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Abstract 

In this article, we prove the existence and uniqueness of coupled fixed point for 

nonlinear contractive mappings of rational type in the context of mixed monotone 

mappings for metric space, which is endowed with a partial order. The outcome of 

our findings is an improvement to the available results in the literature. 
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1.   Introduction  

Banach’s fixed point theorem for contraction mapping is one of the pivotal results of analysis. It is a very popular tool for  

solving the existence problems in different fields of mathematics. There are a lot of generalizations of the Banach 

contraction principle in some literature [1 - 12]. 

Ran and Reurings [11] extended the Banach contraction principle in partially ordered sets with some applications to linear 

and nonlinear matrix equations, while Nieto and Rodriguez-Lopez [12] extended their result and applied their main 

theorems to obtain a unique solution for first order ordinary differential equation with periodic boundary conditions. 

Bhaskar and Lakshmikantham [13] introduced the concept of mixed monotone mappings and obtained some coupled fixed 

point results. Also, they applied their results to first order differential equations with periodic boundary conditions. 

Recently, many researchers have obtained fixed point and common fixed point results in metric spaces and partially ordered 

spaces. 

The purpose of this paper is to establish some coupled fixed point results for rational type contraction mappings in metric 

spaces endowed with a partial order. 
 

2.   Preliminary Notes 

We start with the following definitions and theorems that motivate our study: 

Definition 2.1 [14] The triple (𝑋, 𝑑, ≼) is called partially ordered metric spaces, if (𝑋, ≼) is a partially ordered set and 

(𝑋, 𝑑) is a metric space. 

Definition 2.2 [14] If (𝑋, 𝑑) is a complete metric space, then the triple (𝑋, 𝑑, ≼) is called complete partially ordered metric 

spaces. 

Definition 2.3 [15] A partially ordered metric space (𝑋, 𝑑, ≼) is called ordered complete if for each convergent sequence 
{𝑥𝑛}𝑛=0

∞ ⊂ 𝑋, the following condition holds: either  

i.  if 𝑥𝑛 is a non-increasing sequence in 𝑋 such that 𝑥𝑛 → 𝑥 implies 𝑥 ≼ 𝑥𝑛, for all 𝑛 ∈ ℕ that is, 𝑥 = inf{𝑥𝑛}, or 

ii.  if 𝑥𝑛 is a non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑥 implies 𝑥𝑛 ≼ 𝑥, for all 𝑛 ∈ ℕ that is, 𝑥 = sup{𝑥𝑛} . 

Definition 2.3 [4] Let (𝑋, ≼) be a partially ordered set and let 𝑇: 𝑋 → 𝑋 be a mapping. Then  

i.  elements 𝑥, 𝑦 ∈ 𝑋 are comparable, if  𝑥 ≼ 𝑦 or 𝑦 ≼ 𝑥 holds; 

ii.  a non-empty set 𝑋 is called well ordered set, if every two elements of it are comparable; 

iii.  𝑇 is said to be monotone non-decreasing with respect to ≼, if for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≼ 𝑦 implies 𝑇𝑥 ≼ 𝑇𝑦. 

iv. 𝑇 is said to be monotone non-increasing with respect to ≼, if for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≼ 𝑦 implies 𝑇𝑥 ≽ 𝑇𝑦. 
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Theorem 2.4 [16] A mapping 𝑇: 𝑋 → 𝑋, defined on a complete metric space (𝑋, 𝑑) satisfying the following condition 

𝑑(𝑇𝑥, 𝑇𝑦) ≤  𝛼
𝑑(𝑥, 𝑇𝑥)[1 + 𝑑(𝑦, 𝑇𝑦)]

1 + 𝑑(𝑥, 𝑦)
+ 𝛽[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)] + 𝛾[𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)]

+ 𝛿𝑑(𝑥, 𝑦)                                                                                                                              (2.1) 

for all distinct 𝑥, 𝑦 ∈ 𝑋, where 𝛼, 𝛽, 𝛾, 𝛿 are non negative real numbers with 𝛼 + 2(𝛽 + 𝛾) + 𝛿 < 1. Then 𝑇 has a unique 

fixed point in 𝑋.   

