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Abstract 
 

In this paper, we review existing queuing models in literature and the general 

structure of the model. Basic components of a queue model are then analyzed using 

the steady state probability function to determine various characteristics. This 

includes queue length, variance of a queue, expected number of customers in the 

queue and expected waiting time. The three states of a queuing system which 

includes transient, steady and exponential states are discussed and analyzed. 

Consequently, the steady state is derived to show the interrelationship between the 

other components.        
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1.0: Introduction 

The queuing theory was developed by A. K. Erlang, a Danish Engineer, who took up the problem on congestion of 

telephone traffic in 1903 [1]. According to [2], waiting lines or queuing problems arise due to two reasons: (i) Too much 

demand on a facility leading to an excess of waiting time. (ii) There is too less demand, in which case there are too many 

facilities. As stated in [3], queuing lines have been applied to various aspects of business situations where customers are 

involved; this includes restaurants, banks, petrol pumps, patients in clinics, etc. The key elements of a queuing system are 

listed in [4], which includes; customers or arriving unit that require some service to be performed, queue which is the 

number of customers to be served and the service channel which is the system performing the service to the customer.   

As remarked in [5], arrival distribution represents the pattern in which the number of customers arrive at the system. Arrival 

may also be represented by the inter – arrival time, which is the period between two successive arrivals. The rate at which 

customers arrive to be served represents the number of customers arriving per unit of time. Random arrival is when 

customer arrival has no fixed pattern. Service (Departure) Distribution represents the pattern in which the number of 

customers leave the system. Random arrivals, departure and service time are usually described by the exponential 

probability distribution, [6]. According to [7], a population in queuing system is said to be finite if there is a maximum 

number of customers in the system, while an infinite population implies that there is no definite number of customers in the 

system.     
The three states of a queuing system are reported in [8], which includes transient, steady and exponential states. If the behavior of the 

system varies with time, it is said to be transient state. A queuing system is said to be in steady state condition if its behavior does not 

change with time, while an exponential state is when a queuing system builds up to infinity. 

A single – channel queuing system is defined in [9] as one in which there is a random arrival time and a random service 

time at a single station. In [10], arrival and departure of customers in a queue system occur randomly, hence their 

mathematical models are formulated based on the following assumptions: 

Assumption 1: Given N(t) = n, the current probability distribution of the remaining time until the next arrival is exponential 

with parameter λn (n = 0, 1, 2, …). 

Assumption 2: Given N(t) = n, the current probability distribution of the remaining time until the next departure (service 

completion) is exponential with parameter μn (n = 0, 1, 2, …). 

Assumption 3: The random variable of assumption 1 (the remaining time until the next arrival) and the random variable of 

assumption 2 (the remaining time until the next departure) are mutually of independent. The next transition in the state od 

the process is either n = n+1 (a single arrival) or n = n-1 (a single departure) depending on whether the former or later 

random variable is small. 
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The most common decision that needed to be made when designing a queuing system as contained in [11], include: (a) 

number of servers at a service facility (b) efficiency of the servers, (c) number of service facilities (d) amount of waiting 

space in the queue, (e) any priorities for different categories of customers and the two primary considerations in making 

these kind of decisions typically are (i) the cost of service capacity provided by the queuing system and (ii) the 

consequences of making the customers wait in the queuing system. Providing too much service capacity causes excessive 

costs, providing too little causes excessive waiting. Therefore, the goal is to find an appropriate trade – off between the 

service cost and the amount of waiting.  

In [13], a queuing model on Toll Gate with the aim of decongesting traffic on the highways was developed while [14], a 

queuing model on patients’ waiting time in an ante – natal care clinic to determine the number of doctors required so that a 

given percentage of pregnant women do not exceed a given waiting time and the number of expectant mothers in the queue 

do not surpass a given threshold was developed.  According to [15], a queuing system can be described by its input or 

arrival process, its queue discipline and its service mechanism.      

In this paper, we use the single – channel Poisson arrivals with Exponential Service Infinite – Finite population Model 

(M/M/I) to analyze the queue mean and variance including the states in line with the model described in [15].  

 

2.0: Mathematical Notations and Symbols 

(a)       M = Markovian (Poison) arrival or departure distribution (or exponential interarrival or service time distribution), 

(b)         kE = Erlangian or gamma interarrival of service time distribution with parameter k,  

(c)         GI = general independent arrival distribution, 

(d) G = general departure distribution, 

(e) D = deterministic inter – arrival or service times. 

