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1. Introduction  

Malaria pathogenesis has been an age-long disease that has inflicted mankind especially those living in 

tropical regions of the world for so many years. The plasmodium parasite, which is the cause of malaria is 

first introduced into the human body by a blood feeding female anopheles mosquito vector. The parasite 

survives in different stages causes flue-like symptoms that sometime degenerates into life threatening 

complications causing more deaths in vulnerable pregnant women and children between age zero and five 

years.  

The World Health Organization estimates in the 2021 World malaria report that, there were 241 million 

malaria cases and 627,000 malaria deaths worldwide in 2020 [1], following a trend from about 14 

million 
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We propose a simple mathematical model of malaria transmission involving a 

system of five ordinary differential equations with only susceptible and infectious 

classes of both humans and mosquitoes and a new class of trapped mosquitoes. 

The motivation is to use mathematical approach to analyze the role of mosquito 

trap in malaria control. We obtain the basic reproduction number, 𝑅0 and found 

that the trap effectiveness is a key parameter that drives the dynamics of the 

disease. The analytical results show that, for 𝑅0 < 1 , the disease-free 

equilibrium point is locally asymptotically stable and globally asymptotically 

stable in the absence of disease related death, and unstable for 𝑅0 > 1. We found 

from the numerical solution that with the given parameter values in the absence 

of mosquito trap, malaria infection may be as high as 80% within six months of 

introduction of few infected mosquitoes into an entirely susceptible population. 

Although, other parameters like the infection rates of both humans and 

mosquitoes can cause the disease to invade the population when the level of trap 

effectiveness is low but trap effectiveness very close to 1 may likely lead to 

disease eradication. 
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additional cases with 69 thousands more deaths in 2020 compared to 2019 figure.  Various health 

researchers and organizations have carried out studies on understanding the biology of malaria 

pathogenesis including factors determining the parasite load, vectorial capacity, human host configuration, 

etc., in order to control, eliminate and eradicate the disease. Some measures have been taken to reduce the 

parasite load within the human host through the administration of antimalarial drugs like quinine, 

chloroquine, Sulfadoxine-Pyrimethamine, mefloquine, artemisinin, etc.[2].  Host–vector contact is a critical 

parameter that integrates many factors driving disease transmission [3].  Thus any malaria control strategy 

that discourages or reduces human- mosquito contact is a lead way to malaria eradication. 

Various mathematical models have been used to explain the dynamics of malaria transmission since 

Ronald Ross's pioneering work on mosquito threshold phenomenon and it's impact on malaria elimination. 

These models that have been reviewed in [4],  among others have assisted in giving an insight into the 

interaction between the host and vector population, the dynamics of malaria, how to control malaria 

transmission, and eventually how to eradicate it [5]. A human-mosquito interaction model was analyzed in 

[6] and their findings suggest that malaria could be controlled by reducing the contact rate between human 

and mosquito, through the use of insecticides and mosquito treated nets, and also the use of active malaria 

drugs which can help to reduce mosquito population and malaria transmission respectively. Various 

attempts have been made to eliminate malaria through these strategies and unfortunately these efforts have 

been reduced to mere control with no sure way in sight in the near future to eliminating the disease. The 

discovery of malaria vaccine would have been a key to disease elimination but despite the discovery of 

malaria vaccine people still fall sick after use and it is still only 30% effective against death. Hence, the 

recommendation of its use in combination with other therapeutic or preventive drugs [7]. Due to some 

intervening variables with inherent refractory characteristics usually described as parasite resistance to 

some or all of these control measures ever introduced, the global effort or the road map to malaria 

elimination seems to be a vicious circle. Antimalarial drug resistance has been reviewed in [8] and 

mathematical models on mosquito resistance have been proposed and analyzed, some of which are given in 

[8-11]. In the work of [10], two mathematical models on human antimalarial drug resistance and 

mosquitoes insecticides resistance together with human–mosquitoes population mobility in patches were 

analyzed, and their numerical solution confirmed the theoretical results of existence of a forward 

bifurcation and the global stability of a disease–free equilibrium.Although the use of bed-nets is believed to 

be effective because it drastically reduces the contact rate between human and mosquito, it is still 

worrisome that the decay of bed-nets poses danger to the advantage derived from their use. Thus the work 

of [12] analyzes the impact of decay in bed-nets efficacy on malaria transmission contending that the 

potential impact of Insecticide Treated Nets on reducing malaria transmission is limited due to inconsistent 

or improper use, as well as physical decay in effectiveness. They therefore suggest the provision of bed 

nets with longer life span and increase in bed-net coverage. 