Theorem 2.5 [4] Let (𝑋, 𝑑, ≼) be a complete partially ordered metric space. Suppose that 𝑇: 𝑋 → 𝑋 be a non-decreasing, 

continuous self mapping satisfying 

𝑑 ≤ {
𝜆𝑑(𝑥, 𝑦) + 𝜂[𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)] + 𝜇

𝑑(𝑥, 𝑇𝑥)𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦)
, 𝑖𝑓 𝐴 ≠ 0            

0                                                                                                                                                 , 𝑖𝑓 𝐴 = 0                      (2.2)

 

for all distinct 𝑥, 𝑦 ∈ 𝑋 with 𝑦 ≼ 𝑥, where 𝐴 = 𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦) and 𝜆, 𝜂, 𝜇 are non negative real numbers with 𝜆 +
2𝜂 + 𝜇 < 1. If there exists 𝑥0 ∈ 𝑋 with 𝑥0 ≼ 𝑇𝑥0, then 𝑇 has a unique fixed point in 𝑋.   

Theorem 2.6. [17] Let (𝑋, 𝑑, ≼) be a complete partially ordered metric space. Suppose that 𝑓: 𝑋 → 𝑋 is continuous self-

mapping with strict mixed monotone property on 𝑋 satisfying 

𝑑(𝑓(𝑥, 𝑦), 𝑓(𝜇, 𝑣))

≤ 𝛼
𝑑(𝑥, 𝑓(𝑥, 𝑦))[1 + 𝑑(𝜇, 𝑓(𝜇, 𝑣))]

1 + 𝑑(𝑥, 𝜇)
+ 𝛽[𝑑(𝑥, 𝑓(𝑥, 𝑦)) + 𝑑(𝜇, 𝑓(𝜇, 𝑣))]

+ 𝛾𝑑(𝑥, 𝜇)                                                                                                                          (2.3) 

where 𝛼, 𝛽, 𝛾, 𝛿 ∈ [0,1) with 𝛼 + 2𝛽 + 𝛾 < 1, and if there exists two points 𝑥0, 𝑦0 ∈ 𝑋 with 𝑥0 < 𝑓(𝑥0, 𝑦0) and 𝑦0 >
𝑓(𝑦0, 𝑥0), then 𝑓 has coupled fixed point (𝑥, 𝑦) ∈ 𝑋2. 
 

3.  Main Results 

Theorem 3.1 Let (𝑋, 𝑑, ≤) be a complete partially ordered metric space. Suppose that 𝑓: 𝑋2 → 𝑋 is continuous self-

mapping with strict mixed monotone property on 𝑋 satisfying 

𝑑(𝑓(𝑥, 𝑦), 𝑓(𝜇, 𝑣)) ≤ 𝛼
𝑑(𝑥, 𝑓(𝑥, 𝑦))[1 + 𝑑(𝜇, 𝑓(𝜇, 𝑣))]

1 + 𝑑(𝑥, 𝜇)
+ 𝛽

𝑑(𝑥, 𝑓(𝑥, 𝑦))𝑑(𝜇, 𝑓(𝜇, 𝑣))

𝑑(𝑥, 𝜇)
+ 𝛾[𝑑(𝑥, 𝑓(𝑥, 𝑦)) + 𝑑(𝜇, 𝑓(𝜇, 𝑣))]

+ 𝛿𝑑(𝑥, 𝜇)                                                                                                                                                                                                    (3.1) 
where 𝛼, 𝛽, 𝛾, 𝛿 ∈ [0,1) with 𝛼 + 𝛽 + 2𝛾 + 𝛿 < 1, and if there exists two points 𝑥0, 𝑦0 ∈ 𝑋 with 𝑥0 < 𝑓(𝑥0, 𝑦0) and 𝑦0 >
𝑓(𝑦0, 𝑥0), then 𝑓 has coupled fixed point (𝑥, 𝑦) ∈ 𝑋 × 𝑋. 
 Proof. Suppose 𝑓 is a continuous map on 𝑋. Let 𝑥0, 𝑦0 ∈ 𝑋 such that 𝑥0 < 𝑓(𝑥0, 𝑦0) and 𝑦0 > 𝑓(𝑦0, 𝑥0). We construct two 

sequences {𝑥𝑛}, {𝑦𝑛} in 𝑋 as follows 

𝑥𝑛+1 = 𝑓(𝑥𝑛 , 𝑦𝑛) and 𝑦𝑛+1 = 𝑓(𝑦𝑛, 𝑥𝑛) ∀ 𝑛 ≥
0.                                                                                                                                                                         (3.2) 