Others are:         

FCFS = first come, first served, 

LCFS = last come, first served, 

SIRO = service in random order, 

GD = general service discipline.  

(M/E/1): (FCFS/N/ ) represents Poison arrival (exponential inter-arrival), Erlangian departure, single, first come, first 

served discipline, maximum allowable customers N in the system and infinite population model. (N = finite) 

 

2.1: Model 1. Single – Channel Poisson Arrival with Exponential Service Infinite – Population Model [(M/M/1): 

(FCFS/ / )] 

Let us consider a single – channel system with Poison arrivals and exponential service time distribution. Both the arrivals 

and service rates are independent of the number of customers in the waiting line. Arrivals are handled on ‘first come, first 

served’ basis. Also the arrival rate  is less than the service rate  . 

The following mathematical notations (symbols) will be used in connection with queuing models: 

n = number of customers in the system (waiting line + service facility) at time t. 

 = mean arrival rate (number of arrival per unit of time). 

 = mean service rate per busy server (number of customers served per unit of time) 

dt = probability that an arrival enters the system between t and dtt  time interval i.e., within time interval dt . 

dt1 = probability that no arrival enters the system within interval dt plus higher order terms in dt . 

 = mean service rate per channel. 

dt = probability of one service completion between t and dtt  time interval i.e., within time interval dt . 

dt1 = probability of no service rendered during the interval dt plus higher order terms in dt   

nP = steady state probability of exactly n customers in the system. 

 tPn = transient state probability of exactly n customers in the system at 

time t, assuming the system started its operation at time zero.      

 tPn 1  = transient state probability of having 1n customers in the system at time t. 

 tPn 1  = transient state probability of having 1n customers in the system at time t. 

 dttPn   = probability of having n units in the system at time dtt  . 
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qL = expected (average) number of customers in the queue. 

sL = expected number of customers in the queue (waiting + being served). 

qW = expected waiting time per customer in the queue (expected time a  customer keeps waiting in the line). 

sW = expected time a customer spends in the system. 

nL = expected number of customers waiting in line excluding those times when the line is empty i.e., expected number in 

non – empty queue (expected number of customers in a queue that is formed from time to time). 

nW = expected time a customer waits in line if he has to wait at all i.e., expected time in the queue for non – empty queue.        

Since the mean arrival rate is constant over time, it follows that the probability of an arrival between time t and ds is λ. dt. 

Thus probability of an arrival in time dt = λ.dt     (1) 

The following characteristics of Poisson distribution are written here without proof:  

Probality of n arrivals in time t = 
(λt)n.e−λt∗

𝑛!
      (2) 

Probability density function of inter-arrival time (time interval between two consecutive arrivals) 

= λ . e - λt          (3) 

Finally, poisson distribution assumes that the time period dt is very small so that (dt)2 , (dt)3 , etc.  and can be ignored. 

Mean service rate 𝜇 is also assumed to be constant over time and independent of number of units already serviced, queue 

length or any other random property of the system. Thus probability that service is completed between t and t + dt, 

provided that the service is continuous  

  = 𝜇dt.         (4) 

Under the condition of continuous service, the following characteristics of exponential distribution are written, without 

proof  

Probability of n complete services in time t = 
(𝜇𝑡)n.e𝜇𝑡

𝑛!
     (5) 

Probability density function (p.d.f.) of inter-service time, i.e., time between two consecutive services  

= 𝜇 . 𝑒𝜇𝑡          (6) 

To determine the properties of the single channel system, it is necessary to find an expression for the probability of n 

customers in the system at time t i.e., Pn (t) is known, the expected number of customers in the system expression for Pn(t), 

we shall first find the expression for Pn(t + dt). 

The probability of n units (customers) in the system at time t + dt can be determined by summing up probabilities of all the 

ways this event could occur. The event can occur in four mutually exclusive and exhaustive ways.  
 

