THE SUP-EQUICONTINUITY THEOREM

Sunday Oluyemi

Odo-Koto, Aiyedaade, Ilorin South LGA, Kwara State, NIGERIA.

Abstract

We establish two theorems on equicontinuity involving the supremum of vector/locally convex topologies on the codomain space. With the help of these we establish a third theorem, here labeled, The Sup-Equicontinuity Theorem.

Keywords: equicontinuous, supremum of vector/locally convex topologies.

Subject Classification General Topology (GT), Topological vector Spaces (TVS).

1. LANGUAGE AND NOTATION

Our language and notation shall be pretty standard, as found, for example, in [1], [2], [3], [4] and [5]. By \mathbb{N} we denote the natural numbers 1, 2, $\mathbb{R} \equiv$ the real numbers, and $\mathfrak{C} \equiv$ the complex numbers. $K = \mathbb{R}$ or \mathfrak{C} , and by /// we signify the end or absence of a proof. *Equicontinuity* of a collection of maps is one of a number of General Topology (**GT**)(Uniform Spaces) concepts that have assumed some notoriety in Topological Vector Spaces (**TVS**)(Locally Convex Spaces). For, *A vector Topology is Uniformizable* [6]. So, in what follows we cite results from both **GT** and **TVS**. We assume the reader familiar with [1] and [2], and so language and notation there shall be used without citation.

2. SUPREMUM TOPOLOGIES

Let X be a non-empty set and Φ a collection of topologies on X. Following [3, p. 89][4, Theorem 1-6-8, p.11] we denote by $\vee \Phi$ the *supremum* of Φ .

FACT 1 (GT) Let $X \neq \emptyset$ and $\Phi = \{\tau_i : i \in I\}$ a collection of topologies on *X*. Let $x \in X$, and suppose that for $i \in I$, \mathcal{B}_i is a τ_i -local base of neighbourhoods of *x*. Then, a $\vee \Phi$ -local base of neighbourhoods of *x* is the family of finite intersections.

 $\{A_{1_x} \cap A_{2_x} \cap \dots \cap A_{n_x} : A_{k_x} \in \mathcal{B}_{k_x}, k = 1, 2, \dots, n, n \in \mathbb{N}, \mathcal{B}_{k_x} \text{ is a } \mathcal{B}_i \text{ for some } i \in I\}. ///$

FACT 2 (TVS) Let E_K be a vector space and Φ a collection of vector topologies on E_K . Then, $\lor \Phi$ is a vector topology on E_K . /// From FACT 1 now follows that

FACT 3 (TVS) Let $(E, +, \theta)_{K}$ be a vector space and Φ a collection of vector topologies on $(E, +, \theta)_{K}$. If $W \in N_{\theta}(\vee \Phi)$, then, W contains

a finite intersection, $\bigcap_{i=1}^{n} V_i \in N_{\theta}(\tau_i), i = 1, 2, \dots, n, \tau_1, \tau_2, \dots, \tau_n \in \Phi, n \in \mathbb{N}. ///$

FACT 4 [2, 3.8, Note 3] Let $((X, +,\theta)_K, \tau) = (X, \tau)$ and $((E, +, \theta^*)_K, \tau^*) = (E, \tau^*)$ be topological vector spaces and *F* a collection of linear maps $f: (X, \tau) \rightarrow (E, \tau^*)$. The following are equivalent.

(i) *F* is equicontinous.

(ii) For every null net $(x_{\delta})_{\delta \in (I, \leq)}$ in (X, τ) and every $W \in \mathbb{N}_{\theta^*}(\tau^*)$ there exists $\delta_0 = \delta_0(W) \in I$ such that $f(x_{\delta}) \in W$ for all $\delta \geq \delta_0$ and all $f \in F$. ///

Observation 5 (GT) [4, last assertion of Theorem 1 - 6 - 8, p.11] Let $X \neq \emptyset$, Φ a collection of topologies on X, (Z, ξ) a topological space, and

 $f: Z \to X$ a map. Then, f is $(\xi, \lor \Phi)$ continuous if and only, if f is (ξ, τ) -continuous for each $\tau \in \Phi$. ///

Our next theorem, one of the two advertized in the abstract, is a generalization of Observation 5 which we have stated only for ease of comparison.