Next, we have to show that for all 𝑛 ≥ 0, 
𝑥𝑛 < 𝑥𝑛+1                                                                                                                                                          (3.3) 

and  

𝑦𝑛 > 𝑦𝑛+1                                                                                                                                                          (3.4) 

We now use method of mathematical induction. Suppose 𝑛 = 0, since 𝑥0 < 𝑓(𝑥0, 𝑦0) and 𝑦0 > 𝑓(𝑦0, 𝑥0) and (3.2), we 

have 𝑥0 < 𝑓(𝑥0, 𝑦0) = 𝑥1 and 𝑦0 > 𝑓(𝑦0, 𝑥0) = 𝑦1 and hence inequalities (3.3) and (3.4) hold for 𝑛 = 0. Suppose that the 

inequalities (3.3) and (3.4) hold for all 𝑛 > 0 and by using the strict mixed monotone property of 𝑓, we get 

𝑥𝑛+1 = 𝑓(𝑥𝑛 , 𝑦𝑛) < 𝑓(𝑥𝑛+1, 𝑦𝑛) < 𝑓(𝑥𝑛+1, 𝑦𝑛+1)
= 𝑥𝑛+2                                                                                                                                 (3.5) 

and 

𝑦𝑛+1 = 𝑓(𝑦𝑛 , 𝑥𝑛) > 𝑓(𝑦𝑛+1, 𝑥𝑛) > 𝑓(𝑦𝑛+1, 𝑥𝑛+1)
= 𝑦𝑛+2.                                                                                                                                (3.6) 

Thus, the inequalities (3.3) and (3.4) hold for all 𝑛 ≥ 0 and we obtain that  

𝑥0 < 𝑥1 < 𝑥2 < 𝑥3 < ⋯ < 𝑥𝑛 < 𝑥𝑛+1

< ⋯                                                                                                                                      (3.7) 

and 

𝑦0 > 𝑦1 > 𝑦2 > 𝑦3 > ⋯ > 𝑦𝑛 > 𝑦𝑛+1

> ⋯                                                                                                                                      (3.8) 
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From hypothesis, we have 𝑥𝑛 < 𝑥𝑛+1, 𝑦𝑛 > 𝑦𝑛+1 and from (3.2), 

𝑑(𝑥𝑛+1, 𝑥𝑛) = 𝑑(𝑓(𝑥𝑛 , 𝑦𝑛), 𝑓(𝑥𝑛−1, 𝑦𝑛−1))

≤ 𝛼
𝑑(𝑥𝑛 , 𝑓(𝑥𝑛 , 𝑦𝑛))[1 + 𝑑(𝑥𝑛−1, 𝑓(𝑥𝑛−1, 𝑦𝑛−1))]

1 + 𝑑(𝑥𝑛 , 𝑥𝑛−1)
+ 𝛽

𝑑(𝑥𝑛 , 𝑓(𝑥𝑛, 𝑦𝑛))𝑑(𝑥𝑛−1, 𝑓(𝑥𝑛−1, 𝑦𝑛−1))

𝑑(𝑥𝑛 , 𝑥𝑛−1)

+ 𝛾[𝑑(𝑥𝑛 , 𝑓(𝑥𝑛, 𝑦𝑛)) + 𝑑(𝑥𝑛−1, 𝑓(𝑥𝑛−1, 𝑦𝑛−1))] + 𝛿𝑑(𝑥𝑛, 𝑥𝑛−1)  
which implies that 

𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ 𝛼
𝑑(𝑥𝑛 , 𝑥𝑛+1)[1 + 𝑑(𝑥𝑛−1, 𝑥𝑛)]

1 + 𝑑(𝑥𝑛 , 𝑥𝑛−1)
+ 𝛽

𝑑(𝑥𝑛 , 𝑥𝑛+1)𝑑(𝑥𝑛−1, 𝑥𝑛)

𝑑(𝑥𝑛, 𝑥𝑛−1)
+ 𝛾[𝑑(𝑥𝑛 , 𝑥𝑛+1) + 𝑑(𝑥𝑛−1, 𝑥𝑛)]

+ 𝛿𝑑(𝑥𝑛 , 𝑥𝑛−1) 

