
Udofia E.S., Thomas H.S. - Transactions of NAMP 19 (2024) 1-16 

 

1 
 

 

 

 

 

LYAPUNOV STABILITY OF MALE CIRCUMCISION MODEL IN HIV/AIDS 

PREVENTIONS 
 

Udofia, E.S. and Thomas, H.S. 
 

Department of Mathematics, Akwa Ibom State University, Ikot Akpaden, Akwa Ibom State, Nigeria 

 

 
 

ARTICLE INFO                                                ABSTRACT 
 

Article history: 
Received   xxxxx 

Revised     xxxxx 

Accepted   xxxxx 

Available online  xxxxx 

 

Keywords: 

Lyapunov, 
Circumcision, 
Global Stability, 

HIV/AIDS, 
Reproductive ratio. 

 

 
 

 

Introduction 

HIV/AIDS also called human immune deficiency virus (HIV)/acquired immune deficiency syndrome is a 

chronic immune system disease caused by HIV, spread mostly by sexual contact. HIV damages the immune 

system and interferes with the ability of the body to fight infection and diseases. Since there no known cure 

for this condition, the beast strategy to enhance the control and prevention of HIV/AIDS, is to reduce the 

transmissi0n coefficient. Since 1980s over thirty (30) observational studies suggest a protective effect of male circumcision on 

HIV acquisition in heterosexual men [1].    Male circumcision could be a traditional ritual, a religious rituals or a 

medical procedure.  
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This work examines the contribution of a non-pharmaceutical control measure, 

male circumcision to combat the spread of the world’s threatening infection, the 

HIV/AIDS. It establishes the condition for positivity and boundedness of the 

model, which enhance the existence and uniqueness of the solution of the model 

thereby making the model to be epidemiologically meaningful.The main 

mathematical technique used is the Lyapunov direct method which is applied 

successfully to two cases: when the population is not circumcised and when the 

population is fully circumcised, to study the global asymptotic stability of the 

model. It was established that the local stability of the model is guaranteed if the 

product of the probability of transmission by individuals and the average 

number of contact per unit time is less than the sum product of circumcision 

rate and that of the natural death of the individual in the population. That is if 

circumcision is encouraged in the population it greatly enhances the eradication 

of HIV/AIDS. When the population is circumcised the analysis showed that, the 

disease free equilibrium is globally asymptotically stable in𝜴 if 𝑹𝒄𝟎 ≤ 𝟏 
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It consists of the cutting of all or parts of the foreskin of the male reproductive organ either traditionally, 

religiously or medically [2].  Since there is no established medical cure for a complex epidemic like 

HIV/AIDS, scientists have consistently sought to develop strategies to eradicate it from the population [2, 

3, 4]. It has been discovered that HIV/AIDS may be eradicated provided that the net transmission rate of 

the infected individual is sufficiently reduced [2, 5].  

The main reason of mathematical modelling in infection transmission is to project population level 

outcome from individual level inputs [1, 2, 4, 5, 6, 7]. There are many possible outcomes that can be 

examined with a model for example the incidence of infection, the prevalence of infection or the doubling 

time of the epidemic. The most basic outcome, however is the likelihood of the epidemic occurring. That 

is, whether there is sufficient transmission potential for a chain of epidemic to be sustained. In classic 

epidemic theory, this outcome is captured by a simple summary statistics; the reproduction number of 

infectious process𝑅0. In a susceptible population the 𝑅0. Represent the expected secondary infections 

generated by the first infected individuals. If 𝑅0 > 1 an epidemic is expected to grow, if 𝑅0 < 1 the 

infection is expected to die out [1, 2, 3, 4, 5,  8] 

Researchers have assert that the initial rate of epidemic growth depends largely on the transmission 

coefficient. The epidemic peaks depend on the initial fraction at risk and the stability depends on changes 

to recruitment to the risk population. So researchers are battling on the effort to reduce at risk population. 

It is assumed in this work that if a good proportion of the population is circumcised, the at risk population 

is drastically minimized thereby reducing the transmission coefficient [2, 4, 9] 

Mathematical modelling hns made mathematics not only a source of knowledge but as a veritable tool in 

gaining insight into the dynamics of many real life system including the dynamics of infectious diseases 

[6, 7, 9, 10, 11, 12. 13. 14.] 
 

In [6] a prey-predator fishery model in a three patch aquatic habitat with selective harvesting of predator 

and prey populations is considered. Attempt was made to study the qualitative behaviour of stability and 

co-existence steady state solution in an interaction between prey and predator populations due to variation 

of the harvesting effort when other model parameters are fixed using the method of numerical simulation. 

The innovation of this simulation technique has been used to determine the fraction of harvest and un-

harvest resource biomass for prey and predator populations. Explicit expressions and values of the 

maximum sustainable yield (MSY) and the corresponding populations level were obtained. Some sort of 

control was suggested to avoid over exploitation of resource biomass. Graphical solutions of the model 

were provided. 

The researchers in [10] presented the mathematical model of the impact of vaccination on the transmission 

dynamics of fowl pox in poultry. The model resulted in a system first order differential equation. 

Analyzing the system using methods from dynamical system theory together with Routh Harwitz theorem, 

it was established that the disease free equilibrium is locally stable if the effective reproductive ratio in the 

presence of vaccination is less than one and unstable if it is greater than one. Using the condition for 

control, the critical proportion that needs to be vaccinated to achieve immunity for fowl pox was 

established. From the research, it was discovered that fowl pox can be eradicated from the poultry through 

vaccination provided the critical proportion is achieved. 

In [3] the Mathematical model of the effect of complacency in HIV/AIDS preventions is presented.  The 

model was formulated under six (6) assumptions which resulted in a system of first order differential 
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equations. Using methods from dynamical systems theory for analysis, it was shown that the disease free 

state is stable, the condition for this to be possible is: 1 < (µ+ 𝜆), that is, sum of the rate of progression to 

AIDS and rate of natural death is greater than 1(one). Also the endemic equilibrium state is asymptotically 

stable. At this point, the disease will not invade the community; otherwise the disease will invade the 

community. This means that there should be a bound on the rate of progression to AIDS; this is possible if 

the tempo of campaign against HIV/AIDS is not relaxed.  

In [11] the authors formulated the mathematical model for the epidemiology of fowl pox infection 

transmission that incorporates discrete delay. The model results in a discrete delay system of ordinary 

differential equations with delay parameter 𝜏 ≥ 0. Analyzing the system using theorems from differential 

and integral calculus, we discovered that the number of infectives after a very long time from the day of 

inception of the epidemic is constant. 1 2𝛿−𝛼𝑁 + 𝜇 1 4𝛿 − 1 2𝛼. The disease free equilibrium and the 

endemic equilibrium of the system were both established. Using the computable criteria for stability of 

discrete delay system, unlike ordinary differential equations models, we obtained exponential polynomial 

equations.  Analyzing the system, it was established that both the disease free equilibrium endemic 

equilibrium points of the system are stable in the absence of delay and unstable with increasing delay if     

𝛽< (𝜇−𝜆) 𝛼−𝛿, that is, the rate at which the birds are recruited into the system must be greater than the rate 

at which birds die and the rate at which infection transmission is taking place. 

In [8], the researchers presented the mathematical model of the transmission dynamics of fowl pox 

infection in poultry. Approach: It described the interaction between the susceptible and the infected birds 

which results in a system of ordinary differential equation. Introducing the control which represents the 

effort in applying chemoprophylaxis control 𝑢1 and treatment control 𝑢2 in birds with fowl pox, the 

system became a system of ordinary differential equations with control. The optimal control problem 

involved that in which the number of birds with latent and active fowl pox infections and the cost of 

treatment controls 𝑢1(𝑡) and 𝑢2(𝑡) were minimized subject to the model differential This involves the 

number of birds with active and latent fowl pox respectively as well as the cost of applying 

chemoprophylaxis control 𝑢1 and treatment 𝑢2 in birds with fowl pox.  Analysing the model using 

Pontryagin’s Maximum Principle and optimality conditions, optimal effort necessary to reduce the 

transmission rate of fowl pox in the poultry was determined. Hence, it is possible to reduce the rate of 

transmission.  