THEOREM 6 Let (X, τ) be a topological vector space, and Φ a collection of vector topologies on the vector space $(X', +, \theta')_{K}$. Then, a collection, *F* of linear maps $f : X \to X'$ is $(\tau, \lor \Phi)$ -equicontinous if and only if it is (τ, τ') -equicontinuous for each $\tau' \in \Phi$.

Proof The forward implications is immediate from FACT 4 and [2, 3.6 Note 2(ii), taking cognizance of the fact that $N_{\theta'}(\tau') \subseteq N_{\theta'}(\vee \Phi)$ for each $\tau' \in \Phi$.

FACT 3 and FACT 4 prove the reverse implication \Leftarrow , taking cognizance, of the fact that the set (I, \leq) on which a net $(x_{\delta})_{\delta \in (1, \leq)}$ is based is a directed set. /// We move on to state and prove the second of the advertised theorems of the abstract. First, some language and notation. If $\emptyset \neq X$ is a vector space and p is a seminorm on X, we denote the pseudometric topology of p by τ_p , which is a locally convex topology. The supremum of a collection of locally convex topologies is a locally convex topology. Hence, if P is a collection of seminorms on X, then $\vee \tau_p$ denoted simply τ_p is also a locally convex topology.

FACT 7 If τ is a locally convex topology on a vector space, then $\tau = \tau_p$ for some collection *P* of seminorms. ///

Corresponding Author: Sunday O., Email: soluyemi19@yahoo.com, Tel: +2348160865176

Transactions of the Nigerian Association of Mathematical Physics Volume 17, (October - December, 2021), 31-34

Observation 8 [5, Proposition 5.15, p.159] Let *X* and *Y* be vector spaces with topologies defined on them by the families { $p_{\alpha} : \alpha \in A$ } and { $q_{\beta} : \beta \in B$ }, of seminorms, respectively, and $T : X \to Y$ a linear map. Then, *T* is continuous if and only if for each $\beta \in B$, there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in A$, $n \in \mathbb{N}$, and C > 0 such that

Sunday

$$q_{\beta}(T(x)) \le C \sum_{i=1}^{n} p_{\alpha_{1}}(x) \text{ for all } x \in X$$

[4, Theorem 7 – 2 – 5, p.94] Let *X* be a vector space, *P* a collection of seminorms on *X* and $f : (X, \tau_p) \rightarrow K$ a linear functional. Then, *f* is continuous if and only if there exist M > 0 and $p_1, p_2, ..., p_n \in P$, $n \in \mathbb{N}$, such that

$$|f(x)| \le M \sum_{i=1}^{n} p_i(x)$$
 for all $x \in X$. ///

Notation 9 If $(E, +, \theta)_K$ is a vector space and p is a seminorm on $(E, +, \theta)_K$, we write $p(\le 1)$ for $\{v \in E : p(v) \le 1\}$. **FACT 10 (TVS)** With notation as in the preceding, $p(\le 1) \in N_{\theta}(\tau_p)$. ///

Notation 11 Let $\varepsilon > 0$ and $p_1, p_2, \dots, p_n (n \in \mathbb{N})$ be seminorms on the vector space $E_{\mathbb{K}} = (E, +, \theta)_{\mathbb{K}}$. Write $Bp_1p_2, \dots, p_n, \varepsilon$ for the set $\{v \in E_{\mathbb{K}} : p_1(v) < \varepsilon, p_2(v) < \varepsilon, \dots, p_n(v) < \varepsilon\}$.

FACT 12 [4, Theorem 7 – 2 – 4, p.94]. Let *P* be a collection of seminorms on the vector space $(E, +, \theta)_{K}$. Then, the family $\{Bp_1p_2, \ldots, p_n, \varepsilon : p_1, p_2, \ldots, p_n \in P, n \in \mathbb{N}, \varepsilon > 0\}$

is a $\tau_{\textit{p}}\text{-local}$ base of neighbourhoods of $\theta.$ ///

FACT 13 (TVS) Let E_K be a vector space.