 

𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ (
𝛾 + 𝛿

1 − 𝛼 − 𝛽 − 𝛾
) 𝑑(𝑥𝑛−1, 𝑥𝑛)                                                                                                                     (3.9) 

Similarly, we get 

𝑑(𝑦𝑛+1, 𝑦𝑛) ≤ (
𝛾 + 𝛿

1 − 𝛼 − 𝛽 − 𝛾
) 𝑑(𝑦𝑛−1, 𝑦𝑛)                                                                                                                     (3.10) 

Adding (3.9) and (3.10), we get  

𝑑(𝑥𝑛+1, 𝑥𝑛) + 𝑑(𝑦𝑛+1, 𝑦𝑛)

≤ (
𝛾 + 𝛿

1 − 𝛼 − 𝛽 − 𝛾
) [𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑦𝑛−1, 𝑦𝑛)]                                                                                       

Now, we define the sequence {𝑇𝑛} = {𝑑(𝑥𝑛+1, 𝑥𝑛) + 𝑑(𝑦𝑛+1, 𝑦𝑛)}, by induction, we have 

0 ≤ 𝑇𝑛 ≤ 𝑘𝑇𝑛−1 ≤ 𝑘2𝑇𝑛−2 ≤ 𝑘3𝑇𝑛−3 ≤ ⋯
≤ 𝑘𝑛𝑇0                                                                                                                                    

where 𝑘 =
𝛾+𝛿

1−𝛼−𝛽−𝛾
< 1 and hence, we get 

lim
𝑛→∞

𝑇𝑛 = lim
𝑛→∞

[𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑦𝑛−1, 𝑦𝑛)]

= 0                                                                                                                                           
From this we get 

lim
𝑛→∞

𝑑(𝑥𝑛−1, 𝑥𝑛)

= 0                                                                                                                                                                                           
and  

lim
𝑛→∞

𝑑(𝑦𝑛−1, 𝑦𝑛)

= 0                                                                                                                                                                                            
Now, we shall prove that {𝑥𝑛} and {𝑦𝑛} are Cauchy sequences. For 𝑚 ≥ 𝑛, by triangular inequality we have 

𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝑑(𝑥𝑚, 𝑥𝑚−1) + 𝑑(𝑥𝑚−1, 𝑥𝑚−2) + ⋯
+ 𝑑(𝑥𝑛+1, 𝑥𝑛)                                                                                                             

and  

𝑑(𝑦𝑚, 𝑦𝑛) ≤ 𝑑(𝑦𝑚 , 𝑦𝑚−1) + 𝑑(𝑦𝑚−1, 𝑦𝑚−2) + ⋯
+ 𝑑(𝑦𝑛+1, 𝑦𝑛)                                                                                                              

then 

𝑑(𝑥𝑚, 𝑥𝑛) + 𝑑(𝑦𝑚 , 𝑦𝑛) ≤ 𝑇𝑛−1 + 𝑇𝑛−2 + 𝑇𝑛−3 + ⋯ + 𝑇𝑛 ≤ (𝑘𝑚−1 + 𝑘𝑚−2 + 𝑘𝑚−3 + ⋯ + 𝑘𝑛)𝑇0

≤
𝑘𝑛

1 − 𝑘
𝑇0,                          

as 𝑚, 𝑛 → +∞, 𝑑(𝑥𝑚, 𝑥𝑛) + 𝑑(𝑦𝑚 , 𝑦𝑛) → 0. Thus, {𝑥𝑛} and {𝑥𝑛} are Cauchy sequences in a complete metric space 𝑋. 
Therefore, there exists (𝑥, 𝑦) ∈ 𝑋 × 𝑋 such that lim

𝑛→∞
𝑥𝑛 = 𝑥 and lim

𝑛→∞
𝑦𝑛 = 𝑦. By continuity of 𝑓, we have 

𝑥 = lim
𝑛→∞

𝑥𝑛+1 = lim
𝑛→∞

𝑓(𝑥𝑛 , 𝑦𝑛) = 𝑓 ( lim
𝑛→∞

𝑥𝑛 , lim
𝑛→∞

𝑦𝑛)

= 𝑓(𝑥, 𝑦)                                                                                                            
and  

