇

1+𝑇
)

−
1

𝛽
− 1]

−
1

𝛼

)

𝑟

] (26)                               

 Let  𝑋 =  𝜆 [−1 + (
𝑇

1+𝑇
)

−
1

𝛽
]

−
1

𝛼

                                                     (27) 

Where 𝑥 =   (
𝑇

1+𝑇
)

−
1

𝛽
&  𝑦 =   (−1),  

Using the binomial formula written as 

(𝑥 + 𝑦)𝑛 =  ∑ [
𝑛
𝑘

] 𝑥𝑛−𝑘𝑦𝑘𝑛
𝑘=0                                       (28) 



Asenoguan W. et al. - TRANSACTIONS OF NAMP 19 (2024) 39-52 
 

45 
 

We have that                                                         

𝑋 = 𝜆 ∑ (−
1

𝛼
𝑘

) [(
𝑇

1 + 𝑇
)

−
1

𝛽

]

−
1

𝛼
−𝑘∞

𝑘=0

(−1)𝑘 

𝑋 =  𝜆 ∑(−1)𝑘

∞

𝑘=0

(−
1

𝛼
𝑘

) [1 − (1 + 𝑇)−1]
𝑘+

1
𝛼

𝛽  

𝑋 = 𝜆 ∑(−1)𝑘

∞

𝑘=0

(−
1

𝛼
𝑘

) ∑ (−1)𝑚 (
𝑘 +

1

𝛼

𝛽
𝑚

)
∞

𝑚=0
[(1 + 𝑇)−1]𝑚 

𝑋 =  𝜆 ∑ ∑ (−1)𝑘+𝑚∞
𝑚=0

∞
𝑘=0 (

−
1

𝛼

𝑘
) (𝑘 +

1

𝛼
𝑚

) (1 + 𝑇)−𝑚        (29) 

Hence 

𝐸(𝑋) = 𝑘𝐸[(1 + 𝑇)−𝑚] 
Using the binomial formula, we have that 

(1 + 𝑇)−𝑚 =  ∑ (
−𝑚

𝑝 )

∞

𝑝=0

𝑇𝑝 

so that 

𝐸(𝑋𝑟) = 𝜆 ∑ ∑ ∑ (−1)𝑘+𝑚∞
𝑝

∞
𝑚

∞
𝑘 (

−
1

𝛼

𝑘
) (𝑘 +

1

𝛼
𝑚

) (
−𝑚

𝑝 ) 𝐸(𝑇𝑝𝑟)(30) 

Let  𝑝𝑟 = 𝑞 and  

𝐴 =  𝜆 ∑ ∑ ∑(−1)𝑘+𝑚

∞

𝑝

∞

𝑚

∞

𝑘

(−
1

𝛼
𝑘

) (𝑘 +
1

𝛼
𝑚

) (
−𝑚

𝑝 ) 

then 

𝐸(𝑋𝑟) = 𝐴𝐸(𝑇𝑞) 

Let T ~ ( )exp  so that ( ) t

T exf  −=  so that 

𝐸(𝑇𝑞) =  ∫ 𝑡𝑞𝜆℮−𝜆𝑡𝑑𝑡 = 𝜆 ∫ 𝑡𝑞℮−𝜆𝑡𝑑𝑡
∞

0

∞

0

 

Γ(𝑛) =  ∫ 𝑡𝑛−1℮−𝑡𝑑𝑡
∞

0

 

Let 𝜆𝑡 = 𝑣 ⇒ 𝑡 =  
𝑣

𝜆
,  

𝐸(𝑇𝑞) =  𝜆 ∫ (
𝑣

𝜆
)

𝑞

℮−𝑣
𝑑𝑣

𝜆
=

1

𝜆𝑞
∫ 𝑣𝑞℮−𝑣𝑑𝑣

∞

0

∞

0

 

𝑤ℎ𝑒𝑟𝑒     𝑛 − 1 = 𝑞 

=  
1

𝜆𝑞 ∫ 𝑣𝑞℮−𝑣𝑑𝑣
∞

0
  =  

1

𝜆𝑞 Γ(𝑞 + 1) 