The researchers in [10] developed the mathematical model of bacteria-nutrient harvesting in a cultured 

environment. This model which assumes that the rate of harvesting of these bacteria is constant results in a 

system of first order differential equations. Analyzing the model, it was discovered that the product of the 

maximum nutrient uptake per cell and the number of cells produced per unit of nutrient uptake is constant 

(𝑽𝒀   =   𝒍𝒏𝟐 +𝒉). It was also assumed that the rate of harvesting of these bacteria varies and a 

corresponding model was developed. Analyzing this model using methods from dynamical systems 

theory, it was seen that the system has two steady states. The first steady state is unstable while the second 

is globally asymptotically stable if the carrying capacity of the environment has a lower bound, which is a 

ratio of the harvesting coefficient of the bacteria, cost per unit effort per unit price of the bacteria.  

The mathematical model for the transmission dynamics of swine flu among swine and humans with the 

vaccination of newborns is presented in [15]. The model assumes a vaccine with a life-long immunity. 

The analysis of the Disease-free Equilibrium (DFE) shows that it will be stable if there is a bound on the 

rate of transmission from swine to swine (βs) and the rate of transmission from human to human (βH). 

Endemic Equilibrium (EE) for the model shows that the disease will persist if there is a lower bound on 



Udofia E.S., Thomas H.S. - Transactions of NAMP 19 (2024) 1-16 

 

4 
 

the rate of transmission from swine to swine (βS) and on the rate of newborn babies vaccinated (VH). The 

behavior of the influenza (flu) is illustrated by simulation with different parameter values. 

Two models that examines the transmission dynamics of fowl pox among birds based on mode of 

transmission of the disease in poultry was formulated in [9]. Using methods from dynamical system 

theory, equilibrium analysis of the first model showed that the diseases free equilibrium is stable if 𝛼𝑁 <

(𝑑1 + 𝜇 + 𝛾), 𝛽 < 𝛾 The endemic equilibrium is asymptotically stable if 𝛽 − 𝛾 <
𝛼(𝑑1+𝜇+𝛾)

𝑘
. That is fowl pox 

will not invade the poultry if the rate at which the susceptible birds 𝛽 are introduced into the poultry is 

greater than the rate at which the susceptible birds are exposed to infection 𝛾 .It was also established that  

𝑅0 < 1 if  𝑆0 > 𝑆𝑐 where  𝑆𝑐 =
(𝑑1+𝜇+𝛾)

𝛼
𝑅0 =

𝛾𝑆0(𝑑1+𝜇+𝛾)

𝛼
 . The second model is stable if the rate at which 

the infected birds recover and the rate at which the mosquito die are high. Also if the growth rate of 

mosquito is less than the death rate of mosquito 

In [14], the mathematical model of the impact of vaccination on the transmission dynamics of fowl pox in 

poultry is presented.  The model resulted in a system of ordinary differential equation. Analysing the 

system using methods from dynamical system theory together with Routh-Harwitz theorem, it was 

established that the disease free equilibrium is locally stable if the effective reproduction ratio  𝑅𝜌 =
(1−𝜌)𝛼𝛽

(𝑑1+𝑟1+𝜇)
 in the presence of vaccination is less than one (1). Using the condition for control, the crtical 

proportion that needs to be vaccinated to achieve herds immunity for fowl pox is established as  𝜌𝑐 =
𝛼𝛽−(𝑑1+𝜇+𝛾)

𝛼𝛽
 it was discovered that the fowl pox can be eradicated through vaccination provided the critical 

proportion 𝜌𝑐 is achieved 

Mathematical model of male circumcision in HIV/AIDS preventions is formulated in [5]. The male 

circumcision considered in the research were taken to be traditional ritual, religious rituals or medical 

procedure circumcision. Several assumptions were taken into consideration in formulating the model. In 

the analysis of the model, the steady states were established, and shown that these steady states are stable 

if (𝝈+𝝁) >−𝑩and 𝝈> −(𝝁 + 𝒗𝒄). Also from the analysis of the model, it was observed that if the sum of the 

rate of death due to natural incidence (𝝁) and that due to infection is reduced (𝒗𝒄) while the rate of 

circumcision is increased, this will bring the reproduction number of infectious process to less than one 

and the epidemic will die out of the population  
 

Here in this article, we further analyse our previous model in [5], establishing the boundedness and 

positivity of the model. Construct the next generation matrix to determine the basic reproductive ratio both 

at when the population is not circumcised and at when the population is fully circumcised. The previous 

work only focused on the development of the model and establish local stability using dynamical system 

theory. But her we shall establish the local and global stability of the model using Lyapunov’s direct 

method (also known as Lyapunov second method) which provides a way of analysing the stability of 

nonlinear systems without actually solving the differential equations.  
 

2.0 Model formulation 

The model as presented in [5] 
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2.1 Assumptions and Parameters 

2.2 Model Assumptions 

1. We assume that there is a proportionate recruitment rate of individuals into the heterosexual 

population. 

2. There is proportionate rate of circumcision of both the susceptible and infected individuals. 

2.3 Model PARAMETERS 

𝑆𝑐(𝑡)= Number of susceptible individuals that are circumcised at time 𝑡, 𝑡 > 0 

𝑆𝑛𝑐(𝑡)= Number of susceptible individuals that are not circumcised at time 𝑡, 𝑡 > 0 

𝑆(𝑡) = 𝑆𝑐(𝑡) + 𝑆𝑛𝑐(𝑡)=  Susceptible population at time 𝑡, 𝑡 > 0 

𝐼𝑐(𝑡)= Number of infected  individuals that are circumcised at time 𝑡, 𝑡 > 0 

𝐼𝑛𝑐(𝑡)= Number of infected  individuals that are not circumcised at time 𝑡, 𝑡 > 0 

𝐼(𝑡) = 𝐼𝑐(𝑡) + 𝐼𝑛𝑐(𝑡)=  infected population at time 𝑡, 𝑡 > 0 

𝑁 = 𝑆(𝑡) + 𝐼(𝑡) = 𝑆𝑐(𝑡) + 𝑆𝑛𝑐(𝑡) + 𝐼𝑐(𝑡) + 𝐼𝑛𝑐(𝑡)=  total  population under the 

𝑏= Recruitment rate into the population 

µ= Natural death rate of  the population 

𝑉𝑐 =Death rate of circumcised infected individuals 

𝑉𝑛𝑐 =Death rate of uncircumcised infected individuals 

𝜎 = 𝑇ℎ𝑒𝑟𝑎𝑡𝑒𝑎𝑡𝑤ℎ𝑖𝑐ℎ𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒𝑖𝑛𝑑𝑖𝑑𝑢𝑎𝑙𝑠𝑎𝑟𝑒𝑏𝑒𝑖𝑛𝑔𝑐𝑖𝑟𝑐𝑢𝑚𝑐𝑖𝑠𝑒𝑑 

𝜌 = 𝑇ℎ𝑒𝑟𝑎𝑡𝑒𝑎𝑡𝑤ℎ𝑖𝑐ℎ𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝑎𝑟𝑒𝑏𝑒𝑖𝑛𝑔𝑐𝑖𝑟𝑐𝑢𝑚𝑐𝑖𝑠𝑒𝑑. 

