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Abstract 
 

A circuit consisting of a resistor and battery was used to completely discharge an 

ensemble of dry cell batteries, and the number of batteries that failed in a given time 

were recorded (for five different  brands of 1.5 V dry cell batteries, type R6 UM-3 AA 

size). This data was converted into Survival Probabilities as a function of time. Using 

the method of least-squares linear regression, estimates of the failure rate and mean-

time-to-failure of each battery brand were extracted from the survival probabilities. 

The results indicate that supposedly equivalent batteries (from different 

manufacturers) have grossly different mean-time-to-failure and thus are of different 

quality. 
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1. Introduction 

Electrochemical batteries [1] are a convenient source of electrical energy especially as portable electronics becomes 

increasingly popular. Batteries have a long history with varied sizes and types that often depend on the energy demands and 

size limitations of the electronic system that use the battery. With the increasing popularity of mobile portable electronic 

systems, battery runtime [2] has become a key measure of battery quality. The operation of those electronic systems that 

use battery energy is often limited by the battery runtime; hence it is useful to be able to estimate battery runtime. With 

knowledge of battery runtime, it is possible to have a battery replacement schedule and to reduce system time-out (due to 

battery failure). 

Dry cell batteries are a common type of non-rechargeable batteries used in electronic clocks, portable radios, remote control 

units, etc. Given the prevalence of dry cell batteries in Nigerian homes and the availability of various brands in the Nigerian 

market, we decided to study the battery runtime of this type of battery. Earlier studies, both experimental and theoretical, on 

battery performance compare the reliability of dry cell batteries [3] and consider electrical battery models capable of 

predicting runtime [4]. For every battery size and specification there are various brands in the market, from which one may 

choose. Ordinary, one may suppose that, the various brands are equivalent (that is, are of the same quality). But, experience 

has shown that some brands last longer than others. This work is motivated by the need to be guided in the choice of battery 

brand.  

Here we consider mean-time-to-failure (the amount of time a product usually works until it fails) as a measure of runtime 

and an indicator of battery quality. We have estimated the failure rate and mean-time-to-failure of some brands of dry cell 

batteries, common in the Nigerian market. The estimates were deduced from experimental data on the continuous discharge 

of type R6 UM-3 AA size dry cell batteries.  
 

2. Failure rate and Mean-time-to-failure 

Failure rate and mean-time-to-failure are parameters that can be used to denote component (or system) runtime while in 

use, as a representation of component quality, determining its maintenance or replacement schedule. Ultimately, every 

component (or system) in use will wear-out. Thus the survival probability S(t) of a component starts at unity, initially (at 

zero time, t=0) and decreases as time increases, eventually tending to zero as time tends to infinity. The survival probability 

of a component is deduced following the discussion of molecular collisions in kinetic theory [5, 6]. 

Consider an ensemble consisting of a large number No of similarly prepared components (say, batteries). The probability of 

occurrence of a particular event (say, failure) is defined with respect to this ensemble and is given by the fraction of  
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components in the ensemble which exhibit the specified event. We desire the probability that a battery will continue in use 

for a time t, without failure; sometimes called, the survival probability S(t) 

To compute the survival probability, S(t), we observe what is happening to all No  batteries in use. After a time t, some of 

them failed. Let N(t) denote the number of batteries that have not failed up to the time t. Note that N(t) is less than No 

If we know that N(t) batteries have survived up to time t, then N(t + dt) the number of batteries which survive upto the time 

t + dt is less than N(t) by the number of batteries 𝑑𝑁 that have failed in the small time interval 𝑑𝑡. That is,  

    dNdttNtN           (1) 

If there is equilibrium, then on average, nothing is changing with time. So N batteries waiting the time 𝑑𝑡 will have the 

same number of failures, as one battery waiting the time Ndt. Hence the number of batteries dN that will fail in the time 

interval 𝑑𝑡 is,  

 dttNdN            (2) 

where 𝜆 is failure rate. 