Hence, 

𝐸(𝑋𝑟) = 𝐴
1

𝜆𝑞
Γ(𝑞 + 1) 

𝐸(𝑋)𝑟 =  𝜆𝑟 ∑ ∑ ∑ (−1)𝑘+𝑚∞
𝑝=0 (

−
1

𝛼

𝑘
)∞

𝑚=0 (
𝑘+

1

𝛼

𝑚
)∞

𝑘=0 (
−𝑚

𝑝 )
1

𝜆𝑞 Γ(𝑞 + 1)(31) 

The mean of the EXDAL Distribution can be obtained by setting 

r =1 to get 

𝜇1
′ =  𝜆 ∑ ∑ ∑(−1)𝑘+𝑚

∞

𝑝=0

(−
1

𝛼
𝑘

)

∞

𝑚=0

(
𝑘 +

1

𝛼

𝑚
)

∞

𝑘=0

(
−𝑚

𝑝 ) Γ(𝑞 + 1) 

where qr   and prq =  

The variance of the EXDAL distribution is given as: 

      Variance (x) = ( )2

12 uu −  

where 
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𝜇2
′ = 𝜆2 ∑ ∑ ∑(−1)𝑘+𝑚

∞

𝑝=0

(−
1

𝛼
𝑘

)

∞

𝑚=0

(
𝑘 +

1

𝛼

𝑚
)

∞

𝑘=0

(
−𝑚

𝑝 ) Γ(𝑞 + 1) 

2.3.6  Skewness and Kurtosis of the EXDAL Distribution 

The skewness and kurtosis of the EXDAL distribution are given respectively as: 

𝑺𝒌𝒆𝒘𝒏𝒆𝒔𝒔 =   
𝜇3

′ −3𝜇1
′ 𝜇2

′ +2(𝜇1
′ )

3

(𝜇2
′ −(𝜇1

′ )
2

)

3
2

  (32)                                     

𝒌𝒖𝒓𝒕𝒐𝒔𝒊𝒔 =   
𝜇4

′ −4𝜇1
′ 𝜇3

′ +6(𝜇1
′ )

2
𝜇2

′ −3(𝜇1
′ )

4

(𝜇2
′ −(𝜇1

′ )
2

)
2   (33) 

2.3.7  Moment Generating Function of the EXDAL Distribution 

Let X be a random variable having an EXDAL distribution. The moment generating function of X is given by: 

𝑀𝑥(𝑡) = 𝜆𝑞 ∑ ∑ ∑ (−1)𝑘+𝑚∞
𝑝=0

𝑡𝑞

𝑞!
(

−
1

𝛼

𝑘
)∞

𝑚=0 (
𝑘+

1

𝛼

𝑚
)∞

𝑘=0 (
−𝑚

𝑝 ) Γ(𝑞 + 1 )(34) 

2.3.8. Shannon Entropy of the EXDAL Distribution 

If a random variable X follow the family of distribution with density function given as 

𝜂 = 𝐸[−log (𝑓(𝑋))](35) 

𝑓(𝑥) =  𝑓𝑅(𝑥)
𝑓𝑇(𝑄𝑌(𝐹𝑅(𝑥)))

𝑓𝑌(𝑄𝑌(𝐹𝑅(𝑥)))
 

(𝑄𝑌(𝐹𝑅(𝑥)) =  
𝐹𝑅(𝑥)

1 − 𝐹𝑅(𝑥)
= 𝑇 
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(1+(

𝑥

𝜆
)

−𝛼
)

−𝛽

1−(1+(
𝑥

𝜆
)

−𝛼
)

−𝛽 

𝜂 = 𝐸 [−log {𝑓𝑅(𝑋)
𝑓𝑇(𝑄𝑌(𝐹𝑅(𝑋)))

𝑓𝑌(𝑄𝑌(𝐹𝑅(𝑋)))
}] 

𝜂 = 𝐸 [−log {𝑓𝑅(𝑥)
𝑓𝑇(𝑇)

𝑓𝑌(𝑇)
}] 