(i) If p is a seminorm on E_K and $\alpha > 0$, then αp is also a seminorm on E_K

(ii) If $p_1, p_2, \dots, p_n \in P$, $n \in \mathbb{N}$, are seminorms on E_K , then, their sum $p_1 + p_2 + \dots + p_n$ is also a seminorm on E_K . ///

FACT 14 [4, Theorem 1 – 6, 8, p.22] Let *P* be a collection of seminorms on the vector space $(X, +, \theta)_{K}$. Then, a net is null in (X, τ_{P}) if and only if it is null in (X, τ_{P}) for each $p \in P$. ///

The second of the advertized theorems simply generalizes Observation 8 to an equicontinuous collection of near maps $f: X \to Y$.

THEOREM 15 Let $X_K = (X, +, \theta)_K$ and $Y_K = (Y, +, \theta^*)_K$ be vector spaces with topologies defined on them by families $\{p_\alpha : \alpha \in A\}$ and $\{q_p : \beta \in B\}$ of seminorms, respectively, and *F* a collection of linear maps $f : X_K \to Y_K$. Then, *F* is equicontinous if and only if for each $\beta \in B$ there exist $\alpha_1, \alpha_2, ..., \alpha_n \in A, n \in \mathbb{N}$, and C > 0 such that

$$q_{\beta}(f(x)) \le C \sum_{i=1}^{n} p_{\alpha_i}(x)$$
 for all $x \in X$ and all $f \in F$.

Proof Let $P = \{ p_{\alpha} : \alpha \in A \}$ and $Q = \{ q_p : \beta \in B \}$.

 \Rightarrow : *Hypothesis F* is (τ_P, τ_Q) -equicontinuous.

By THEOREM 6, therefore, *F* is (τ_P, τ_{q_β}) -equicontinous for each $\beta \in B$. By FACT 10, $q_\beta (\leq 1) \in N_{\theta^*}(\tau_{q_\beta})$. By [2, 3.6Note 2(i) \Leftrightarrow

(ii)] and FACT 12,

$$\bigcap_{f \in F} f^{-1}(q_{\beta}(\leq 1)) \supseteq \overline{B} p_1, p_2, \dots, p_n, \varepsilon \qquad \dots (\Delta^1)$$

for some $p_1, p_2, \ldots, p_n \in P$, $n \in \mathbb{N}$, and $\varepsilon > 0$.

Let $p = p_1 + p_2 + \dots + p_n$. Then, if $x \in X$, $p(x) < \varepsilon \Rightarrow p_1(x) < \varepsilon$, $p_2(x) < \varepsilon$, $\dots, p_n(x) < \varepsilon$, which means $x \in Bp_1p_2, \dots, p_n, \varepsilon$ and so by (Δ^1) , $x \in \bigcap_{f \in F} f^{-1}(q_\beta(\le 1))$. And so, $q_\beta(f(x)) \le 1$ for all $f \in F$. Thus, we have shown that

$$p(x) < \varepsilon \Rightarrow \sup_{f \in F} q_{\beta}(f(x)) \le 1$$
(p)

We CLAIM that

$$\sup_{f \in F} q_{\beta}(f(x)) \le \frac{1}{\epsilon} p(x) \text{ for all } x \in X \qquad \dots (\Delta^3)$$

which proves our theorem.

Assume the opposite that for some $a \in X$

$$\sup_{f \in F} q_{\beta}(f(a)) > \frac{1}{\epsilon} p(a) \qquad \dots (\sigma^{1})$$

By the Density Theorems of Elementary Real Analysis it follows from (σ^1) that there exists a rational t such that

$$\sup_{f \in F} q_{\beta}(f(a)) > t > \frac{1}{\epsilon} p(a) \qquad \dots (\sigma^2)$$

From the second inequality of (σ^2) follows that $p((1/t)a) < \varepsilon$

Transactions of the Nigerian Association of Mathematical Physics Volume 17, (October - December, 2021), 31 –34

.....(1)

The Sup-Equicontinuity...