𝑦 = lim
𝑛→∞

𝑦𝑛+1 = lim
𝑛→∞

𝑓(𝑦𝑛, 𝑥𝑛) = 𝑓 ( lim
𝑛→∞

𝑦𝑛 , lim
𝑛→∞

𝑥𝑛)

= 𝑓(𝑦, 𝑥)                                                                                                            
Hence, 𝑥 = 𝑓(𝑥, 𝑦) and 𝑦 = 𝑓(𝑦, 𝑥). 
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Since {𝑥𝑛} is an increasing sequence in 𝑋 and converges to a point 𝑥 in 𝑋 as it is a Cauchy sequence, then 𝑥 = 𝑠𝑢𝑝{𝑥𝑛} i.e., 

(𝑥𝑛 ≤ 𝑥, ∀𝑛 ∈ ℕ). Therefore, we conclude that 𝑥𝑛 < 𝑥 for all 𝑛, otherwise there exists a number 𝑛0 ∈ ℕ such that 𝑥𝑛0
= 𝑥, 

and hence 𝑥 < 𝑥𝑛0
≤ 𝑥𝑛0+1 = 𝑥 which is wrong. Thus, from the strict monotone increasing of 𝑓 over the first variable, we 

get 

𝑓(𝑥𝑛 , 𝑦𝑛)
< 𝑓(𝑥, 𝑦𝑛).                                                                                                                                                                                  (3.11) 

Similarly, from above there is a decreasing Cauchy sequence {𝑦𝑛} in 𝑋, which converges to a point 𝑦 ∈ 𝑋. Thus, by ordered 

complete property of 𝑋, we have 𝑦 = 𝑖𝑛𝑓{𝑦𝑛} i.e., (𝑦𝑛 ≥ 𝑦, ∀𝑛 ∈ ℕ). 

With similar argument above, we have 𝑦𝑛 > 𝑦 for all 𝑛 ∈ ℕ. Also, from the strict monotone decreasing of 𝑓 on the second 

variable, we get 

𝑓(𝑥, 𝑦𝑛)
< 𝑓(𝑥, 𝑦).                                                                                                                                                                                  (3.12) 

Therefore, from equations (3.11) and (3.12), we obtain 

𝑓(𝑥𝑛 , 𝑦𝑛) < 𝑓(𝑥, 𝑦) ⟹ 𝑥𝑛+1 < 𝑓(𝑥, 𝑦) for all 𝑛 ∈
ℕ.                                                                                                                                                                                                  (3.13) 

Since 𝑥𝑛 = 𝑥𝑛+1 < 𝑓(𝑥, 𝑦) for all 𝑛 ∈ ℕ and 𝑥 = 𝑠𝑢𝑝{𝑥𝑛}, then we obtain 𝑥 ≤ 𝑓(𝑥, 𝑦). 

Now, let 𝑧0 = 𝑥  and 𝑧𝑛+1 = 𝑓(𝑧𝑛 , 𝑦𝑛) then, by similar argument above the sequence {𝑧𝑛} is a nondecreasing Cauchy 

sequence, since 𝑧0 ≤ 𝑓(𝑧0, 𝑦0) and converge to a point 𝑧 in 𝑋, implies that 𝑧 = 𝑠𝑢𝑝{𝑧𝑛}. 
Since for all 𝑛 ∈ ℕ, 𝑥𝑛 ≤ 𝑥 = 𝑧0 ≤ 𝑓(𝑧0, 𝑦0) ≤ 𝑧𝑛 ≤ 𝑧 then from (3.1), we have 

𝑑(𝑥𝑛+1, 𝑧𝑛+1) = 𝑑(𝑓(𝑥𝑛 , 𝑦𝑛), 𝑓(𝑧𝑛, 𝑦𝑛))

≤ 𝛼
𝑑(𝑥𝑛 , 𝑓(𝑥𝑛 , 𝑦𝑛))[1 + 𝑑(𝑧𝑛 , 𝑓(𝑧𝑛 , 𝑦𝑛))]

1 + 𝑑(𝑥𝑛 , 𝑧𝑛)
+ 𝛽

𝑑(𝑥𝑛 , 𝑓(𝑥𝑛, 𝑦𝑛))𝑑(𝑧𝑛, 𝑓(𝑧𝑛 , 𝑦𝑛))

𝑑(𝑥𝑛, 𝑧𝑛)