Hence, the Shannon Entropy is: 

𝜂 = 𝐸[−[𝑙𝑜𝑔𝑓𝑅(𝑋) + 𝑙𝑜𝑔𝑓𝑇(𝑇) − 𝑙𝑜𝑔𝑓𝑌(𝑇)]] 
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where 

E(−logfT(T))) = ηT 

E(logfY(T)) =  −μT 

and by substitution we have 
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2.4. Maximum Likelihood Estimation of the EXDAL Distribution 

𝑙𝑒𝑡  𝑥1, 𝑥2, 𝑥3 … . 𝑥𝑛be an independent random sample of size n from the EXDAL distribution with density 

function defined in equation (16), the likelihood function of the 4- parameter EXDAL distribution is given as 

(38) 
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Taking the partial derivative of the log-likelihood function w.r.t the parameters, we have: 
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The maximum likelihood estimator ̂  of   can be derived by solving the systems of non-linear equation (
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. This equation can be solved using a numerical method known as Newton 

Raphson iterative scheme given by 
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where ( )qU  is the score function  

1( )qH − is the Hessian matrix, which is the second partial derivative of the log likelihood function defined by 
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3.   Results and Discussion 

Table 1. Mean, Standard Deviation (SD) and the Median of the EXDAL Distribution 

 

Table 2. Skewness and Kurtosis of the EXDAL Distribution 

PARAMETER α =  2 α =  4 α =  6 

𝜽 𝝀 𝜷 Mean S.D Median Mean S.D Median Mean S.D Median 
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3.7894 

2.2388 

 

3.3533 

 

5.1087 

0.7094 

 

1.3291 

 

2.1744 

0.5473 

 

1.1019 

 

1.8947 

1.1194 

 

1.6767 

 

2.5544 

0.3547 

 

0.6645 

 

2.5544 

2 

3 

 

5 

 

8 

2 

 

3 

 

4 

4.4594 

 

8.0177 

 

13.1117 

3.4368 

 

5.0854 

 

7.7563 

4.5073 

 

7.8051 

 

12.5485 

1.1148 

 

2.0044 

 

3.2779 

0.8592 

 

1.2714 

 

1.9391 

1.1268 

 

1.9513 

 

3.1371 

0.5574 

 

1.0022 

 

1.6390 

0.4296 

 

0.6357 

 

0.9695 

0.5634 

 

0.9756 

 

1.5686 

 

3 

 

5 

 

8 

2 

 

3 

 

4 

5.1024 

 

8.7867 

 

14.1338 

1.5839 

 

2.4166 

 

3.7683 

5.3089 

 

9.0533 

 

14.5183 

1.2756 

 

2.1967 

 

3.5334 

0.3940 

 

0.6042 

 

0.9421 

1.3272 

 

2.2633 

 

3.6296 

0.6378 

 

1.0983 

 

1.7667 

0.1980 

 

0.3021 

 

0.4710 

0.6636 

 

1.1317 

 

1.8148 

PARAMETER α = 2 α = 4 α = 6 

𝜽 𝝀 𝜷 Sk Ku Sk Ku Sk Ku 

0.8 3 

 

5 

 

8 

2 

 

3 

 

4 

0.9213 

 

1.2279 

 

1.4318 

0.6715 

 

1.1203 

 

1.4410 

0.9213 

 

1.2279 

 

1.4318 

0.6715 

 

1.1203 

 

1.4410 

0.7213 

 

1.2279 

 

1.4318 

0.8715 

 

1.1279 

 

1.4410 

2 3 

 

5 

 

8 

2 

 

3 

 

4 

-0.1320 

 

0.1603 

 

0.3169 

-0.2269 

 

-0.4626 

 

-0.5454 

-0.1320 

 

0.1603 

 

0.3169 

-0.2269 

 

-0.4626 

 

-0.5454 

-0.1320 

 

0.1603 

 

0.3169 

-0.2269 

 

-0.4626 

 

-0.5454 

5 3 

 

5 

 

8 

2 

 

3 

 

4 

-0.6830 

 

-0.5324 

 

-0.4620 

0.3476 

 

0.0077 

 

-0.1501 

-0.6830 

 

-0.5324 

 

-0.4620 

0.3476 

 

0.0077 

 

-0.1501 

-0.6830 

 

-0.5324 

 

-0.4620 

0.3476 

 

0.0077 

 

-0.1501 
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Results from Table 1 clearly show that when the shape parameter 𝛼 and the rate parameter  𝜃 are held constant, 

the mean, standard deviation, and median increases as the scale and shape parameter𝜆 𝑎𝑛𝑑 𝛽  increases. 