Re-writing N(t + dt) as N(t) + (dN/dt)dt following calculus, and using equation (2) to substitute for 𝑑𝑁 in equation (1) we 

obtain 
 

 dttNdt
dt

tdN
      

or, 
 
 

dt
tN

tdN


          (3) 

Assuming that the failure rate λ is constant, equation (3) can be integrated to give 

  tconsttN tanln     

or, 

  t

oeNtN             (4) 

Since No  is the total number of batteries in the ensemble, which put to use at an arbitrary time  𝑡 =  0, may fail at some 

time t in the future. 

The survival probability, S(t), is obtained by dividing N(t) by No, that is 

 
  t

o

e
N

tN
tS 

           (5) 

The survival probability is the probability that a battery survives for a time t without failure.  

Now, the number of batteries which fail in the time interval dt at the time t, after an arbitrarily chosen starting time is given 

in equation (2). The time they spent before failure is, of course, t. Hence, the mean-time-to-failure (τ) (usually called 

relaxation time in kinetic theory) is 
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       (6a) 

Note that the value of the standard integral above is unity. Thus, the mean-time-to-failure for a component is  




1
            (6b)   

We shall estimate the failure rate (λ) and mean-time-to-failure ( ) of some dry cell batteries using experimental data. 

3. Experimental Procedure and Result 

A test circuit, consisting of a resistor connected to the battery, as shown in figure 1, was used to discharge the battery. The 

current (I) and voltage (V) readings were recorded at the start t=0 of the experiment and, subsequently, at hourly intervals 

until a battery was completely discharged. A battery was considered to be completely discharged (and to have failed) when 

the ammeter and voltmeter readings were both zero. A small torch-bulb was used as resistor, and when a battery was 

completely discharged the torch-bulb did not give any light.  

 

 

 

 

 

 

 
 

          Figure. 1 Battery test circuit 
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Five different brands of 1.5V dry cell batteries type R6 UM-3 AA size were studied. The battery brands studied were 

Loncell, Matoma, PowerSuper, Tudor and Tunar Max. These battery brands are commonly found in Port Harcourt markets.  

Sixteen units of each battery brand were lasted. These batteries were new and not previously used. In the course of the 

experiment, which tested for seven hours, a fraction of the sixteen batteries failed. And after seven hours, all sixteen 

batteries failed. The number of batteries that failed (for each brand) at one-hourly interval are recorded in Table 1. This 

means that considering Tudor battery (for instance) the sixteen units survived for a time below one-hour, but by one-hour 

into the test one unit failed. And three units survived after six hours into the test, but all failed by the seventh hour. 

Table 1: Failure Frequency 
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 Battery Brand  
Time it takes a battery to fail (hours) 

1 2 3 4 5 6 7 

Loncell 4 2 3 2 3 1 1 

Motoma 3 2 1 4 1 3 2 

PowerSuper 4 2 2 1 3 2 2 

Tudor 1 2 4 2 3 1 3 

Tunar Max 2 2 4 3 3 1 1 
 

4. Analysis and Discussion 

To analyse the data in Table 1, equation (5) is used to calculate the survival probability values for each battery brand. These 

probabilities are given in Table 2. Note that in equation (5), No is sixteen and N(t) is the number of units (of a battery brand) 

that survived up to the time t. Hence the survival probability is the ratio of units (of a battery brand) that survived up to time 

t to the total number No  At the start of the experiment t=0 all sixteen units of all the battery brands “survived”, hence the 

survival probability at time t=0 is unity. 
 

Table 2: Survival Probability 
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Battery Brand 
Time (hours) 

0 1 2 3 4 5 6 

Loncell 1.00 0.75 0.625 0.4375 0.3125 0.125 0.0625 

Motoma 1.00 0.8125 0.6875 0.625 0.375 0.3125 0.125 

Powersuper 1.00 0.75 0.625 0.50 0.4375 0.25 0.125 

Tudor   1.00 0.9375 0.8125 0.5625 0.4375 0.25 0.1875 

Tunar Max 1.00 0.875 0.75 0.50 0.3125 0.125 0.0625 
 

We desire to extract the failure rate (λ) and the mean-time-to-failure (τ) from the above data, for each battery brand. Notice 

that equation (5) is an exponential decay function, the analysis is made simpler by linearing equation (5) thus:   

  ttS  ln           (7) 

Hence the failure rate (λ) is the slope of the line obtained on plotting –In S(t) against t. However, instead of extracting the 

failure rate (λ) from a graphical method, we have used the least square linear regression method [7,8] to calculate the failure 

rate (λ) via: 
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      (8) 

 

Equation (6) is then used to calculate the mean-time-to-failure (τ) given the values of λ. The estimates of the failure rate (λ) 

and mean-time-to-failure (τ) for the five battery brands (calculated as mentioned above) are given in Table 3. 
 