𝛽 = 𝑇ℎ𝑒𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑓𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑏𝑦𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 ∈ 𝑐𝑙𝑎𝑠𝑠𝐼𝑛𝑐 

𝛼 = 𝑇ℎ𝑒𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑓𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑏𝑦𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 ∈ 𝑐𝑙𝑎𝑠𝑠𝐼𝑐 

𝑐 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ∨ 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠𝑝𝑒𝑟𝑢𝑛𝑖𝑡𝑡𝑖𝑚𝑒 

𝑐𝛽 ∧ 𝑐𝛼𝑎𝑟𝑒𝑛𝑒𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑜𝑓𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 ∈ 𝑐𝑙𝑎𝑠𝑠𝐼𝑛𝑐 ∧ 𝐼𝑐respectively 

 

2.4 The Model Equations 

The combination of the above assumptions and parameters result in the following model equation for male circumcision in 

HIV/AIDS preventions. 

𝑑𝑆𝑐(𝑡)

𝑑𝑡
= 𝜎𝑆𝑛𝑐(𝑡) − 𝐵(𝑡)𝑆𝑐(𝑡) − 𝜇𝑆𝑐(𝑡) 

𝑑𝑆𝑛𝑐(𝑡)

𝑑𝑡
= 𝑏𝑁 − 𝐵(𝑡)𝑆𝑛𝑐(𝑡) − 𝜎𝑆𝑛𝑐(𝑡) − 𝜇𝑆𝑛𝑐(𝑡) 

𝑑𝐼𝑐(𝑡)

𝑑𝑡
= 𝐵(𝑡)𝑆𝑐(𝑡) − (𝜇 + 𝑣𝑐)𝐼𝑐 + 𝜎𝐼𝑛𝑐(𝑡) 

𝑑𝐼𝑛𝑐(𝑡)

𝑑𝑡
= 𝐵(𝑡)𝑆𝑛𝑐(𝑡) − (𝜇 + 𝑣𝑛𝑐)𝐼𝑛𝑐 − 𝜎𝐼𝑛𝑐(𝑡) 

Where   

𝐵(𝑡) =
𝑐𝛽𝐼𝑛𝑐(𝑡) + 𝑐𝛼𝐼𝑐(𝑡)

𝑁
= 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑟𝑎𝑡𝑒𝑜𝑓𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 

 

3.0 ANALYSIS OF THE MODEL 

3.1 Positivity and Boundedness 

For the model (2.1) to be epidemiologically meaningful, it is important to show that all its state variables 

are non-negative for all time 𝑡 > 0 and that 𝛺  is, indeed, bounded. Following methods in [2, 3,4,5,6, 22], 

we claim the following: 

Given the initial condition of the system   
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𝑆𝑐(0) ≥ 0, 𝑆𝑛𝑐(0) ≥ 0, 𝐼𝑐(0) ≥ 0, 𝐼𝑛𝑐(0) ≥ 0……………… . . (3.1.1) 

We can define a feasible region such that 

𝛺 = {(𝑆𝑐 , 𝑆𝑛𝑐𝐼𝑐, 𝐼𝑛𝑐 , ) ∈ 𝑅
+ 4:0<𝑆𝑐,+𝐼𝑐<

𝑁(𝜎+𝜇−𝑏)
𝜎+𝜇

,0<𝑆𝑛𝑐,+𝐼𝑛𝑐<
𝑏𝑁
𝜎+𝜇

 

Then we have the following theorem 

 

Theorem 3.1.1: Let the initial data for the model (2.1) be 𝑆𝑐(0) ≥ 0, 𝑆𝑛𝑐(0) ≥ 0, 𝐼𝑐(0) ≥ 0, 𝐼𝑛𝑐(0) ≥ 0Then 

the solutions(𝑆𝑐 , 𝑆𝑛𝑐𝐼𝑐 , 𝐼𝑛𝑐)of the model (2.1) are positive for all time t > 0 . 

Proof:  

Since the right hand side of (2.1) is Lipschitz continuous, then there is existence of unique solutions  

𝐹𝑜𝑟𝑖 = 1𝑓1(0, 𝑆𝑛𝑐𝐼𝑐 , 𝐼𝑛𝑐, ) = 𝜎𝑆𝑛𝑐(𝑡)considering that 𝑆𝑛𝑐 ≥ 0, 𝐼𝑐 ≥ 0, 𝐼𝑛𝑐 ≥ 0, 𝑓1(0, 𝑆𝑛𝑐𝐼𝑐, 𝐼𝑛𝑐 , ) ≥ 0 and thus 

𝑆𝑐 ≥ 0𝑓𝑜𝑟𝑎𝑙𝑙𝑡 which it exist. 

𝐹𝑜𝑟𝑖 = 2𝑓2(𝑆𝑐, 0, 𝐼𝑐 , 𝐼𝑛𝑐, ) = 𝑏𝑁considering that 𝑆𝑐 ≥ 0, 𝐼𝑐 ≥ 0, 𝐼𝑛𝑐 ≥ 0, 𝑓2(𝑆𝑐, 0𝐼𝑐 , 𝐼𝑛𝑐, ) ≥ 0 and thus 𝑆𝑛𝑐 ≥

0𝑓𝑜𝑟𝑎𝑙𝑙𝑡 which it exist. 

𝐹𝑜𝑟𝑖 = 3𝑓3(𝑆𝑐, 𝑆𝑛𝑐 , 0, 𝐼𝑛𝑐 , ) = 𝐵(𝑡)𝑆𝑐(𝑡)considering that 𝑆𝑐 ≥ 0, 𝑆𝑛𝑐 ≥ 0, 𝐼𝑛𝑐 ≥ 0, 𝑓3(𝑆𝑐 , 𝑆𝑛𝑐, 0𝐼𝑛𝑐, ) ≥ 0 and 

thus 𝐼𝑐 ≥ 0𝑓𝑜𝑟𝑎𝑙𝑙𝑡 which it exist. 

𝐹𝑜𝑟𝑖 = 4𝑓4(𝑆𝑐 , 𝑆𝑛𝑐 , 𝐼𝑐 , 0) = 𝐵(𝑡)𝑆𝑛𝑐(𝑡)considering that 𝑆𝑐 ≥ 0, 𝑆𝑛𝑐 ≥ 0, 𝐼𝑐 ≥ 0, 𝑓4(𝑆𝑐, 𝑆𝑛𝑐 , 𝐼𝑐 , 0) ≥ 0 and thus 

𝐼𝑛𝑐 ≥ 0𝑓𝑜𝑟𝑎𝑙𝑙𝑡 which it exist. 

 

Therefore given the initial conditions in  (3.1.1), the solutions  𝑆𝑐 , 𝑆𝑛𝑐 , 𝐼𝑐 , 𝐼𝑛𝑐  are positive for all 𝑡 which 

they exist. 

Likewise:   

Let 𝑡1 =
{𝑡>0:𝑆𝑐(0)≥0,𝑆𝑛𝑐(0)≥0,𝐼𝑐(0)≥0,𝐼𝑛𝑐(0)≥0∈[0.𝑡]} .  Thus, 𝑡1 > 0.  

We have, from the first equation of the system (2.1) that 
𝑑𝑆𝑐(𝑡)

𝑑𝑡
+ (𝐵(𝑡) + 𝜇)𝑆𝑐(𝑡) = 𝜎𝑆𝑛𝑐(𝑡),𝑤ℎ𝑒𝑟𝑒𝐵(𝑡) =

𝑐𝛽𝐼𝑛𝑐(𝑡) + 𝑐𝛼𝐼𝑐(𝑡)

𝑁
 

Which can be written as:   
𝑑(𝑆𝑐(𝑡)℮

∫ (𝐵(𝑡)+𝜇)𝑆𝑐
𝑡1
0 )

𝑑𝑡
= 𝜎𝑆𝑛𝑐(𝑡) 

So that 𝑆𝑐(𝑡1) = ℮
−∫ (𝐵(𝑠)+𝜇)𝑑𝑠

𝑡1
0 [∫ 𝜎𝑆𝑛𝑐(𝑠)𝑑𝑠

𝑡1
0

] > 0 

Similarly, it can be shown that  𝑆𝑛𝑐 > 0, 𝐼𝑐 > 0, 𝐼𝑛𝑐 > 0 

 

Theorem 3.1.2  

The feasible region  

𝛺 = {(𝑆𝑐 , 𝑆𝑛𝑐𝐼𝑐, 𝐼𝑛𝑐) ∈ 𝑅
+ 4:0<𝑆𝑐,+𝐼𝑐<

𝑁(𝜎+𝜇−𝑏)
𝜎+𝜇

,0<𝑆𝑛𝑐,+𝐼𝑛𝑐<
𝑏𝑁
𝜎+𝜇

 

with the initial conditions in (3.1.1) is positively invariant and attracting.   