Table 1: Probability of n units (customers) in the system at time t +dt. 
Event No. of units at time t No. of arrivals in time 

dt 

No. of services in time 

dt 

No. of units at time t + 

dt 

1 

2 

3 

4 

n 

n + 1 

n – 1 

n 

0 

0 

1 

1 

0 

1 

0 

1 

n 

n 

n 

n 

Now we compute the probability of occurrence of each of the event, remembering that the probability of a service or arrival is 𝜇dt or λdt 

and (dt)2   

∴ Probability of event 1 = Probability of having n units at time t 

   x Probability of no arrivals 

   x Probability of no services 

   = Pn(t). (1 - λdt) (1 – 𝜇𝑑𝑡) 

   = Pn(t) [1 - λdt – 𝜇dt + λ𝜇(dt)2] 

   = Pn (t)[1 - λdt – 𝜇dt]. 

Similarly, probability of event 2 = Pn+1(t) . (1 - λdt). (𝜇dt) 

   = Pn+1 (t) [𝜇dt], 

Probability of event 3 = Pn+1 [λdt]. (1 – 𝜇dt) = pn-1(t) [λdt], 

Probability of event 4 = Pn (t) . (λdt) (𝜇.dt) 

   = Pn(t) . [λ. 𝜇 (dt)2] = 0. 

Note that other events are not possible because of the small value of dt that causes (dt)2 to approach zero (as in event 4). 

Since one and only one of the above events can happen, we can obtain Pn(t + dt) {where n > 0} by adding the probabilities of above four 

events. 
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∴ Pn (t + dt) = Pn (t) [1 - λdt – 𝜇dt] + Pn + 1(t) [𝜇dt] + Pn-1(t) [λdt] + 0 

or Pn (t + dt) = Pn(t) – Pn+1(t) [𝜇dt] + Pn – 1(t) [λdt] 

or  
𝑃𝑛 (𝑡+𝑑𝑡)−𝑃𝑛(𝑡)

𝑑𝑡
 = -( λ + 𝜇) . Pn(t) +  𝜇 . 𝑝n+1 (t) . + λPn-1(t). 

Taking the limit when dt ⇾ 0, we get the following differential equation which gives the relationship between Pn, Pn+1 at 

any time t, mean arrival rate λ and mean service rate 𝜇: 
𝑑

𝑑𝑡
[𝑃𝑛(𝑡)] = λ𝑃𝑛−1(𝑡) + 𝜇𝑃𝑛+1(𝑡) − (λ + 𝜇)𝑃𝑛(𝑡),   𝑤ℎ𝑒𝑟𝑒 𝑛 >  0 ………………(7) 

After solving for Pn (t + dt) where n > 0, it is necessary to solve for Pn (t + dt) where n = 0 i.e., to solve for P0 (t + dt). If 

n=0, only two mutually exclusive and exhaustive events can occur as shown in table 2. 

 

Table 2: Arrivals for mutually exclusive and exhaustive events 
Event No. of units at time t No. of arrivals in time 

dt 

No. of services in time 

dt 

No. of units at time t + 

dt 

1 

2 

0 

1 

0 

0 

- 

1 

0 

0 
 

∴ Probability of event 1 = P0(t) x (1- 𝜆 dt) x 1 

 Probability of event 2=P1(t) x (1- 𝜆 dt) x (𝜇 𝑑𝑡). 
Note that if no units were in the system, the probability of no service would be  

1. Probability of having no unit in the system at time t + dt  is given by summing up the probabilities of the above 

two events. 

∴  Po (t + dt) = Po(t) .(1- 𝜆dt) + P1(t) .(𝜇dt) (1- 𝜆dt) 

  = Po (t) – Po (t) .(𝜆𝑑𝑡) + P1 (t) .(𝜇dt)  

or Po (t + dt) – Po (t) = – Po (t).(𝜆𝑑𝑡) + P1 (t) (𝜇dt) 

 

or  
𝑃0(𝑡+𝑑𝑡)−𝑃0(𝑡)

𝑑𝑡
  = 𝜇. 𝑃𝑜(𝑡) − 𝜆𝑝0(𝑡). 

When dt ⇾ 0, the differential equation which indicates the relationship between probabilities p0 and p1 at any time t, mean 

arrival rate 𝜆 and mean service rate 𝜇, is  
𝑑

𝑑𝑡
 [P0(t)] = 𝜇P1(t) – 𝜆𝑃𝑜(𝑡),   where n = 0     (8) 

Equations (7) and (8) provide relationships involving the probability density function pn(t) for all values of n but still we do 

not know the value of pn(t).  

Assuming the steady state condition for the system, when the probability of having n units (customers) in the system 

becomes independent of time, we get. 

𝑝𝑛(𝑡) = 𝑝𝑛 ,
𝑑

𝑑𝑡
 [pn (t)] = 0. 