Sunday

From the first follows that

 $\frac{1}{t} \sup_{f \in F} q_{\beta}(f(a)) > 1$ from which follows that $\sup_{f \in F} q_{\beta}(f((1/t)a)) > 1$

.....(2)

 $f \in F$

Clearly, (1) and (2) jointly contradict (ρ).

 \Leftarrow : *Hypothesis* For each $\beta \in B$, there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in A$, $n \in \mathbb{N}$, and C > 0 such that

$$q_{\beta}(f(x)) \leq C \sum_{i=1}^{n} p_{\alpha_i}(x)$$
 for all $x \in X$ and all $f \in F$.

Let $W \in \mathbb{N}_{\theta}^{*}(\tau_{q_{\beta}})$. Then, $W \supseteq q_{\beta}(<\varepsilon) = \{y \in Y : q_{\beta}(y) < \varepsilon\}$ for some $\varepsilon > 0$. With a view to employ [2, 3.8 Note 3(i) \Leftrightarrow (viii)], let $(x_{\delta})_{\delta \in (I, V)}$

 \leq_{0} be a τ_{p} -null net. Then, $(x_{\delta})_{\delta \in (I, \leq)}$ by FACT 14 is τ_{p} -null for each $p \in P$. Taking cognizance of the fact that the set (I, \leq) on which the net is based is directed, it shall follow from the *Hypothesis* that there exists a $\delta_{0} = \delta_{0} (q_{\beta}(< \varepsilon))$ such that $q_{\beta}(f(x_{\delta})) < \varepsilon$ for all $\delta \geq \delta_{0}$ and all $f \in F$. That is,

 $f(x_{\delta}) \in q_{\beta}(<\varepsilon) \subseteq W$ for all $\delta \ge \delta_0$ and all $f \in F$.

Hence, F is (τ_P, τ_{q_e}) -equicontinuous. By theorem 6, therefore, F is (τ_P, τ_Q) -w equicontinuous. ///

COROLLARY 16 Let X_K be a vector space, P a collection of seminorms on X_K , and F a collection of linear functionals $f : (X_K, \tau_p) \rightarrow T$

K. Then, F is equicontinuous if and only if there exist M > 0 and $p_1, p_2, ..., p_n \in P$, $n \in \mathbb{N}$, such that $|f(x)| \le M \sum_{i=1}^{n} p_i(x)$ for all $x \in \mathbb{N}$

 $X_{\rm K}$ and all $f \in F$. ///

3 THE SUP-EQUICONTINUITY THEOREM

FACT 1 (TVS) Suppose $((X, +, \theta)_{K}, \tau)$ is a topological vector space and $V \in N_{\theta}(\tau)$. Then, for $n \in \mathbb{N}$, $n \ge 2$, there exists $V' \in N_{\theta}(\tau)$ such that

 $\underbrace{V'+V'+\ldots+V'}_{n \ summands} \subseteq V.$

Notation 2 Let $\emptyset \neq X$, Y, and suppose F is a collection of maps $f : X \to Y$. If $\emptyset \neq U \subseteq X$, we shall denoted the union $\bigcup_{f \in F} f(U)$

simply by F(U).

With the Notation 2 we can recast [2, 3.6 Note $2(i) \Leftrightarrow (ii)$] as follows.

FACT 3 For topological vector spaces $(X, \tau) = ((X, +, \theta)_K, \tau)$ and $(E, \tau^*) = ((E, +, \theta^*)_K, \tau^*)$ and *F* a collection of linear maps $f : (X, \tau) \rightarrow (E, \tau^*)$, the following are equivalent.

(i) F is (τ, τ^*) -equicontinuous.

(ii) For every $W \in N_{\theta^*}(\tau^*)$, there exists $V \in N_{\theta}(\tau)$ such that $F(V) \subset W$. ///

We can now state and prove the first of four Observations heralding The Sup-Equicontinuity Theorem.