Proof: 

Recall that 𝑁 = 𝑆𝑐 + 𝑆𝑛𝑐 + 𝐼𝑐 + 𝐼𝑛𝑐,, therefore adding all the equations of (2.1) we have 
𝑑𝑁

𝑑𝑡
= 𝜎𝑆𝑛𝑐(𝑡) −

𝐵(𝑡)𝑆𝑐(𝑡) − 𝜇𝑆𝑐(𝑡) + 𝑏𝑁 − 𝐵(𝑡)𝑆𝑛𝑐(𝑡) − 𝜎𝑆𝑛𝑐(𝑡) − 𝜇𝑆𝑛𝑐(𝑡) + 𝐵(𝑡)𝑆𝑐(𝑡) − (𝜇 + 𝑣𝑐)𝐼𝑐 + 𝜎𝐼𝑛𝑐(𝑡) +

𝐵(𝑡)𝑆𝑛𝑐(𝑡) − (𝜇 + 𝑣𝑛𝑐)𝐼𝑛𝑐 − 𝜎𝐼𝑛𝑐(𝑡)……… 
𝑑𝑁

𝑑𝑡
= −𝜇𝑁 + 𝑏𝑁 − 𝛿𝑁, 𝛿 = 𝑚𝑖𝑛(𝑣𝑐 , 𝑣𝑛𝑐)…………………………………(3.1.2) 

Which can be written as  
𝑑𝑁

𝑑𝑡
= −𝜔𝑁 

Where 𝜔 = (𝜇 + 𝛿 − 𝑏) 
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Thus ∫
𝑑𝑁

𝑁
≤ −∫𝜔𝑑𝑡 

So that 𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜔𝑡 

𝑁(𝑡)approaches 𝑁(0) as 𝑡 → ∞ .  

Therefore the region 𝛺 is positively invariant. Then either the solution enter 𝛺 in finite time, or 𝑁(𝑡) 

approaches 𝑁(0) asymptotically. Hence, the region𝛺 attract all solutions in 𝑅+ 4 
 

3.2 Next Generation Matrix and Basic Reproductive Ratio( Assuming 𝑆𝑐
0 = 0)  

Assuming that the  𝑆𝑐
0 = 0 that is, in the absence of infection, there is no circumcision, we shall apply methods in [1, 3, 4,  9. 

10. 11. 12, 15, 21] to construct the next generation matrix 

𝑆𝑛𝑐
0 =

𝑏𝑁

𝜎+𝜇
𝑆𝑐
0 = 0, 𝐹 = (

0 0
𝑐𝛼𝑏

𝜎+𝜇

𝑐𝛽𝑏

𝜎+𝜇

) 

𝑉 = (
(𝜇 + 𝑣𝑐) −𝜎

(𝜇 + 𝑣𝑛𝑐 + 𝜎) 0
) 

𝑉−1 =

(

 
 
0

1

(𝜇 + 𝑣𝑛𝑐 + 𝜎)

1

−𝜎

(𝜇 + 𝑣𝑐)

𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎))

 
 

 

𝑉−1𝐹 =

(

 
 

𝑐𝛼𝑏

(𝜇 + 𝑣𝑛𝑐 + 𝜎)(𝜎 + 𝜇)

𝑐𝛽𝑏

(𝜇 + 𝑣𝑛𝑐 + 𝜎)(𝜎 + 𝜇)

𝑐𝛼𝑏(𝜇 + 𝑣𝑐)

𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎)(𝜎 + 𝜇)

𝑐𝛽𝑏(𝜇 + 𝑣𝑐)

(𝜇 + 𝑣𝑛𝑐 + 𝜎)(𝜎 + 𝜇)𝜎)

 
 

 

𝐹𝑉−1 = (

0 0
−𝑐𝛽𝑏

(𝜎 + 𝜇)𝜎

𝑐𝛼𝑏𝜎 + 𝑐𝛽𝑏(𝜇 + 𝑣𝑐)

𝜎(𝜎 + 𝜇)(𝜇 + 𝑣𝑛𝑐 + 𝜎)
) 

𝑅0 = 𝜌(𝐹𝑉
−1) =

𝑐𝛼𝑏

(𝜎 + 𝜇)(𝜇 + 𝑣𝑛𝑐 + 𝜎)
+

𝑐𝛽𝑏(𝜇 + 𝑣𝑐)

𝜎(𝜎 + 𝜇)(𝜇 + 𝑣𝑛𝑐 + 𝜎)
……… . . (3.2.1) 

 

3.3 Local Stability using Basic Reproductive Ratio 

We shall use the basic reproductive ratio 𝑅0 in (3.2.1) to establish the local stability of the system (2.1). The following lemmas 

in [1] shall be instrumental in establishing that the system (2.1) is stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.  

Lemma 3.3.1: If a matrix  𝐾 has the Z-sign pattern, then 𝐾 ≥ 0 if and only if 𝐾 is a non-singular 𝑀 − 

 

Lemma 3.3.2:If F is nonnegative and V is a non-singular M-matrix, then 

𝑅0 = 𝜌(𝐹𝑉
−1) < 1if and only if all eigenvalues of 𝐾 = 𝐹 − 𝑉have negative real parts. 

Theorem 3.3.1: Consider the disease transmission model given by (2.1). The disease-free 

equilibrium of (2.1) is locally asymptotically stable if 𝑅0 < 1, but unstable if 𝑅0 > 1, 

where 𝑅0 is as defined in (3.2.1) 

 

 

Proof 

Let  𝐹 = (
0 0
𝑐𝛼𝑏

𝜎+𝜇

𝑐𝛽𝑏

𝜎+𝜇

) 
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𝑉 = (
(𝜇 + 𝑣𝑐) −𝜎

(𝜇 + 𝑣𝑛𝑐 + 𝜎) 0
),   𝐾 = 𝐹 − 𝑉 = (

0 0
𝑐𝛼𝑏

𝜎+𝜇

𝑐𝛽𝑏

𝜎+𝜇

) − (
(𝜇 + 𝑣𝑐) −𝜎

(𝜇 + 𝑣𝑛𝑐 + 𝜎) 0
) =

(
−(𝜇 + 𝑣𝑐) −𝜎

𝑐𝛼𝑏

𝜎+𝜇
− (𝜇 + 𝑣𝑛𝑐 + 𝜎)

−𝑐𝛽𝑏

𝜎+𝜇

) 

𝐾 = ⌈

−(𝜇 + 𝑣𝑐) −𝜎
𝑐𝛼𝑏

𝜎 + 𝜇
− (𝜇 + 𝑣𝑛𝑐 + 𝜎)

−𝑐𝛽𝑏

𝜎 + 𝜇

⌉
1

2
(𝑎 + 𝑑 −√𝑎2 + 4𝑏𝑐 − 2𝑎𝑑 + 𝑑2) ,

1

2
(𝑎 + 𝑑 +√𝑎2 + 4𝑏𝑐 − 2𝑎𝑑 + 𝑑2)} 

1

2
(−(𝜇 + 𝑣𝑐) −

𝑐𝛽𝑏

𝜎 + 𝜇
+ √(𝜇 + 𝑣𝑐)

2 − 4𝜎 (
𝑐𝛼𝑏

𝜎 + 𝜇
− (𝜇 + 𝑣𝑛𝑐 + 𝜎)) − 2

(𝜇 + 𝑣𝑐)𝑐𝛽𝑏

𝜎 + 𝜇
+ (

𝑐𝛽𝑏

𝜎 + 𝜇
)
2

) 

Where −(𝜇 + 𝑣𝑐) −
𝑐𝛽𝑏

𝜎+𝜇
 is the real part of the eigenvalue, which is clearly negative, that is, −(𝜇 + 𝑣𝑐) −

𝑐𝛽𝑏

𝜎+𝜇
< 0 

 

3.4 LYAPONOV DIRECT METHOD OF STABILITY 

Lyapunov’s direct method (also known as Lyapunov second method) provides a way of analysing the 

stability of nonlinear systems without actually solving the differential equations. The idea behind 

Lyapunov’s direct method is that the system is stable if there exists some Lyapunov function in the 

neighbourhood of the equilibrium point. Thus it can be shown that Lyapunov’s direct method is a 

sufficient condition for the stability of nonlinear system. 