Therefore, for a steady state system the differential equations (7) and (8) reduce to difference equations (9) and 10)  

0 = λ𝑝𝑛−1 + 𝜇. 𝑝𝑛+1 −  (λ + 𝜇)𝑝𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 > 0,     (9) 

0 = 𝜇𝑝1 − λ𝑝0, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0.        (10) 

From equation (10), we have 

𝑝1,
λ

𝜇
 𝑝0 

Putting n = 1 in equation (9), we have  

0 = λp0 + 𝜇p2 – (λ + 𝜇)p1  

∴ p2 = 
λ+𝜇

𝜇
 p1 

λ

𝜇
 p0  

= 
λ+𝜇

𝜇
 (

λ

𝜇
 𝑝0) −

λ

𝜇
 𝑝0 

= 
λ

𝜇
  𝑝0 [

λ+𝜇

𝜇
− 1]  

or 

= p2 = (
λ

𝜇
 )

2

. 𝑝0. 

similarly, for n = 2, equation (9) gives 

p3 = (
λ

𝜇
 )

3

. 𝑝0. 
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For n = n, we get Pn = (
𝜆

𝜇
 )

𝑛

. 𝑝0. where n ≥ 0     (11) 

Equation (11) gives Pn in terms of Po λ and 𝜇 must be obtained. The easiest way to do this is to recognize that the 

probability that the channel is busy is the ratio of the arrival rate and service rate(
λ

𝜇
 ). Thus p0 is 1 minus this ratio. 

i.e. 

Po = 1 −
λ

𝜇
 .         (12) 

Hence      

Po = (
λ

𝜇
 )

𝑛

.  (1 −
λ

𝜇
 )          (13) 

Having known the value of pn we can find the various characteristics of the system.  

1. Expected number of units in the system (waiting + being served), L, is obtained by using the definition of an expected value  

E(x) = ∑ 𝑥𝑖𝑝𝑖
𝑖 = ∞
𝑡=0  

 ∴ Ls = ∑ 𝑛𝑝𝑛
𝑛 = ∞
𝑛=0   

𝑜𝑟 Ls = ∑ 𝑛 ∞
𝑛=0 (

λ

𝜇
 )

𝑛
 (1 −

λ

𝜇
 )    

=  (1 −
λ

𝜇
 ) ∑ 𝑛 ∞

𝑛=0  (
λ

𝜇
 )

𝑛
 

= (1 −
λ

𝜇
 )  [ 0 (

λ

𝜇
 )

0
+  1 (

λ

𝜇
 ) +  2 (

λ

𝜇
 )

2
+  3 (

λ

𝜇
 )

3
+  … ] 

= (1 −
λ

𝜇
 )  [ 0 + (

λ

𝜇
 )

0
+  2 (

λ

𝜇
 )

2
+  3 (

λ

𝜇
 )

3
+ … ] 

The series within brackets is an infinite series of the form 0, a, 2a2, 3a3, …., xax … For such an infinite series, if a is a constant and less 

than one, the sum is given by the formula. 

𝑆∞= 
a

(1−𝑎)2 

∴ Ls = (1 −
λ

𝜇
 ) [

λ/𝜇

(1−λ 𝜇)2
] =

λ/𝜇

1−λ 𝜇
 = 

λ

λ− 𝜇
  

2. Expected number of units in the queue L4 = Expected number of units in the system – Expected number in service number in 

service (single server).  

∴ L4 = Ls –  
λ

𝜇
 =  

λ

λ−𝜇
−

λ

𝜇
= λ  [ 

𝜇−𝜇+λ

𝜇(𝜇−λ)
]. 

∴ L4 = λ2/𝜇(𝜇– λ).  

Note that the expected number in service is 1 times the probability that the service channel is busy i.e., 1. 
λ

𝜇
 . 