The war against malaria is a two way process namely, chemotherapy (fighting the parasite in the human 

body to reduce or eliminate disease burden) and fighting the vector (mosquito) and preventing it from 

transmitting the parasite to humans through the use of bed nets, insecticides, repellant devices in form of 

cream and otherwise. Fighting the vector seems to be a better way in that this will prevent humans from 

contacting the disease and there would be no need for chemotherapy which involves introducing some 

chemicals into the human system that could be detrimental to health even as care should be taken in the use 

of some chemicals that may be detrimental to human health in trying to fight the vector. The use of 
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ineffective mosquito killer lamps or Led Light Trap lamps has been introduced in the public domain with a 

lot of them being advertised online.  

To the best of our knowledge there no mathematical model that has incorporated this idea. We therefore 

propose a mathematical model with a mosquito trap. In section 1 we present the introduction and the 

general background. We present the model formulation in section 2 and the analysis in section 3. The 

numerical solution is given in section 4 and the paper is rounded up with discussion and conclusion in 

section 5. 

2. Model Formulation 

We propose a human-mosquito interaction model comprising five compartments. The human and mosquito 

populations are represented by 𝑁ℎ and 𝑁𝑚 respectively, and  their compartmental descriptions are given by 

number of susceptible humans(𝑆ℎ), number of infectious humans(𝐼ℎ), number of susceptible mosquitoes 

(𝑆𝑚), number of infectious mosquitoes (𝐼𝑚) and number of trapped mosquitoes (𝑇𝑚). The human and 

mosquito populations are described by the equations 

𝑁ℎ = 𝑆ℎ + 𝐼ℎ(1) 

𝑁𝑚 = 𝑆𝑚 + 𝐼𝑚 + 𝑇𝑚(2) 

 Susceptible humans become infected through an infectious bite by a female Anopheles mosquito at a rate, 

𝛽1𝑆ℎ
𝐼𝑚

𝑁𝑚
  where, 𝛽1 is a rate constant. The fraction,  

𝐼𝑚

𝑁𝑚
  is the contact probability between infectious 

mosquitoes. Susceptible humans are recruited into the population through a constant birth rate, 𝜆ℎand the 

human population dies naturally at a per capita rate, 𝜇ℎwhile some individuals in the infectious class die at 

an additional rate, 𝛼ℎ from the disease. We also assume that infectious humans also infect susceptible 

mosquitoes as susceptible mosquitoes feed on them. Thus, the transition of susceptible mosquitoes into the 

infectious class is expressed by the rate, 𝛽2𝑆𝑚
𝐼ℎ

𝑁ℎ
 in which the fraction, 

𝐼ℎ

𝑁ℎ
 indicates the probability of 

contact between infectious humans and susceptible mosquitoes and  𝛽2 representing the infectious rate 

constant. Mosquitoes get attracted to the mosquito trap at a rate, 𝛽2𝜃𝑆𝑚
𝐼ℎ

𝑁ℎ
 . Out of the total infectious 

mosquitoes, a fraction, 1 − 𝜃 is attracted to humans and a fraction, 𝜃, where  0 ≤ 𝜃 ≤ 1 is attracted to the 

mosquito trap. We note that 𝜃 is the mosquito trap effectiveness and 𝛽1 is the contact rate, where the effect 

of the contact rate is controlled by 𝜃. We assume that, all mosquitoes die naturally at a rate, 𝜇𝑚𝑁𝑚 and also 

die at a rate 𝛼𝑚𝐼𝑚 as a result of carrying the plasmodium parasite. The proposed model consistent with the 

above assumptions is given by: 