We shall employ a matrix-theoretic method to construct a Lyapunov function in order to study the global 

stability of the disease-free equilibrium of the model equation (2.1) following methods in [2, 8,17,18,19] 
 

The set  
𝑓(𝐼𝑐 , 𝐼𝑛𝑐, 𝑆𝑐 , 𝑆𝑛𝑐 , ) = (𝐹 − 𝑉)𝑥 − 𝑃(𝑥, 𝑦) + 𝑄(𝑥, 𝑦)………………………… . . (3.4.1) 

Where 𝑥 = (𝐼𝑐 , 𝐼𝑛𝑐)
𝑇 , 𝑦 = (𝑆𝑐 , 𝑆𝑛𝑐)

𝑇,  

𝑃(𝐼𝑐 , 𝐼𝑛𝑐, 𝑆𝑐 , 𝑆𝑛𝑐) = (
𝐵(𝑡)𝑆𝑐
𝐵(𝑡)𝑆𝑛𝑐

), 

𝑄(𝐼𝑐 , 𝐼𝑛𝑐 , 𝑆𝑐 , 𝑆𝑛𝑐) = (
(𝜇 + 𝑣𝑐)𝐼𝑐 − 𝜎𝐼𝑛𝑐(𝑡)

(𝜇 + 𝑣𝑛𝑐 + 𝜎)𝐼𝑛𝑐
).  

𝑥 = (𝐹 − 𝑉)𝑥 − 𝑓(𝑥, 𝑦) 

 

Assuming that the  𝑆𝑐
0 = 0 that is, in the absence of infection, there is no circumcision, we shall apply 

methods in [1, 3, 4, 9. 10. 11. 12, 15, 21]to construct the next generation matrix 

𝑆𝑛𝑐
0 =

𝑏𝑁

𝜎 + 𝜇
 

𝑆𝑐
0 = 0 

𝐹 = (

0 0
𝑐𝛼𝑏

𝜎 + 𝜇

𝑐𝛽𝑏

𝜎 + 𝜇
) 

𝑉 = (
(𝜇 + 𝑣𝑐) −𝜎

(𝜇 + 𝑣𝑛𝑐 + 𝜎) 0
) 

𝑉−1 =

(

 
 
0

1

(𝜇 + 𝑣𝑛𝑐 + 𝜎)

1

−𝜎

(𝜇 + 𝑣𝑐)

𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎))
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𝑉−1𝐹 =

(

 
 

𝑐𝛼𝑏

(𝜇 + 𝑣𝑛𝑐 + 𝜎)(𝜎 + 𝜇)

𝑐𝛽𝑏

(𝜇 + 𝑣𝑛𝑐 + 𝜎)(𝜎 + 𝜇)

𝑐𝛼𝑏(𝜇 + 𝑣𝑐)

𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎)(𝜎 + 𝜇)

𝑐𝛽𝑏(𝜇 + 𝑣𝑐)

(𝜇 + 𝑣𝑛𝑐 + 𝜎)(𝜎 + 𝜇)𝜎)

 
 

 

𝐹𝑉−1 = (

0 0
−𝑐𝛽𝑏

(𝜎 + 𝜇)𝜎

𝑐𝛼𝑏𝜎 + 𝑐𝛽𝑏(𝜇 + 𝑣𝑐)

𝜎(𝜎 + 𝜇)(𝜇 + 𝑣𝑛𝑐 + 𝜎)
) 

𝑅𝑛𝑐0 = 𝜌(𝐹𝑉
−1) =

𝑐𝛼𝑏

(𝜎 + 𝜇)(𝜇 + 𝑣𝑛𝑐 + 𝜎)
+

𝑐𝛽𝑏(𝜇 + 𝑣𝑐)

𝜎(𝜎 + 𝜇)(𝜇 + 𝑣𝑛𝑐 + 𝜎)
 

The left eigenvector of the nonnegative matrix, 𝑉−1𝐹, isobtained thus: 

{
 
 

 
 

𝜎

𝜇 + 𝑣𝑐
−
𝛽𝜎

𝛼
−

𝑐𝑏√𝛼2𝜎2 + 𝛽(𝜇 + 𝑣𝑐)(𝛼 + 𝛽)

𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎)(𝜎 + 𝜇)

2
𝑐𝛼𝑏(𝜇 + 𝑣𝑐)

𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎)(𝜎 + 𝜇)

, 1

}
 
 

 
 

= {
𝜎

𝜇 + 𝑣𝑐
−
𝛽𝜎

𝛼
−
𝑏√𝛼2𝜎2 + 𝛽(𝜇 + 𝑣𝑐)(𝛼 + 𝛽)

𝛼(𝜇 + 𝑣𝑐)
, 1}

= {
𝜎(𝛼 − 𝛽(𝜇 + 𝑣𝑐)) − 𝑏√𝛼

2𝜎2 + 𝛽(𝜇 + 𝑣𝑐)(𝛼 + 𝛽)

𝛼(𝜇 + 𝑣𝑐)
, 1} 

The left eigenvector of the nonnegative matrix, 𝑉−1𝐹, is𝜔𝑇 = {
𝜎(𝛼−𝛽(𝜇+𝑣𝑐))−𝑏√𝛼

2𝜎2+𝛽(𝜇+𝑣𝑐)(𝛼+𝛽)

𝛼(𝜇+𝑣𝑐)
, 1} 

Given that 𝐵(𝑡) =
𝑐𝛽𝐼𝑛𝑐(𝑡)+𝑐𝛼𝐼𝑐(𝑡)

𝑁
 and    𝑓(𝐼𝑐 , 𝐼𝑛𝑐, 𝑆𝑐 , 𝑆𝑛𝑐) = [

𝐵(𝑡)(𝑆𝑐0 − 𝑆𝑐)

𝐵(𝑡)(𝑆𝑛𝑐0 − 𝑆𝑛𝑐)
] 

Notice that, 𝑓(𝐼𝑐 , 𝐼𝑛𝑐 , 𝑆𝑐 , 𝑆𝑛𝑐) ≥ 0 ∈ 𝛺 = {(𝑆𝑐 , 𝑆𝑛𝑐𝐼𝑐 , 𝐼𝑛𝑐) ∈ 𝑅+ 4:0<𝑆𝑐,+𝐼𝑐<
𝑁(𝜎+𝜇−𝑏)

𝜎+𝜇
,0<𝑆𝑛𝑐,+𝐼𝑛𝑐<

𝑏𝑁

𝜎+𝜇

 if  𝑆𝑐 ≤ 𝑆𝑐0 ∧

𝑆𝑛𝑐 ≤ 𝑆𝑛𝑐0 and 𝑓(0,0, 𝑆𝑐0, 𝑆𝑛𝑐0) = 0. Since ≥ 0, 𝑉−1 ≥ 0, 𝑓(𝐼𝑐 , 𝐼𝑛𝑐 , 𝑆𝑐 , 𝑆𝑛𝑐) ≥ 0 . by theorem 2.1 of [2], 𝛷 =