Observation I 4 Let $(X, \tau) = ((X, +, \theta)_K, \tau)$ and $(E, \tau^*) = ((E, +, \theta^*)_K, \tau^*)$ be topological vector spaces, and $F_1, F_2, \ldots, F_n, n \in \mathbb{N}, n \ge 2$, sets of (τ, τ^*) -equicontinuous linear maps. Then, their sum $F_1 + F_2 + \ldots + F_n = \{f_1 + f_2 + \ldots + f_n : f_k \in F_k, k = 1, 2, \ldots, n\}$ is also (τ, τ^*) -equicontinuous.

 (σ^2)

Proof Let $W \in N_{\theta^*}(\tau^*)$. By FACT 1, there exists $V \in N_{\theta^*}(\tau^*)$ such that $V + V + \dots + V \subseteq W$ (σ^1)

By the hypothesis and FACT 3, for each $k \in \{1, 2, ..., n\}$ there exist $U_k \in N_{\theta}(\tau)$ such that

 $F_k(U_k) \subseteq V$

Clearly, (σ^1) and (σ^2) , therefore, give $F_1(U_1) + F_2(U_2) + \dots + F_n(U_n) \subseteq V + V + \dots + V \subseteq W$

Clearly, $U = \bigcap_{k=1}^{n} U_k \in N_{\theta}(\tau)$. Also,

 $F_1(U) + F_2(U) + \dots + F_n(U) \subseteq V + V + \dots + V \subseteq W.$ Hence,

 $(F_1 + F_2 + \ldots + F_n)(U) \subseteq W. ///$

Observation II 5 Let X_K be a vector space, τ_1 , τ_2 vector topologies on X_K , Φ a collection of vector topologies on X_K , $(X_{K'}, \tau')$ a topological vector space and F a collection of linear maps $f : X_K \to (X_K', \tau')$. Then,

Transactions of the Nigerian Association of Mathematical Physics Volume 17, (October - December, 2021), 31 –34

The Sup-Equicontinuity...

Sunday

(i) $\tau_1 \leq \tau_2$ and $F(\tau_1, \tau')$ -equicontinuous $\Rightarrow F$ is (τ_2, τ') -equicontenuous.

(ii) *F* is (τ, τ') -equicontinuous for each $\tau \in \Phi$ implies *F* is $(V\Phi, \tau')$ -equicontinuous.

Proof Clearly, (ii) is immediate from (i), and (i) is immediate from FACT 3. ///

Observation III 6 Let (X, τ) be a topological vector space, and *F* a collection of τ -equicontinuous set of linear functionals. If $\emptyset \neq A \subseteq F$, then A is also equicontinuous.

Proof Clear. ///

Notation 7 Let X_K be a vector space. Following [4], we denote by $X_K^{\#}$ the set of all the linear functionals on X_K , and call it the *algebraic dual* of X_K .

Observation IV 8 [4, Lemma 7 – 2 – 15, p.96] Let p, q be semi- norms on the vector space X_{K} , and suppose $f \in X_{K}^{\#}$ satisfy $|f(x)| \le p(x) + q(x)$ for all $x \in X_{K}$. Then, there exist g, $h \in X_{K}^{\#}$ such that $|g(x)| \le p(x)$, $|h(x)| \le q(x)$ for all $x \in X_{K}$, and f = g + h. /// One extends the preceding easily to

LEMMA 9 Let $n \in \mathbb{N}$, $n \ge 2$, p_1 , p_2 , ..., p_n seminorms on the vector space X_K , and $f \in X_K^{\#}$ satisfies $|f(x)| \le p_1(x) + p_2(x) + \dots + p_n(x)$ for all $x \in X_K$. Then, there exist $g_1, g_2, \dots, g_n \in X_K^{\#}$ such that $|g_1(x)| \le p_1(x), |g_2(x)| \le p_2(x), \dots, |g_n(x)| \le p_n(x)$ for all $x \in X_K$, and $f = g_1 + g_2 + \dots + g_n$. ///

Notation 10 Let (X_K, τ) be a topological vector space. Again, following [4], we denote by $(X_K, \tau)'$ the set of all the τ -continuous members of

 $X_{K}^{\#}$. So, $(X_{K}, \tau)' \subseteq X_{K}^{\#}$. At times, $(X_{K}, \tau)'$ is shortened to X_{K}' if τ is understood already.