3. Expected time per unit in the system (expected time a unit spends in the system) 

Ws = 
Expected number of units in the system

𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒
 

= 
Ls

ʎ
=

λ

(𝜇−λ)λ 
 

∴ Ws = 
1

𝜇−λ 
  

4. Expected waiting time per unit in the queue Wq = Expected time in system – time in service. 

Wq = Ws – 
1

μ 
  

= 
1

𝜇−λ 
−

1

μ 
=

𝜇−𝜇+λ

𝜇(𝜇−λ) 
 

 ∴  Wq = 
λ

𝜇(𝜇−λ) 
 

5. Variance of queue length:  

By definition we have 

Var(n) = [E(n)]2  

= ∑ 𝑛2𝑝𝑛 − [∑ 𝑛𝑝𝑛
 ∞
𝑛=1 ]2 ∞

𝑛=1   

= ∑ 𝑛2. (1 −
λ

𝜇 
) (

λ

𝜇 
)

𝑛
−  [𝐿𝑠]2 ∞

𝑛=1  

= (1 −
λ

𝜇 
) ∑ 𝑛2. (

λ

𝜇 
)

𝑛
− (

λ

𝜇−λ 
)

2
  ∞

𝑛=1  

= (1 −
λ

𝜇 
) [1 .

λ

𝜇 
 + 22. (

λ

𝜇 
)

2
+ 32  (

λ

𝜇 
)

3
+ … ] − (

λ

𝜇−λ 
)

2
 

= 
λ

𝜇 
 (1 −

λ

𝜇 
) [1 + 22 λ

𝜇 
 + 32 (

λ

𝜇 
)

2
+ … ] − (

λ

𝜇−λ 
)

2
  

Let   S = 1 + 22 λ

𝜇 
32. (

λ

𝜇 
)

2
+  … = 1 + 22p + 32p2 + …   ( ∴ 𝑝 =

λ

𝜇 
) 

Integrating both sides w.r.t.  p from 0 to p, we have  
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∫ 𝑆. 𝑑𝑝
𝑝

0

=  ∫ (1 + 22𝑝 + 32𝑝2 + … )𝑑𝑝 = [𝑝 + 2𝑝2 + 3𝑝3 + … ] 𝑑𝑝
𝑝

0

 

= p (1 + 2p2 + 3p3 + … = p(1+2p+3p2 + …) 

= p .  
1

(1−𝑝)2 
=

p

(1−𝑝)2 
.   

Now differentiating both sides w.r.t. p, we have, 

S =  
1

(1−𝑝)2 
+  𝑝. (−2) . (1−𝑝)−3(−1) =

1

(1−𝑝)2 
+  

2P

(1−𝑝)3 
  

1+P

(1−𝑝)3 
=  

1+λ/𝜇

(1−λ/𝜇)3 
   

∴   𝑉𝑎𝑟(𝑛) =  
λ

𝜇 
 (1 −

λ

𝜇 
) .

λ

𝜇 
 

 (1−
λ

𝜇 
)

(1−
λ

𝜇 
)

3
 
− (

λ

𝜇−λ 
)

2
. 

∴ Variance of queue length 

= 
λ/𝜇(1+λ/𝜇)

(1−λ/𝜇)2 
− 

λ

𝜇2 

2

(1−
λ

𝜇 
)

2
 

λ

𝜇

(1−
λ

𝜇 
)

2
 
        (14) 

The following additional formulae are written here without proof: 

(i) Average length of non – empty queue (length of queue that is formed from time to time), Ln =
𝜇

𝜇−λ 
 . 

(ii) Average waiting time in non-empty queue (average waiting time of an arrival who waits), Wn =  
1

𝜇−λ 
, 

(iii) Probability density function of waiting time (excluding service) distribution 

= λ (1 −
λ

𝜇 
) 𝑒−(𝜇− λ)t 

= [

λ

𝜇 
(𝜇 − λ𝑒−(𝜇− λ)t , 𝑡 > 0)

λ (1 −
λ

𝜇 
) , 𝑡 = 0.

[ 

(iv) Probability density function of waiting + service time distribution  

= (𝜇 − λ)𝑒−(𝜇− λ)t        (15) 

(v) Probability of queue length being greater than or equal to n, the number of customers,  

= p(≥ 𝑛) =  (
λ

𝜇 
)

𝑛
        (16) 

 

Conclusion 

In this paper, we have presented a queue model with single – channel Poisson Arrival with exponential server. To determine the 

properties of the single channel system, we have to derive the probability of n customers in the system at time t (i.e., Pn(t)). Probability of 

events 1 – 4 were derived using differential equation as limit dt→0 which gives the relationship between Pn, Pn+1 at any time t, mean 

arrival rate λ and mean service rate μ. The known value of the probability function Pn was then used to obtain the characteristic value for 

the queue length, queue variance and the expected number of units in the queue.    
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