𝜔𝑇𝑉−1 (
𝐼𝑐
𝐼𝑛𝑐
) is the Lyapunuv function, where 𝜔𝑇 = {

𝜎(𝛼−𝛽(𝜇+𝑣𝑐))−𝑏√𝛼
2𝜎2+𝛽(𝜇+𝑣𝑐)(𝛼+𝛽)

𝛼(𝜇+𝑣𝑐)
, 1} 

Is the left eigenvector of the nonnegative matrix, 𝑉−1𝐹, by straight forward calculation,  

𝜔𝑇𝑉−1 = (
1

−𝜎

𝜎(𝛼 − 𝛽(𝜇 + 𝑣𝑐)) − 𝑏√𝛼
2𝜎2 + 𝛽(𝜇 + 𝑣𝑐)(𝛼 + 𝛽)

𝛼(𝜇 + 𝑣𝑐)(𝜇 + 𝑣𝑛𝑐 + 𝜎)
+

(𝜇 + 𝑣𝑐)

𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎)
)

= (
1

−𝜎

𝜎(𝛼 − 𝛽(𝜇 + 𝑣𝑐)) − 𝑏√𝛼
2𝜎2 + 𝛽(𝜇 + 𝑣𝑐)(𝛼 + 𝛽) + 𝜎(𝜇 + 𝑣𝑐)

2

𝛼(𝜇 + 𝑣𝑐)(𝜇 + 𝑣𝑛𝑐 + 𝜎)
) 

𝛷 =
𝐼𝑐
−𝜎

+
𝜎(𝛼 − 𝛽(𝜇 + 𝑣𝑐)) − 𝑏√𝛼

2𝜎2 + 𝛽(𝜇 + 𝑣𝑐)(𝛼 + 𝛽) + 𝜎(𝜇 + 𝑣𝑐)
2

𝛼(𝜇 + 𝑣𝑐)(𝜇 + 𝑣𝑛𝑐 + 𝜎)
𝐼𝑛𝑐 

Which the Lyapunov function of the model equation (2.1). The theorem that follows give backing for the 

Global stability of the diseases free equilibrium of the model. 

Theorem 3.4.1 

The disease-free equilibrium of the model (2.1) is globally asymptotically 

stable in 𝛺 = {(𝑆𝑐 , 𝑆𝑛𝑐𝐼𝑐, 𝐼𝑛𝑐) ∈ 𝑅+ 4:0<𝑆𝑐,+𝐼𝑐<
𝑁(𝜎+𝜇−𝑏)

𝜎+𝜇
,0<𝑆𝑛𝑐,+𝐼𝑛𝑐<

𝑏𝑁

𝜎+𝜇

 if𝑅𝑛𝑐0 ≤ 1 

Proof: 

Let   

𝛹 =
𝐼𝑐
−𝜎

+
𝜎(𝛼 − 𝛽(𝜇 + 𝑣𝑐)) − 𝑏√𝛼

2𝜎2 + 𝛽(𝜇 + 𝑣𝑐)(𝛼 + 𝛽) + 𝜎(𝜇 + 𝑣𝑐)
2

𝛼(𝜇 + 𝑣𝑐)(𝜇 + 𝑣𝑛𝑐 + 𝜎)
𝐼𝑛𝑐 

Be a lyapunov function of the model (2.1) on 𝛺 with 𝑅0 ≤ 1 and 𝑓(𝐼𝑐 , 𝐼𝑛𝑐, 𝑆𝑐 , 𝑆𝑛𝑐) ≥ 0.  

Differentiating  𝛹 along the solutions of (2.1) gives 
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𝛹∕ = 𝜔𝑇𝑉−1𝑥∕ 

Where (𝐼𝑐 𝐼𝑛𝑐)
𝑇 , 𝑥 = (𝐹 − 𝑉)𝑥 − 𝑓(𝑥, 𝑦) 

𝛹 = 𝜔𝑇𝑉−1{(𝐹 − 𝑉)𝑥 − 𝑓(𝑥, 𝑦)} 

𝛹 = 𝜔𝑇𝑉−1(𝐹 − 𝑉)𝑥 − 𝜔𝑇𝑉−1𝑓(𝑥, 𝑦) 

𝛹 = (𝑅𝑛𝑐0 − 1)𝜔
𝑇𝑥 − 𝜔𝑇𝑉−1𝑓(𝑥, 𝑦) 

𝛹 = (𝑅0 − 1)𝜔
𝑇𝑥 − 𝜔𝑇𝑉−1𝑓(𝑥, 𝑦) 

𝛹 = (𝑅𝑛𝑐0 − 1) {
𝜎(𝛼 − 𝛽(𝜇 + 𝑣𝑐)) − 𝑏√𝛼

2𝜎2 + 𝛽(𝜇 + 𝑣𝑐)(𝛼 + 𝛽)

𝛼(𝜇 + 𝑣𝑐)
𝐼𝑐 + 𝐼𝑛𝑐} −

𝐵(𝑡)(𝑆𝑐 − 𝑆𝑐0)

𝜎

−
𝜎(𝛼 − 𝛽(𝜇 + 𝑣𝑐)) − 𝑏√𝛼

2𝜎2 + 𝛽(𝜇 + 𝑣𝑐)(𝛼 + 𝛽) + 𝜎(𝜇 + 𝑣𝑐)
2

𝛼(𝜇 + 𝑣𝑐)(𝜇 + 𝑣𝑛𝑐 + 𝜎)
𝐵(𝑡)(𝑆𝑛𝑐0 − 𝑆𝑛𝑐) 

Thus it follows that 𝛹 ≤ 0 if 𝑅𝑛𝑐0 ≤ 1. If 𝑅𝑛𝑐0 = 1 then 𝛹 = 0 

if and only if 𝐼𝑐 = 𝐼𝑛𝑐 = 0. If 𝑅𝑛𝑐0 = 1 then 𝛹 = 0 if and only if:  

caseI: 𝐼𝑐 = 𝐼𝑛𝑐 = 0,  caseII:  𝑆𝑐 = 𝑆𝑐0 and  𝑆𝑛𝑐 = 𝑆𝑛𝑐0 
Therefore every solution trajectory of equations in the model (2.1) converges to the largest compact 

invariant set 𝑀 = {𝐼𝑐 , 𝐼𝑛𝑐 , 𝑆𝑐0, 𝑆𝑛𝑐0}, and the only point in 𝑀 is the disease-free equilibrium. Then by 

LaSalle’s invariant principle [20], the disease free equilibrium is globally asymptotically stable in𝛺 if 

𝑅𝑛𝑐0 ≤ 1. 

That is every solution trajectory of equations in the model (2.1) approaches the disease free equilibrium as 
𝑡 → ∞ 

 

3.5 Next Generation Matrix and Basic Reproductive Ratio( Assuming 𝑆𝑛𝑐
0 = 0 )  

Assuming that the  𝑆𝑛𝑐
0 = 0 that is, in the absence of infection, all is fully circumcised, we shall apply 

methods in [1, 3, 4,  9. 10. 11. 12, 15, 21] to construct the next generation matrix 

𝑆𝑛𝑐
0 = 0𝑆𝑐

0 =
𝑁(𝜎 + 𝜇 − 𝑏)

𝜎 + 𝜇
 

𝐹 = (
𝑐𝛼(𝜎 + 𝜇 − 𝑏)

𝜎 + 𝜇

𝑐𝛽(𝜎 + 𝜇 − 𝑏)

𝜎 + 𝜇
0 0

)𝑉 = (
(𝜇 + 𝑣𝑐) −𝜎

(𝜇 + 𝑣𝑛𝑐 + 𝜎) 0
) 

𝑉−1 =

(

 
 
0

1

(𝜇 + 𝑣𝑛𝑐 + 𝜎)

1

−𝜎

(𝜇 + 𝑣𝑐)

𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎))

 
 

 

𝑉−1𝐹 = (

0 0
𝑐𝛼(𝑏 − 𝜎 − 𝜇)

𝜎(𝜎 + 𝜇)