+ 𝛾[𝑑(𝑥𝑛 , 𝑓(𝑥𝑛, 𝑦𝑛)) + 𝑑(𝑧𝑛, 𝑓(𝑧𝑛 , 𝑦𝑛))]

+ 𝛿𝑑(𝑥𝑛 , 𝑧𝑛).                                                                                           
Taking the limit as 𝑛 → ∞ in the above inequality, we get 

𝑑(𝑥, 𝑧)
≤ (2𝛾 + 𝛿)𝑑(𝑥, 𝑧),                                                                                                                                                                                

but 2𝛾 + 𝛿 < 1, then we obtain that 𝑑(𝑥, 𝑧) = 0. Hence 𝑥 =  𝑧 = 𝑠𝑢𝑝{𝑥𝑛}, implies that 𝑥 ≤ 𝑓(𝑥, 𝑦) ≤ 𝑥. Thus, 𝑥 =
𝑓(𝑥, 𝑦). Again following similar argument above, we obtain that 𝑦 = 𝑓(𝑦, 𝑥). Hence, 𝑓 has a coupled fixed point in 𝑋 × 𝑋. 
To achieve the existence and uniqueness of a coupled fixed point of 𝑓 over a complete partial ordered metric space 𝑋, we 

have the following partial order relation. 

(𝜇, 𝑣) ≤ (𝑥, 𝑦) ⟺ 𝑥 ≥ 𝜇, 𝑦 ≤ 𝑣, for any (𝑥, 𝑦), (𝜇, 𝑣) ∈ 𝑋 × 𝑋. 
Theorem 3.2 By the hypothesis of Theorem 3.1 and suppose that for every (𝑥, 𝑦), (𝑟, 𝑠) ∈ 𝑋 × 𝑋, there exists (𝑢, 𝑣) ∈ 𝑋 ×

𝑋 such that (𝑓(𝑢, 𝑣), 𝑓(𝑣, 𝑢)) is comparable to (𝑓(𝑥, 𝑦), 𝑓(𝑦, 𝑥)) and (𝑓(𝑟, 𝑠), 𝑓(𝑠, 𝑟)), then 𝑓 has a unique coupled fixed 

point in 𝑋 × 𝑋. 
Proof. Following the proof of Theorem 3.1, the set of coupled fixed points of 𝑓 is non empty. Suppose that (𝑥, 𝑦) and (𝑟, 𝑠) 

are two coupled fixed points of the mapping 𝑓, then 𝑥 = 𝑓(𝑥, 𝑦), 𝑦 = 𝑓(𝑦, 𝑥), 𝑟 = 𝑓(𝑟, 𝑠) and 𝑠 = 𝑓(𝑠, 𝑟). Now, we have to 

show that 𝑥 = 𝑟, 𝑦 = 𝑠 for uniqueness of a coupled fixed point of 𝑓. 

From hypotheses, there exists (𝑢, 𝑣) ∈ 𝑋 × 𝑋 such that (𝑓(𝑢, 𝑣), 𝑓(𝑣, 𝑢)) is comparable to (𝑓(𝑥, 𝑦), 𝑓(𝑦, 𝑥)) and 

(𝑓(𝑟, 𝑠), 𝑓(𝑠, 𝑟)). Put 𝑢 = 𝑢0, 𝑣 = 𝑣0 then choose 𝑢1, 𝑣1 ∈ 𝑋 such that 𝑢1 = 𝑓(𝑢0, 𝑣0) and 𝑣1 = 𝑓(𝑣0, 𝑢0). Thus, following 

the proof of Theorem 3.1, we construct two sequences {𝑢𝑛}, {𝑣𝑛} from 𝑢𝑛+1 = 𝑓(𝑢𝑛, 𝑣𝑛) and 𝑣𝑛+1 = 𝑓(𝑣𝑛 , 𝑢𝑛) for all 𝑛 ∈
ℕ. Similarly by induction from Theorem 3.1, we define the sequences {𝑥𝑛}, {𝑦𝑛}, {𝑟𝑛} and {𝑠𝑛} by setting 𝑥 = 𝑥0, 𝑦 =
𝑦0 , 𝑟 = 𝑟0 and 𝑠 = 𝑠0. By Theorem 3.1, we have 𝑥𝑛 → 𝑥 = 𝑓(𝑥, 𝑦), 𝑦𝑛 → 𝑦 = 𝑓(𝑦, 𝑥), 𝑟𝑛 → 𝑟 = 𝑓(𝑟, 𝑠) and 𝑠𝑛 → 𝑠 =