In Table 2, when the rate parameter 𝜃, and the shape parameter𝛼 are held constant, an increase in the scale 
and shape parameter, increases the skewness and kurtosis. 
We also illustrate the applicability of the EXDAL distribution using real life dataset. The dataset consists of the 

number of successive failures for the air conditioning system in a fleet of 13 Boeing 720 jet airplanes, [19]. The 

EXDAL distribution was compared with the Dagum and Log logistics distributions using both the Log-likelihood 

and Kolmogorov-Smirnov (K-S) tests. 

 

Dataset 

194  413  90  74  55 23  97  50 359 50  130  487  

57       102    15  14  10  57  320  261  51  44   9  254  

493  33  18      209      41  58  60  48  56  87  11  102  

12        5  14  14  29         37     186 29  104  7  4  72  

270  283  7  61  100  61     502     220       120  141  22  603 

 35  98  54  100  11  181 65  49  12        239      14  18  

39       3  12  5  32  9  438  43  134  184       20      386  

182  71  80  188  230  152 5  36  79  59  33  246  

1           79        3 27  201 84  27  15 6  21  16  88  

130  14  118      44        15  42  106  46  230  26 59  153  

104  20  206  5  66    34       29  26  35  5 82  31  

118      326  12 54  36  34  18       25        120 31 22  18  

216      139 67  310  3  46  210  57  76       14      111  97  

62 39  30 7  44  11  63  23 22  23  14       18   

13  34  16  18  130 90  163  208  1  24  70        16  

101    52      208  95  62  11  191  14 71  

 

TABLE 3: Maximum Likelihood Estimates of the Log –Logistics, Dagum and EXDAL parameters 

Distribution  Log-logistics (LD) Dagum (DD) EXDAL 

Parameter Estimates 

𝛼̂  =0.6776 

(0.1107) 

 

 

 

𝛽̂  =1.0411 

(0.1873) 

 

 

 

𝛼̂  =0.5027 

(0.4558) 

 

 

 

𝛽̂   =1.2901 

(0.7494) 

 

 

𝜆̂   =1.7243 

(0.7981) 

𝛼̂= 0.8962 

(0.0011) 

 

 

 

𝛽̂= 5.0126 

(7.1227) 

 

 

̂= 3.6182 

(5.2654) 

 

 

𝜃  = 0.8351 

(0.0082) 

Log –likelihood 5.6714 5.6824 5.9027 

K-S 0.1038 0.1034 0.0981 

(Standard error of estimates in parenthesis) 
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Table 3 reveals that the Dagum, Log Logistics and EXDAL distributions can be used to model the dataset 

considered in this paper. However, the K-S and the log-likelihood tests show that the EXDAL distribution 

performs better than the Dagum and Log logistics distributions in fitting the dataset since it has the smallest K-S 

value and the largest log-likelihood value respectively. 

 

Figure 5: Histogram plot and estimated densities for the LD, DD and EXDAL distributions for the dataset. 

Figure 5 clearly reveals the suitability of the EXDAL distribution for fitting the data considered. 

 

4.  Conclusion 

This paper proposed the Exponential-Dagum Log logistics distribution. The mathematical properties of the 

proposed distribution have been carefully examined.  The maximum likelihood estimation method was used in 

estimating the parameters of the proposed distribution. Finally, An application of the EXDAL distribution to a 

lifetime dataset shows its suitability in fitting lifetime dataset as it outperforms the Log-Logistics and the Dagum 

distribution in fitting the dataset considered.  
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