𝑐𝛽(𝑏 − 𝜎 − 𝜇)

𝜎(𝜎 + 𝜇)
) 

𝐹𝑉−1 = (
𝑐𝛽(𝑏 − 𝜎 − 𝜇)

𝜎(𝜎 + 𝜇)

(𝜎 + 𝜇 − 𝑏)(𝑐𝛼𝜎 + 𝑐𝛽(𝜇 + 𝑣𝑐))

𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎)(𝜎 + 𝜇)
0 0

) 

 

𝑅𝑐0 = 𝜌(𝐹𝑉
−1) =

𝑐𝛽(𝑏 − 𝜎 − 𝜇)

𝜎(𝜎 + 𝜇)
=

𝑐𝛽𝑏

𝜎(𝜎 + 𝜇)
−

𝑐𝛽

(𝜎 + 𝜇)
−

𝑐𝛽𝜇

𝜎(𝜎 + 𝜇)
……… . . (3.2) 
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3.6 Local Stability (Assuming 𝑆𝑛𝑐
0 = 0)  

We shall use the basic reproductive ratio 𝑅0 in (3.1) to establish the local stability of the system (2.1) 

when the population is fully circumcised. Lemma 3.1.1 and Lemma 3.1.2 above shall be instrumental in 

establishing that the system (2.1) is stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.  

Theorem 3.6.1: Consider the disease transmission model given by (2.1). Given that 𝑆𝑛𝑐
0 = 0, the disease-

free equilibrium of (2.1) is locally asymptotically stable if 𝑅0 < 1, but unstable if 𝑅0 > 1, where 𝑅0 is as 

defined in (3.2) 

Proof 

Let  𝐹 = (
𝑐𝛼(𝜎+𝜇−𝑏)

𝜎+𝜇

𝑐𝛽(𝜎+𝜇−𝑏)

𝜎+𝜇

0 0
)𝑉 = (

(𝜇 + 𝑣𝑐) −𝜎
(𝜇 + 𝑣𝑛𝑐 + 𝜎) 0

),   𝐾 = 𝐹 − 𝑉 =

(

𝑐𝛼(𝜎+𝜇−𝑏)−(𝜎+𝜇)(𝜇+𝑣𝑐)

𝜎+𝜇

𝑐𝛽(𝜎+𝜇−𝑏)

𝜎+𝜇
− 𝜎

−(𝜇 + 𝑣𝑛𝑐 + 𝜎) 0
) 

𝐾 = ⌈

𝑐𝛼(𝜎 + 𝜇 − 𝑏) − (𝜎 + 𝜇)(𝜇 + 𝑣𝑐)

𝜎 + 𝜇

𝑐𝛽(𝜎 + 𝜇 − 𝑏)

𝜎 + 𝜇
− 𝜎

−(𝜇 + 𝑣𝑛𝑐 + 𝜎) 0

⌉ 

The of K is given as  

1

2
(
𝑐𝛼(𝜎 + 𝜇 − 𝑏) − (𝜎 + 𝜇)(𝜇 + 𝑣𝑐)

𝜎 + 𝜇

± √(
𝑐𝛼(𝜎 + 𝜇 − 𝑏) − (𝜎 + 𝜇)(𝜇 + 𝑣𝑐)

𝜎 + 𝜇
)

2

− 4(
𝑐𝛽(𝜎 + 𝜇 − 𝑏)

𝜎 + 𝜇
− 𝜎) (𝜇 + 𝑣𝑛𝑐 + 𝜎)) 

Assuming that  

(
𝑐𝛼(𝜎 + 𝜇 − 𝑏) − (𝜎 + 𝜇)(𝜇 + 𝑣𝑐)

𝜎 + 𝜇
)

2

> 4(
𝑐𝛽(𝜎 + 𝜇 − 𝑏)

𝜎 + 𝜇
− 𝜎) (𝜇 + 𝑣𝑛𝑐 + 𝜎) 

For the root to be real and negative, then  
𝑐𝛼(𝜎 + 𝜇 − 𝑏) − (𝜎 + 𝜇)(𝜇 + 𝑣𝑐)

𝜎 + 𝜇

< √(
𝑐𝛼(𝜎 + 𝜇 − 𝑏) − (𝜎 + 𝜇)(𝜇 + 𝑣𝑐)

𝜎 + 𝜇
)

2

− 4(
𝑐𝛽(𝜎 + 𝜇 − 𝑏)

𝜎 + 𝜇
− 𝜎) (𝜇 + 𝑣𝑛𝑐 + 𝜎) 

Square both sides, then  

(
𝑐𝛼(𝜎 + 𝜇 − 𝑏) − (𝜎 + 𝜇)(𝜇 + 𝑣𝑐)

𝜎 + 𝜇
)

2

< (
𝑐𝛼(𝜎 + 𝜇 − 𝑏) − (𝜎 + 𝜇)(𝜇 + 𝑣𝑐)

𝜎 + 𝜇
)

2

− 4(
𝑐𝛽(𝜎 + 𝜇 − 𝑏)

𝜎 + 𝜇
− 𝜎) (𝜇 + 𝑣𝑛𝑐 + 𝜎) 

𝑐𝛽(𝜎 + 𝜇 − 𝑏)

𝜎 + 𝜇
< 𝜎𝑖𝑚𝑝𝑙𝑖𝑒𝑠𝑐𝛽(𝜎 + 𝜇 − 𝑏) < 𝜎(𝜎 + 𝜇) 

That is the local stability is guaranteed if the product of the probability of transmission by individuals and 

the average number of contact per unit time is less than the sum product of circumcision rate and that of 

the natural death of the individual in the population. That is if circumcision is encouraged in the 

population it greatly enhances the eradication of HIV/AIDS 
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3.7 Global Stability ( Assuming 𝑆𝑛𝑐
0 = 0  ) 

We shall employ a matrix-theoretic method to construct a Lyapunov function in order to study the global 

stability of the disease-free equilibrium of the model equation (2.1)  assuming 𝑆𝑛𝑐
0 = 0 following methods 

from [2, 8,17,18,19] 

The left eigenvector of the nonnegative matrix, 𝑉−1𝐹 = (
0 0

𝑐𝛼(𝑏−𝜎−𝜇)

𝜎(𝜎+𝜇)

𝑐𝛽(𝑏−𝜎−𝜇)

𝜎(𝜎+𝜇)

) 

is𝜔𝑇 = {
𝛽(𝜎+𝜇−𝑏)

𝛼(𝑏−𝜇−𝜎)
, 1} 

recall that, 𝐵(𝑡) =
𝑐𝛽𝐼𝑛𝑐(𝑡)+𝑐𝛼𝐼𝑐(𝑡)

𝑁
 

𝑓(𝐼𝑐 , 𝐼𝑛𝑐 , 𝑆𝑐 , 𝑆𝑛𝑐) = [
𝐵(𝑡)(𝑆𝑐0 − 𝑆𝑐)

𝐵(𝑡)(𝑆𝑛𝑐0 − 𝑆𝑛𝑐)
] 

Notice that, 𝑓(𝐼𝑐 , 𝐼𝑛𝑐 , 𝑆𝑐 , 𝑆𝑛𝑐) ≥ 0 ∈ 𝛺 = {(𝑆𝑐 , 𝑆𝑛𝑐𝐼𝑐 , 𝐼𝑛𝑐) ∈ 𝑅+ 4:0<𝑆𝑐,+𝐼𝑐<
𝑁(𝜎+𝜇−𝑏)

𝜎+𝜇
,0<𝑆𝑛𝑐,+𝐼𝑛𝑐<

𝑏𝑁

𝜎+𝜇

 if  𝑆𝑐 ≤ 𝑆𝑐0 ∧

𝑆𝑛𝑐 ≤ 𝑆𝑛𝑐0 and 𝑓(0,0, 𝑆𝑐0, 𝑆𝑛𝑐0) = 0. Since ≥ 0,𝑉−1 ≥ 0, 𝑓(𝐼𝑐 , 𝐼𝑛𝑐 , 𝑆𝑐 , 𝑆𝑛𝑐) ≥ 0 . by theorem 2.1 of [17], 𝛷 =