𝑑𝑆ℎ

𝑑𝑡
= 𝜆ℎ𝑁ℎ − 𝛽1𝑆ℎ

𝐼𝑚

𝑁𝑚
− 𝜇ℎ𝑆ℎ                           (3) 

𝑑𝐼ℎ

𝑑𝑡
= 𝛽1𝑆ℎ

𝐼𝑚

𝑁𝑚
− 𝛼ℎ𝐼ℎ − 𝜇ℎ𝐼ℎ     (4) 

𝑑𝑆𝑚

𝑑𝑡
= 𝜆𝑚𝑁𝑚 − 𝛽2𝑆𝑚

𝐼ℎ

𝑁ℎ
− 𝜇𝑚𝑆𝑚     (5) 
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𝑑𝐼𝑚

𝑑𝑡
= 𝛽2(1 − 𝜃)𝑆𝑚

𝐼ℎ

𝑁ℎ
− 𝛼𝑚𝐼𝑚 − 𝜇𝑚𝐼𝑚    (6) 

𝑑𝑇𝑚

𝑑𝑡
= 𝛽2𝜃𝑆𝑚

𝐼ℎ

𝑁ℎ
− 𝜇𝑚𝑇𝑚      (7) 

𝑑𝑁ℎ

𝑑𝑡
= 𝜆ℎ𝑁ℎ − 𝛼ℎ𝐼ℎ − 𝜇ℎ𝑁ℎ                                      (8) 

𝑑𝑁𝑚

𝑑𝑡
= 𝜆𝑚𝑁𝑚 − 𝛼𝑚𝐼𝑚 − 𝜇𝑚𝑁𝑚                (9) 

 

Equation (8) is obtained by adding equations (3)-(4) and equation (9) is obtained by adding equations (5)- 

(7). 

2.1 Parameter Values and Nondimensionalisation 

The model parameters are listed in Table 1 below together with values taken from relevant sources. 

 

Table 1. List of model parameters. 

 

SymbolsDescription     Value  Units  Source 

𝜆ℎConstant recruitment rate of humans   

into the susceptible class                         0.0000433           𝐷𝑎𝑦−1[4,6,8] 

 

𝜃 Effectiveness of mosquito attractor     0.00000123 Dimensionless[4,6,8] 

𝛽1 Infection rate of susceptible humans by   

infectious mosquitoes  0.0987𝐷𝑎𝑦−1[4,6,8] 

𝑘1  Killing rate of trapped mosquitoes    0.00024 𝐷𝑎𝑦−1[4,6,8] 

𝜇ℎ Per capita death rate of humans  0.0000357 𝐷𝑎𝑦−1[4,6,8] 

𝜇𝑚 Per capita death rate of mosquitoes  0.035 𝐷𝑎𝑦−1[4,6,8] 

𝛽2 Infection rate of susceptible mosquitoes  

by infectious humans  0.854           𝐷𝑎𝑦−1[4,8,14] 

𝛼ℎDisease related death rate of infectious humans 0.05 𝐷𝑎𝑦−1[15] 

𝛼𝑚Malaria related death rate of infected mosquitoes 0.03152             𝐷𝑎𝑦−1[16] 

  

We rescale the variables using the following definitions:                    

𝑈 =
𝑆ℎ

𝑁ℎ
, 𝑉 =

𝐼ℎ

𝑁ℎ
, 𝑊 =

𝑆𝑚

𝑁𝑚
, 𝑋 =

𝐼𝑚

𝑁𝑚
, 𝑌 =

𝑇𝑚

𝑁𝑚
, 𝐻 =

𝑁ℎ

𝐻0
, 𝑀 =

𝑁𝑚

𝑀0
,  �̂� =

𝑡

𝑡0
,    (10) 

to obtain 

 

𝑈 + 𝑉 = 1                                                                                                            (11) 

 

𝑊 + 𝑋 + 𝑌 = 1                   (12) 

The time derivatives for the variables will become, using the variable 𝑆ℎ as an example, 
𝑑𝑈𝑁ℎ