FACT 11 [4, Theorem 7 – 2 – 16, p.96/97] Let Φ be a collection of locally convex topologies on the vector space X_K . Then $f \in (X_K, \nabla \Phi)'$ if and only it there exists $\tau_1, \tau_2, \ldots, \tau_n \in \Phi, n \in \mathbb{N}, g_1 \in (X_K, \nabla \Phi)'$

 $(\tau_1)' g_2 \in (X_K, \tau_2)', \ldots, g_n \in (X_K, \tau_n)', \text{ and } f = g_1 + g_2 + \ldots + g_n. ///$

We generalize FACT 11 from *one* $\vee \Phi$ -*continuous* linear functional to a *collection* (set) of $\vee \Phi$ -equicontinuous linear functionals, thus giving us the theorem here labeled

The Sup-Equicontinuity Theorem 12 Let Φ be a collection of locally convex topologies on the vector space X_K . A collection F of linear functionals on X_K is $\vee \Phi$ -equicontinuous if and only if there exist $n \in \mathbb{N}$, τ_1 , τ_2 , ..., τ_n , $\in \Phi$, F_1 , F_2 , ..., $F_n \subseteq X_K^{\#}$, $F_k \tau_{k-equicontinuous}$, k = 1, 2, ..., n and $F \subseteq F_{1+} F_{2^+} \dots + F_n$.

Proof The reverse implication ⇐ is immediate from Observation I 4, Observation II 5 and Observation III 6.

The proof of the forward implication \Rightarrow is a modification of the proof of FACT 11.

 \Rightarrow *Hypothesis* $F \subseteq X_{K}^{\#}$ is $\lor \Phi$ -equicontinuous.

Let [4, Problem 7 – 2 – 2, p.97] *P* be the union of he seminorms generating the members of Φ . By 2.16, there exist $n \in \mathbb{N}$, $p_1, p_2, \ldots, p_n \in P$, and M > 0 such that

$$|f(x)| \le M \sum_{i=1}^{n} p_i(x)$$
 for all $x \in X$ and all $f \in F$.

In particular, for each $f \in F$,

$$|f(x)| \le M \sum_{i=1}^{n} p_i(x) = \sum_{i=1}^{n} M p_i(x) \text{ for all } x \in X.$$

That is,

 $|f(x)| \le \sum_{i=1}^{n} M p_i(x) \text{ for all } x \in X. \qquad \dots \dots (\Delta^2)$

Clearly, (Δ^1) and Lemma 9 give a decomposition $f = f_1 + f_2 + \dots + f_n$ where $|f_i(x)| \le Mp_i(x)$ for all $x \in X$, $i = 1, 2, \dots, n$ $\dots (\Delta^2)$ Define, for $i \in \{1, 2, \dots, n\}$, $F_i = \{f_i : f \in F\}$. Clearly, (Δ^1) can be read as $|f_i(x)| \le Mp_i(x)$ for all $x \in X$ and all $f_i \in F_i$.

And so, by 2.16, again, F_i is $\tau_i = \tau_{p_i}$ -equicontinuous. Clearly, $F \subseteq F_1 + F_2 + \dots + F_n$. ///

Remark 13 A good many vector topologies are supremum topologies, and so it is hoped that the Sup-Equicontinuity Theorem shall have many applications. We furnish one such application elsewhere.

REFERENCES

- [1] Sunday Oluyemi, *Net (Sequential) Characterization of Equicontinuity*, To appear in Transactions of NAMP.
- [2] Sunday Oluyemi, *Notes on Equicontinuity in Topological* Vector Spaces, To appear in Transactions of NAMP.
- [3] Albert Wilansky, *Topology for Analysis* Ginn, 1970.
- [4] Albert Wilansky, Modern Methods in Topological Vector Spaces McGrawHill, 1976.
- [5] Gerald B. Folland, *REAL ANALYSIS* John Wiley, 1984.
- [6] Sunday Oluyemi, A vector topology is uniformizable, Journal of NAMP, Volum 60, April June Issue, 2021, p.1 4.

Transactions of the Nigerian Association of Mathematical Physics Volume 17, (October - December, 2021), 31–34