𝑓(𝑠, 𝑟) for all 𝑛 ≥ 1. But (𝑓(𝑥, 𝑦), 𝑓(𝑦, 𝑥)) = (𝑥, 𝑦) and (𝑓(𝑢0, 𝑣0), 𝑓(𝑣0, 𝑢0)) = (𝑢1, 𝑣1) are comparable and then we 

have 𝑥 ≥ 𝑢1 and 𝑦 ≤ 𝑣1. 
Next we show that (𝑥, 𝑦) and (𝑢𝑛, 𝑣𝑛) are comparable, i.e., to show that 𝑥 ≥ 𝑢𝑛 and 𝑦 ≤ 𝑣𝑛  for all 𝑛 ∈ ℕ. Suppose the 

inequalities hold for some 𝑛 ≥ 0, then from strict mixed monotone property of 𝑓, we have 𝑢𝑛+1 = 𝑓(𝑢𝑛, 𝑣𝑛) ≤ 𝑓(𝑥, 𝑦) = 𝑥 

and 𝑣𝑛+1 = 𝑓(𝑣𝑛, 𝑢𝑛) ≤ 𝑓(𝑦, 𝑥) = 𝑦. Therefore, 𝑥 ≥ 𝑢𝑛 and 𝑦 ≤ 𝑣𝑛  for all 𝑛 ∈ ℕ. 
Then, from Theorem 1, we have 
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𝑑(𝑥, 𝑢𝑛+1) = 𝑑(𝑓(𝑥, 𝑦), 𝑓(𝑢𝑛 , 𝑣𝑛))

≤ 𝛼
𝑑(𝑥, 𝑓(𝑥, 𝑦))[1 + 𝑑(𝑢𝑛 , 𝑓(𝑢𝑛 , 𝑣𝑛))]

1 + 𝑑(𝑥, 𝑢𝑛)
+ 𝛽

𝑑(𝑥, 𝑓(𝑥, 𝑦))𝑑(𝑢𝑛, 𝑓(𝑢𝑛, 𝑣𝑛))

𝑑(𝑥𝑛 , 𝑢𝑛)

+ 𝛾[𝑑(𝑥, 𝑓(𝑥, 𝑦)) + 𝑑(𝑢𝑛, 𝑓(𝑢𝑛, 𝑣𝑛))]

+ 𝛿𝑑(𝑥, 𝑢𝑛),                                                                                                  
which implies that 

𝑑(𝑥, 𝑢𝑛+1)

≤ (
𝛾 + 𝛿

1 − 𝛼 − 𝛽 − 𝛾
) 𝑑(𝑥, 𝑢𝑛).                                                                                                                                                       

Similarly, we get 

𝑑(𝑦, 𝑣𝑛+1)

≤ (
𝛾 + 𝛿

1 − 𝛼 − 𝛽 − 𝛾
) 𝑑(𝑦, 𝑣𝑛).                                                                                                                                                        

Suppose 𝑃 =
𝛾+𝛿

1−𝛼−𝛽−𝛾
< 1, then from the above equations, we have 

𝑑(𝑥, 𝑢𝑛+1) + 𝑑(𝑦, 𝑣𝑛+1) ≤ 𝑃[𝑑(𝑥, 𝑢𝑛) + 𝑑(𝑦, 𝑣𝑛)] ≤ 𝑃2[𝑑(𝑥, 𝑢𝑛−1) + 𝑑(𝑦, 𝑣𝑛−1)]
≤ 𝑃3[𝑑(𝑥, 𝑢𝑛−2) + 𝑑(𝑦, 𝑣𝑛−2)] … … … … … … … … … … …
≤ 𝑃𝑛[𝑑(𝑥, 𝑢0) + 𝑑(𝑦, 𝑣0)].                                      

Taking limit as 𝑛 → +∞ to the above inequality, we get lim
𝑛→+∞

𝑑(𝑥, 𝑢𝑛+1) + 𝑑(𝑦, 𝑣𝑛+1) = 0. 