𝑑𝑡
= 𝑁ℎ

𝑑𝑈

𝑑𝑡
+ 𝑈

𝑑𝑁ℎ 

𝑑𝑡
= 𝑁ℎ

𝑑𝑈

𝑑𝑡
+ (𝜆ℎ − 𝛼ℎ

𝑉

𝑁ℎ
− 𝜇ℎ)𝑈𝑁ℎ.             (13) 
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We rescale time with the Infection rate of susceptible mosquitoes by infectious humans and by substituting  

(10) in (3) – (9),  

and after performing some  algebraic simplifications we define the following dimensionless parameters.  

 𝑡0 =
1

𝛽2
, 𝜆 =

𝜆ℎ

𝛽2
, 𝛽 =

𝛽1

𝛽2
  𝛼 =

𝛼ℎ

𝛽2
, 𝑎 =

𝜆ℎ

𝛽2
, 𝑏 =

𝛼𝑚

𝛽2
, 𝜇 =

𝜇ℎ

𝛽2
, 𝑑 =

𝜇𝑚

𝛽2
,,                         (14) 

   

and after dropping the hats for notational simplicity, we have the following  nondimensional system; 

 
𝑑𝑈

𝑑𝑡
= 𝜆(1 − 𝑈) − 𝛽𝑈𝑋 +  𝛼𝑈𝑉            (15) 

𝑑𝑉

𝑑𝑡
= 𝛽𝑈𝑋 − (𝛼 + 𝜆)𝑉 + 𝛼𝑉2                                                                    (16) 

𝑑𝑊

𝑑𝑡
= 𝑎(1 − 𝑊) − 𝑉𝑊 + 𝑏𝑊𝑋,                                                                                  (17) 

𝑑𝑋

𝑑𝑡
= (1 − 𝜃)𝑊𝑉 − (𝑎 + 𝑏)𝑋 + 𝑏𝑋2,                                                                  (18) 

𝑑𝑌

𝑑𝑡
= 𝜃𝑊𝑉 − 𝑎𝑌 + 𝑏𝑋𝑌,                                                                    (19) 

𝑑𝐻

𝑑𝑡
= (𝜆 −  𝜇)𝐻 − 𝛼𝑉𝐻,             (20) 

𝑑𝑀

𝑑𝑡
= (𝑎 − 𝑑)𝑀 − 𝑏𝑋𝑀,                                                       (21) 

System (15) – (21) is to be analysed with (11) and (12), subject to the initial conditions, 

𝑈(0) = 1, 𝑉(0) = 0, 𝑊(0) = 𝑤0, X(0) = 1 − 𝑤0, Y(0) = 0,where we have considered introduction of 

few infectious mosquitoes in an entirely susceptible human population. 
 

3.0 Analysis of the Model 

3.1 Establishing theDisease Determining Threshold Parameter,𝑹𝟎 

Here we apply the next generation matrix method used in [12, 13, 14], by considering the equation 

𝐶′ =
𝑑𝐶

𝑑𝑡
, where 

𝐶′ = 𝐷𝐶 − 𝐸𝐶          (22) 

δ 

 𝐷 = ⌊
0 𝛽 0

1 − 𝜃 0 0
𝜃 0 0

⌋ , 𝐸 = ⌊
𝛼 + 𝜆 0 0

0 𝑎 + 𝑏 0
0 0 𝑎

⌋ ,   𝐶 = [
𝑉
𝑋
𝑌
] 

Here,  𝐷𝐶 represents the emergence of new infections, 𝐸𝐶is the distribution of these infections among compartments 

and  

C, the infection carrying matrix.  