Table 3: Failure Rates and Mean-Time-to-Failure 

Battery Brand Failure Rate (λ) Mean-Time-to-Failure (hours) 

Loncell 0.4006 2.495 

Motoma 0.2484 4.025 

PowerSuper 0.2912 3.433 

Tudor 0.2565 3.898 

Tunar Max 0.3958 2.526 

 

 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 17, (October - December, 2021), 183–186 



186 
 

Simple Battery…                       Godspower and Eghuanoye                          Trans. Of NAMP 

 

Observe from Table 3 that, of the five brands of 1.5 V dry cell batteries types R6 UM-3 AA size studied, Motoma exhibited 

the longest mean-time-to-failure of about 4.0hrs while Loncell exhibited the shortest mean-time-to-failure of 2.5hrs.  Note 

that the estimated mean-time-to-failure is for continuous discharge of a battery, and as such the estimated times are 

appropriate in applications such as the use of a battery to provide electric energy in electronic clocks (or other such 

applications that require continuous electric energy supply). In application that require intermittent electric energy (such as 

in flash-lights) the runtime of the batteries used should be much longer than the above estimated times. Also, the data in 

Table 3, validates the common experience by users, that supposedly equivalent components (from different manufacturers) 

do not perform identically (and so may cost differently). The data shows that batteries of the same size have different 

runtimes; this does mean that they are of different quality. 
 

5. Conclusion 

We have used a simple battery test circuit to assess the quality of five brands of 1.5V dry cell batteries, type R6 UM-3 AA 

size, commonly found in Port Harcourt markets. Estimates of the failure rates and mean-time-to-failure of each battery 

brand have been deduced from experimental data obtained from an ensemble of each brand. The mean-time-to-failure has 

been considered as an indicator of quality of a battery brand. The results confirm that though the tested batteries were of 

same size, they exhibited grossly different qualities. Hence, in components replacement, one should note that while a 

component may fit/work, it may not last.  
 

Acknowledgement  
We which to acknowledge useful discussion held with Dr. A.T. Ngiangia of Physics Department, University of Port 

Harcourt, Choba, Port Harcourt, in the course of this work.  
 

References 

[1] D. Linden and T.B. Reddy (2002) Handbook of Batteries, 3rd ed. New York: Ma Grew-Hill 

[2]  D. Rakhmatov, S. Vrudhula and D.A. Wallach (2003) “A model for battery lifetime analysis for organizing 

applications in a pocket computer” IEEE Trans. VLSI  Syst. 11(6), 1019-1030. 

[3] H.O. Amuji and N.C. Umelo-Ibemere (2015) “Comparison of the reliability of dry cell batteries” J.Nigerian Assoc 

Math. Phys. Vol-31, 413-418. 

[4] Min Chen and Gabriel A. Rincon-Mora (2006) “Accurate electrical battery model capable of predicting runtime 

and I-V Performance” IEEE Trans. Energy Conversion 21(2), 504-511. 

[5] Frederick Rief (1965) Fundamentals of Statistical and Thermal Physics. Tokyo: McGraw-Hill Kogakusha. p 463. 

[6] R.P. Feynman, R.B. Leighton and M. Sands (1979) The Feynman Lectures on Pyhsics, Volume 1. Reading, Mass: 

Addison-Wesley. p 43-1. 

[7]  Curtis F. Gerald and Patrick O. Wheatley (2003) Applied Numerical Analysis, 6th ed. Delhi, India: Pearson 

Education (Singapore) Pte Ltd. p 264. 

[8] Steven C. Chapra and Raymond P. Canale (2010) Numerical Methods for Engineers, 6th ed. New York: McGraw-

Hill. P 454. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 17, (October - December, 2021), 183–186 