𝜔𝑇𝑉−1 (
𝐼𝑐
𝐼𝑛𝑐
) is the Lyapunuv function, where  

𝜔𝑇 = {
𝛽(𝜎 + 𝜇 − 𝑏)

𝛼(𝑏 − 𝜇 − 𝜎)
, 1} 

Is the left eigenvector of the nonnegative matrix, 𝑉−1𝐹, by straight forward calculation,  

𝜔𝑇𝑉−1 = (
1

−𝜎

𝛼(𝜇 + 𝑣𝑐) − 𝜎𝛽

𝛼𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎)
) 

𝜔𝑇𝑉−1 (
𝐼𝑐
𝐼𝑛𝑐
) =

𝐼𝑐
−𝜎

+
𝛼(𝜇 + 𝑣𝑐) − 𝜎𝛽

𝛼𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎)
𝐼𝑛𝑐 

Which is  the Lyapunov function of the model equation (2.1) for 𝑆𝑛𝑐 = 0 . The theorem that follows give 

backing to the Global stability the diseases free equilibrium of the model. 

Theorem 3.7.1 

The disease-free equilibrium of the model (2.1) is globally asymptotically 

stable in 𝛺 = {(𝑆𝑐 , 𝑆𝑛𝑐𝐼𝑐, 𝐼𝑛𝑐) ∈ 𝑅+ 4:0<𝑆𝑐,+𝐼𝑐<
𝑁(𝜎+𝜇−𝑏)

𝜎+𝜇
,0<𝑆𝑛𝑐,+𝐼𝑛𝑐<

𝑏𝑁

𝜎+𝜇

 if𝑅𝑐0 ≤ 1 

Proof: 

Let   

𝛷 =
𝐼𝑐
−𝜎

+
𝛼(𝜇 + 𝑣𝑐) − 𝜎𝛽

𝛼𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎)
𝐼𝑛𝑐 

Be a lyaponuv function of the model (2.1) on 𝛺 with 𝑅𝑐0 ≤ 1 and 𝑓(𝐼𝑐 , 𝐼𝑛𝑐, 𝑆𝑐 , 𝑆𝑛𝑐) ≥ 0. Differentiating  𝛷 

along the solutions of (2.1) gives 

𝛷∕ = 𝜔𝑇𝑉−1𝑥∕ 

Where (𝐼𝑐 𝐼𝑛𝑐)
𝑇 , 𝑥 = (𝐹 − 𝑉)𝑥 − 𝑓(𝑥, 𝑦) 

𝛷 = 𝜔𝑇𝑉−1{(𝐹 − 𝑉)𝑥 − 𝑓(𝑥, 𝑦)} 

𝛷 = 𝜔𝑇𝑉−1(𝐹 − 𝑉)𝑥 − 𝜔𝑇𝑉−1𝑓(𝑥, 𝑦) 
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𝛷 = (𝑅𝑐0 − 1)𝜔
𝑇𝑥 − 𝜔𝑇𝑉−1𝑓(𝑥, 𝑦) 

𝛷 = (𝑅𝑐0 − 1)𝜔
𝑇𝑥 − 𝜔𝑇𝑉−1𝑓(𝑥, 𝑦) 

𝛷 = (𝑅𝑐0 − 1) {
𝛽(𝜎 + 𝜇 − 𝑏)

𝛼(𝑏 − 𝜇 − 𝜎)
𝐼𝑐 + 𝐼𝑛𝑐} −

𝐵(𝑡)(𝑆𝑐 − 𝑆𝑐0)

𝜎
−
𝛼(𝜇 + 𝑣𝑐) − 𝜎𝛽

𝛼𝜎(𝜇 + 𝑣𝑛𝑐 + 𝜎)
𝐵(𝑡)(𝑆𝑛𝑐0 − 𝑆𝑛𝑐) 

Thus it follows that 𝛷 ≤ 0 if 𝑅𝑐0 ≤ 1. If 𝑅𝑐0 = 1 then 𝛷 = 0 if and only if 𝐼𝑐 = 𝐼𝑛𝑐 = 0. If 𝑅𝑐0 = 1 then 

𝛹 = 0 if and only if case1: 𝐼𝑐 = 𝐼𝑛𝑐 = 0, case2:  𝑆𝑐 = 𝑆𝑐0 and  𝑆𝑛𝑐0 = 𝑆𝑛𝑐 = 0 

Therefore every solution trajectory of equations in the model (2.1) converges to the largest compact 

invariant set 𝑀 = {𝐼𝑐 , 𝐼𝑛𝑐 , 𝑆𝑐0, 𝑆𝑛𝑐0}, and the only point in 𝑀 is the disease-free equilibrium. Then by 

LaSalle’s invariant principle [20], the disease free equilibrium  is globally asymptotically stable in𝛺 if 

𝑅𝑐0 ≤ 1. 

That is every solution trajectory of equations in the model (2.1) approaches the disease free equilibrium  

as 𝑡 → ∞ 

 

4.0 SUMMARY AND CONCLUSION 

This work explored the contribution of a non-pharmaceutical control measure, male circumcision to 

combat the spread of the world’s threatening disease, the HIV/AIDS. The work considers male 

circumcision as a medium for narrowing the initial fraction of at risk population and the recruitment 

into the at risk population. This will in turn enhance the reduction of transmission coefficient in the 

population. It establishes the condition for positivity and boundedness of the model, which enhance the 

existence and uniqueness of the solution of the model thereby making the model to be epidemiologically 

meaningful. 

The main mathematical technique used is the Lyapunov direct method which is successfully to two 

cases: 𝑆𝑐
0 = 0,𝑤ℎ𝑒𝑛𝑡ℎ𝑒𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑠𝑛𝑜𝑡𝑐𝑖𝑟𝑐𝑢𝑚𝑐𝑖𝑠𝑒𝑑 and 𝑆𝑛𝑐

0 = 0,𝑤ℎ𝑒𝑛𝑡ℎ𝑒𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑠𝑓𝑢𝑙𝑙𝑦𝑐𝑖𝑟𝑐𝑢𝑚𝑐𝑖𝑠𝑒𝑑, 

to study the global asymptotic stability of the model. It was established that the local stability is 

guaranteed if the product of the probability of transmission by individuals and the average number of 

contact per unit time is less than the sum product of circumcision rate and that of the natural death of the 

individual in the population. That is if circumcision is encouraged in the population it greatly enhances the 

eradication of HIV/AIDS. When  𝑆𝑛𝑐
0 = 0 the analysis showed that, every solution trajectory of equations 

in the model (2.1) converges to the largest compact invariant set 𝑀 = {𝐼𝑐 , 𝐼𝑛𝑐 , 𝑆𝑐0, 𝑆𝑛𝑐0}, and the only point 

in 𝑀 is the disease-free equilibrium. Then by LaSalle’s invariantprinciple [7], the disease free equilibrium is 

globally asymptotically stable in𝛺 if 𝑅𝑐0 ≤ 1. 

That is every solution trajectory of equations in the model (2.1) approaches the disease free  

equilibrium  as 𝑡 → ∞ 

When  𝑆𝑐
0 = 0 the analysis showed that every solution trajectory of equations in the model (2.1) converges 

to the largest compact invariant set 𝑀 = {𝐼𝑐 , 𝐼𝑛𝑐, 𝑆𝑐0, 𝑆𝑛𝑐0}, and the only point in 𝑀 is the disease-free 

equilibrium. Then by LaSalle’s invariant principle [7], the disease free equilibrium  is globally 

asymptotically stable in𝛺 if 𝑅𝑛𝑐0 ≤ 1. 

That is every solution trajectory of equations in the model (2.1) approaches the disease free equilibrium  

as 𝑡 → ∞ 
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