The largest eigenvalue of 𝐺 = 𝐷𝐸−1given by 

𝐺 =
1

𝑔0
[𝑎

0 𝛽(𝛼 + 𝜆)(𝑎) 0
(1 − 𝜃)(𝑎 + 𝑏) 0 0

𝜃𝑎(𝑎 + 𝑏) 0 0
],                                                     (23) 

gives the basic reproduction number, 𝑅0, where 

𝑅0 =
𝛽(1−𝜃)

(𝑎+𝑏)(𝛼+𝜆)
         (24) 

Here we have used square of the spectral radius of G to represent its largest eigenvalue instead of the 

bigger of its square root. This is an assumption used by the original work using the new generation matrix 

method [16]. 
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3.2       Positivity, Existence and Uniqueness of Solution 

Themodel is described in the domain 

Ω ∈ ℝ8 = {𝑄, 𝐿, 𝑆, 𝐴 , 𝑅, 𝑉, 𝑃, 𝑁:𝑄 ≥ 0, 𝐿 ≥ 0, 𝑆 ≥ 0, 𝐴 ≥ 0, 𝑅 ≥ 0, 𝑉 ≥ 0, 
 𝑃 ≥ 0,𝑁 > 0, 𝑄 + 𝐿 + 𝑆 + 𝐴 + 𝑉 + 𝑅 = 1}       (25) 

Assuming all variables are positive 𝑎𝑡 𝑡 = 0, then 𝑄(0) + 𝐿(0) + 𝑆(0) + 𝐴(0) + 𝑉(0) + 𝑅(0) = 1. If  𝐿 = 0 , and 

all other variables are in Ω, then,  
𝑑𝐿

𝑑𝑡
≥ 0, this is also the case for variables in (2.15) - (2.19). If 𝑁 = 0, 𝑡ℎ𝑒𝑛,   

𝑑𝑁

𝑑𝑡
=

0.  But if  𝑁 > 0 and assuming 𝜆 > 𝜇 , then with  suitable initial conditions,  
𝑑𝑁

𝑑𝑡
> 0 ∀ 𝑡 > 0. We observe that the 

right-hand side of (2.15) - (2.20) is continuous with continuous partial derivatives. Thus, solutions exist and are 

unique andthe model has mathematically and biologically relevant solutions in the domain Ω ∀ 𝑡 ∈ [0,∞).  

3.3 Local Stability Analysis of the Disease Free State 

The disease free equilibrium point is given by (𝑈, 𝑉,𝑊, 𝑋, 𝑌) =  (1, 0, 1, 0, 0). We will derive sufficient conditions 

for the stability of the disease-free state. 

Lemma 3.1: The disease free equilibrium is locally asymptotically stable if 𝑅0 < 1 and unstable if𝑅0 > 1. 

 

Proof: 

Considering the following Jacobian matrix of the system of equations (15) – (19).  

 J𝑐𝑜𝑏 =

[
 
 
 
 
−𝜆 𝑎 0 −𝛽 0
0 −ℎ1 0 𝛽 0
0 −1 −𝑎 𝑏 𝑘
0 𝑟1 0 −ℎ2 0
0 𝜃 0 0 −ℎ3]

 
 
 
 

 ,                (26) 

Its characteristic equation in terms of the eigenvector δ, is given by  

(𝛿 + 𝜆)(𝛿4 + 𝐿1𝛿
3 + 𝐿2𝛿

2 + 𝐿3𝛿 + 𝐿4) = 0,         (27) 

Where the ℎ𝑖, 𝑠 and 𝐿𝑖,𝑠 are defined below in terms of the model parameters; 

ℎ1 = 𝑎 + 𝜆,  ℎ2 = 𝑎 + 𝑏, ℎ3 = 𝑎 + 𝑘, 𝑟1 = 1 − 𝜽, ℎ4 = ℎ1 + ℎ2 + ℎ3,ℎ5 = ℎ1ℎ2, ℎ6 = ℎ2ℎ3, ℎ7 = ℎ1ℎ3, ℎ8 =

ℎ3ℎ5,       

ℎ9 = ℎ6 + ℎ7, ℎ10 = (ℎ1 + ℎ2)(𝑎 + ℎ3)ℎ5(1 − 𝑅0)
2, ℎ11 = ℎ5(ℎ1 + ℎ𝟐)(𝑎 + ℎ3)(𝑎

2 + 𝑎(ℎ1 + ℎ2) + ℎ9 +

ℎ3
2)(1 − 𝑅0),  

ℎ12 = 𝑎ℎ3ℎ4
(ℎ1 + ℎ2)(𝑎 + ℎ3)(𝑎 + ℎ1+ℎ2), 𝐿𝟏 = a + ℎ4, 𝐿2 = aℎ4 + ℎ9 + ℎ5(1 − 𝑅0), L3