Consequently, we obtain lim
𝑛→+∞

𝑑(𝑥, 𝑢𝑛+1) = 0 and lim
𝑛→+∞

𝑑(𝑦, 𝑣𝑛+1) = 0. Similarly, we can prove that lim
𝑛→+∞

𝑑(𝑟, 𝑢𝑛) = 0 

and lim
𝑛→+∞

𝑑(𝑠, 𝑣𝑛) = 0. 

By triangular inequality, we obtain that  

𝑑(𝑥, 𝑟) ≤ 𝑑(𝑥, 𝑢𝑛) + 𝑑(𝑢𝑛, 𝑟) and 𝑑(𝑦, 𝑠) ≤ 𝑑(𝑦, 𝑣𝑛) + 𝑑(𝑣𝑛 , 𝑠). 
Take the limit as 𝑛 → ∞ to the above inequalities, we obtain that 𝑑(𝑥, 𝑟) = 0 = 𝑑(𝑦, 𝑠), implies that 𝑥 = 𝑟 and 𝑦 = 𝑠. 
Hence, 𝑓 has a unique coupled fixed point in 𝑋 × 𝑋. 
Theorem 3.3 In addition to the hypothesis of Theorem 3.1 (or Theorem 3.2), suppose that 𝑥0, 𝑦0 are comparable then 𝑓 has 

a coupled fixed point in 𝑋 × 𝑋. 
Proof. Suppose(𝑥, 𝑦) is a coupled fixed point of 𝑓, then from Theorem 3.1 (or Theorem 3.2), there exists two sequences 
{𝑥𝑛} and {𝑦𝑛} such that 𝑥𝑛 → 𝑥  and 𝑦𝑛 → 𝑦 in 𝑋. 
Assume that 𝑥0 ≤  𝑦0, then we show that 𝑥𝑛 ≤  𝑦𝑛, for all 𝑛 ≥ 0. Suppose it holds for some 𝑛 ≥ 0. By the strict mixed 

monotone property of 𝑓, we get 𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑦𝑛) ≤ 𝑓(𝑦𝑛 , 𝑥𝑛) = 𝑦𝑛+1. Then, from the contraction condition (3.1), we get 

𝑑(𝑥𝑛+1, 𝑦𝑛+1) = 𝑑(𝑓(𝑥𝑛, 𝑦𝑛), 𝑓(𝑦𝑛 , 𝑥𝑛))

≤ 𝛼
𝑑(𝑥𝑛 , 𝑓(𝑥𝑛 , 𝑦𝑛))[1 + 𝑑(𝑦𝑛 , 𝑓(𝑦𝑛 , 𝑥𝑛))]

1 + 𝑑(𝑥𝑛 , 𝑦𝑛)
+ 𝛽

𝑑(𝑥𝑛 , 𝑓(𝑥𝑛 , 𝑦𝑛))𝑑(𝑦𝑛 , 𝑓(𝑦𝑛 , 𝑥𝑛))

𝑑(𝑥𝑛, 𝑦𝑛)

+ 𝛾[𝑑(𝑥𝑛 , 𝑓(𝑥𝑛, 𝑦𝑛)) + 𝑑(𝑦𝑛, 𝑓(𝑦𝑛 , 𝑥𝑛))]

+ 𝛿𝑑(𝑥𝑛 , 𝑧𝑛).                                                                                           
Take the limit as 𝑛 → ∞ to the above inequalities, we get 

𝑑(𝑥, 𝑦)
≤ (2𝛾 + 𝛿)𝑑(𝑥, 𝑦)                                                                                                                                                                                 

Which is a contradiction, since 2𝛾 + 𝛿 < 1. Thus, 𝑑(𝑥, 𝑦) = 0. Therefore, we have 𝑓(𝑥, 𝑦) = 𝑥 = 𝑦 = 𝑓(𝑦, 𝑥). Similarly, 

we can also show that 𝑓(𝑥, 𝑦) = 𝑥 = 𝑦 = 𝑓(𝑦, 𝑥) by considering 𝑦0 ≤  𝑥0. Hence, (𝑥, 𝑦) is a coupled fixed point of 𝑓 in 

𝑋2. 

4.   Conclusion 
In this paper, we prove the existence and uniqueness of some coupled fixed point for nonlinear contractive mappings with 

rational expressions in the context of metric space endowed with partial order. Hence, further work could be done as an 

extension of the results herein to tripled fixed point. 
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