= 𝑎ℎ9 + ℎ5(𝑎 + ℎ3)(1 − 𝑅0), 
𝐿4 = 𝑎ℎ8(1 − 𝑅0),              (28) 

andR0 is as defined in (24) above. We note that one of the eigenvalues of (27) is strictly negative and  If𝑅0 < 1, 
then the coefficients of thequartic polynomial are all positive and non-zero; and by the Descartes' rule of signs 
there is no positive real eigenvalue. This means there are 4 negative real eigenvalues or 2 negative real eigenvalues 
and a  
complex conjugate pair, or two pairs of complex conjugate eigenvalues. Hence, the  
Routh Hurwitz stability criterion for a quartic polynomial as stated in  

[17]and expressed in our case as 𝜌 = 𝐿𝟏𝐿𝟐𝐿𝟑 − (𝐿𝟑
𝟐 + 𝐿𝟏

𝟐𝐿𝟒) > 0  is satisfied. 

Some algebraic simplifications yields  
𝜌 = ℎ14(1 − 𝑅0)

2 + ℎ16(1 − 𝑅0) + ℎ17, 
Where  

ℎ13 = (ℎ1 + ℎ2)(𝑎 + ℎ3), ℎ14 = ℎ5
2ℎ10, ℎ15 = 𝑎2 + 𝑎(ℎ1 + ℎ2) + ℎ9 + ℎ3

2, ℎ16 = ℎ5ℎ13ℎ15, ℎ17

= 𝑎ℎ3ℎ4ℎ13(𝑎 + ℎ1 + ℎ2). 
 But if  R0, then there will be atleast one sign change or one positive root meaning the solution may change its 

stability status. Thus the point R0 = 1 is a bifurcation point in the parameter space (𝜆, 𝛽 𝛼, 𝜃,𝑎, 𝑏, 𝜇, 𝑑, 𝑘). 
 

3.4 Global Stability Analysis of the Disease Free Equilibrium (𝑬𝟎) 
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For easier usage, we explore the method used in [14, 18-20 ] to show the global stability of the disease-free 

equilibrium point.  

Lemma  

The disease-free equilibrium point of the model equationsisglobally asymptoticallystable if𝑅0 <1 and the 

additional conditions,𝐻1and 𝐻2 are satisfied. These are; 

𝐻1:
𝑑𝐴

𝑑𝑡
= 𝐹(𝐴, 0)and 

𝐻2:  �̂�(𝐴, 𝐵) = 𝑄𝐵 − 𝐺(𝐴, 𝐵) ≥ 0∀(𝐴, 𝐵) ∈ 𝐸0 

Proof 

The model equations can be expressed as follows: 

𝑑𝐴

𝑑𝑡
= 𝐹(𝐴, 𝐵) = [

𝜆(1 − 𝑈) − 𝛽𝐷𝑈𝑋 + 𝛼𝑈𝑉

𝑎(1 − 𝑊) − 𝑉𝑊 + 𝐵𝑊𝑋 + 𝐾𝑉𝑊

𝜃VW − aY + 𝑏𝑋𝑌

] 

𝑑𝐵

𝑑𝑡
= 𝐺(𝐴, 𝐵) = [

𝛽𝑈𝑋 − (𝛼 + 𝜆)𝑉 + 𝛼𝑉2

(1 − 𝜃)𝑉 − (𝑎 + 𝑏)𝑋 + 𝑏𝑋2] 

Where 𝐴 = (𝑈,𝑊, 𝑌)and𝐵 = (𝑉, 𝑋), withthe components of 𝐴 ∈ 𝑅3 representing the non-infectious class, 

and the components of 𝐵 ∈ 𝑅2, representing the infectious class. 

Now, the equilibrium point of the model is (𝑈,𝑊, 𝑋, 𝑌, 𝑉) = (1,1,0,0,0). 

𝐹(𝐴, 0) = [
𝜆(1 − 𝑈)

𝑎(1 − 𝑊)
0

]         6 

From (1);  
𝑑𝑈

𝑑𝑡
=  𝜆(1 − 𝑈)

𝑑𝑈

𝑑𝑡
+ 𝜆𝑈 =  𝜆             7 

Solving (7) using the method of integrating factor, we have; 

𝑈(𝑡) = 1 + 𝑐𝑒−𝜆𝑡 

As 𝑡 → ∞,𝑈(𝑡) = 1   

Similarly, 𝑊(𝑡) = 1, 𝑎𝑠 𝑡 → ∞. 

Hence, 𝐻1 is satisfied.  
𝑑𝐵

𝑑𝑡
= 𝐺(𝐴, 𝐵) = [

𝛽𝑈𝑋 − (𝛼 + 𝜆)𝑉 + 𝛼𝑉2

(1 − 𝜃)𝑉𝑊 − (𝑎 + 𝑏)𝑋 + 𝑏𝑋2] 

𝑄 = [
−(𝛼 + 𝜆) 𝛽𝑈
(1 − 𝜃)𝑊 −(𝑎 + 𝑏)

] 

𝑄𝐵 = [
−(𝛼 + 𝜆) 𝛽𝑈
(1 − 𝜃)𝑊 −(𝑎 + 𝑏)

] [
𝑉
𝑋
] 

= [
𝛽𝑈𝑋 − (𝛼 + 𝜆)𝑉

(1 − 𝜃)𝑉𝑊 − (𝑎 + 𝑏)𝑋
] 

�̂�(𝑋, 𝑌) = 𝑄𝐵 − 𝐺(𝐴, 𝐵) 

= [
𝛽𝑈𝑋 − (𝛼 + 𝜆)𝑉

(1 − 𝜃)𝑉𝑊 − (𝑎 + 𝑏)𝑋
]-[

𝛽𝑈𝑋 − (𝛼 + 𝜆)𝑉 + 𝛼𝑉2

(1 − 𝜃)𝑉𝑊 − (𝑎 + 𝑏)𝑋 + 𝑏𝑋2] 

∴ �̂�(𝑋, 𝑌) = [−𝛼𝑉2

−𝑏𝑋2] 

→ �̂�(𝐴, 𝐵) ≥ 0 ∀(𝐴, 𝐵) ∈ 𝐸0 𝑖𝑓𝑓 𝛼 = 𝑏 = 0. 
This satisfies condition, 𝐻2.Thus, the equilibrium point is globally asymptotically stable. 

3.6 Numerical Solution 

Numerical simulations are carried out using MATLAB’s ODE15s, with the following values of the 

dimensionless parameters: 
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 𝜆 = 0.0439, 𝛽 = 0.23, 𝛼 = 0.025, 𝑎 = 0.157, 𝑏 = 0.1485, 𝑘 = 0.136, 𝜇 = 0.0253, , 𝜃 = 0.2, 𝛾 =
0.0067, 𝑑 = 0.0403,with initial conditions,    𝑈 = 1, 𝑉 = 0, 𝑊 = 0.999, 𝑋 = 0.001, 𝑌 = 0, 𝑁 = 1,
𝑀 = 1.  

 

 
 

Figure 1. Results showing the effect of the disease on the human and mosquito compartments, where t = 1, 

represents approximately 1.2 days in real time. The initial conditions used are 𝑈 = 1, 𝑉 = 0, 𝑊 = 0.999, 𝑋 =
0.001, 𝑌 = 0, 𝑁 = 1, 𝑀 = 1and the parameter values are 𝜆 = 0.0439, 𝛽 = 0.23, 𝛼 = 0.025, 𝑎 = 0.157, 𝑏 =
0.1485, 𝑘 = 0.136, 𝜇 = 0.0253, , 𝜃 = 0.2, 𝛾 = 0.0067, 𝑑 = 0.0403.  𝑅0 = 8.74 
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Figure.2. Results showing the effect of the disease on trapped mosquitoes, human population and mosquito 

population, where t = 1, represents approximately 1.2 days in real time. The initial conditions and parameter values 

used are the same as those in Figure 1. 

 

 
Figure 3. Results showing the effect of mosquito trap on mosquito infectiousness and susceptibility. The initial 

conditions and parameter values used arethe same as those in Figure 1 except that we have used  𝜃 = 0.9 to beef up 

the effectiveness of the trap. Here, 𝑅0 = 0.109. 
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Figure.2. Results showing disease transmission in the absence of mosquito trap or when the trap is completely 

ineffective. The initial conditions and parameter values used are the same as those in Figure 1 except that we have 

used 𝜃 = 0. 

 
Figure 4. Results showing the impact of mosquito trap effectiveness on trapped mosquitoes. The initial conditions 

and parameter values used arethe same as those in Figure 3. 
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3.5 Discussions 

In this model, we describe the transmission dynamics of malaria in an entirely susceptible human 

population due to the introduction of a single case and the effect of mosquito trap on Disease control. Even 

though malaria transmission data may vary regionally, the use of mosquito trap in malaria control may 

have some global effect. However, we have used some available global data in conjunction with mosquito 

trap to demonstrate the possibility of malaria eradication. Our analyses shows that the effectiveness of the 

trap appears to have reasonable impact on the Basic Reproduction Number,  𝑅0,whichsuggests a likelihood 

of the disease decaying in the presence of mosquito trap as seen in figure.3a,b,c,d and figure 4.In Figure 3a 

and 3b, the number of infectious humans and infectious mosquitoes die out as the number of susceptible 

humans and mosquitoes recover. This is due to a boost or an improvement in the trap effectiveness, 𝜃, from 

0.2 to 0.9. A comparison of the number of mosquitoes in the trap as shown in Figure 1d and Figure 4, 

shows that an effective trap could eliminate mosquitoes in the trap, which hitherto could be reserved by an 

ineffective mosquito trap. Figure 2a and Figure 2b depict a situation where there is complete 

ineffectiveness or absence of mosquito trap and the disease dynamics is only driven by the parameters 

𝛽, 𝑎, 𝑏, 𝜶 and  𝝀.  With the given values of these parameters in the absence of mosquito trap, the results 

show an endemic scenario where more than 80% of mosquitoes and a little below 80% of humans may 

likely be infected within about six months of introducing few infectious mosquitoes in an entirely 

susceptible human population.  

These results demonstrate the likely positive contribution of mosquito trap to possible disease eradication. 

The analysis shows that the disease free-state is globally asymptotically stable in the absence of disease 

related death of both humans and mosquitoes. We note from the basic reproduction number that even in the 

presence mosquito trap, malaria infection may continue to increase if the trap is not very effective. 

Although the trap effectiveness is a hypothetical parameter, it is a measure to provide guidance to mosquito 

trap manufacturers to effectively consider the biochemical substances that make humans attractive to 

mosquitoes and make the trap more attractive so that mosquitoes would have preference for the trap instead 

of humans. This could be interpreted from the model as the trap effectiveness, 𝜃, being as close as possible 

to unity.  

 

4. Conclusion 

In this work, we presented a mathematical model on the role of mosquito trap in malaria control. The 

model describes the effect of mosquito trap in malaria transmission and control in a totally susceptible 

population due to the introduction of few infectious mosquitoes. Analysis of the model shows that with the 

use of effective mosquito trap the disease may likely die out. Recent times the manufacturing of ineffective 

mosquito killer lamps or Led Light Trap lamps is very alarming with a lot of them being advertised online. 

A lot of people fall victim to purchasing these lamps that could not attract a single mosquito, a practical 

experience of the one of the authors of this article, which took him time to get refund of part of the money. 

Mosquito trap or killer lamp manufactures should engage the services of professional researchers to 

unravel the biochemical component of mosquito-human attractor, which will serve as a basis of an 

effective mosquito trap. 
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