INVESTIGATING THE SOLUBILITY OF WREATH PRODUCTS GROUP OF DEGREE 4P USING NUMERICAL APPROACH

B.O. Johnson ${ }^{1}$, S. Hamma 2 and M.I. Bello ${ }^{3}$
${ }^{1}$ Department of Mathematics and Statistics, Federal University, Wukari, Taraba State, Nigeria.
${ }^{2,3}$ Department of Mathematical Science, Abubaka Tafawa Balewa University, Bauchi, Bauchi State, Nigeria.

Abstract:

> Let p be a prime number $(p=\{3,5,7,11, \ldots\})$ and G a finite permutation group of degree 4 p, generated via wreath products of pairs of permutation groups. We, in this paper discuss the solubility of G using numerical approach. The groups, algorithms and programming (GAP) is used to generate \boldsymbol{G} and also validate our results.

Keywords: Permutation Group, Solubility, Wreath Products, p-Groups and Sylow p-subgroup.

1. Introduction

The Wreath product of two permutation groups C and D denoted by $W=C w r D$ is the semi-direct product of P by D, so that, $W=\{(f, d) \mid f \in P, d \in D\}$, with multiplication in W defined as $\left(f_{1}, d_{1}\right)\left(f_{2}, d_{2}\right)=\left(\left(f_{1}, f_{2} d_{1}{ }^{-1}\right)\left(d_{1}, d_{2}\right)\right) \forall f_{1}, f_{2} \in$ P and $d_{1}, d_{2} \in D$ is a special form of permutation group. When the nature of the Wreath products groups is well Understood it facilitates comprehension of certain types of subgroups of the symmetric groups.
According to [1], if a group G has a sequence of subgroups, say
$G=H_{\mathrm{n}} \supset H_{\mathrm{n}-1} \supset \cdots \supset H_{1} \supset H_{0}=\{\mathrm{e}\}$,
where each subgroup H_{i} is normal in $H_{\mathrm{i}+1}$ and each of the factor groups $H_{\mathrm{i}+1} / H_{\mathrm{i}}$ is abelian, then G is a soluble group. Solvable groups in addition to allowing us to distinguish between certain classes of groups, turn out to be very key to the study of solutions to polynomial equations.
Let p be an arbitrary odd prime number. We intend to obtain more detailed descriptions of the unique structure of Wreath product (permutation) groups of degree 3 p that are not p -groups and investigate their solubility using numerical approach.
There are some recent results on the solubility of permutations groups including the following:
Thanos [2] proved that $I f|G|=p^{k}$ where p is a prime number then G is solvable. In other words every p -group where p is a prime number is solvable.
Bello et al [3] used the concept of p-groups to construct locally solvable groups using two permutation groups by wreath product.
Gandi et al. [4] investigated solvable and Nilpotent concepts on dihedral groups of an even degree regular polygon.
The results from the above papers and other findings on group concepts from the works of the authors in [5], [6] and [7] will be used as valuable references towards achieving our desired objectives.
In Section 2 we give some basic definitions, concepts and results which are required here. In Section 3 we applied groups, algorithms and programming (GAP) [8] to generate and discuss solubility of permutation groups of degree $4 \mathrm{p}(\mathrm{p}=3,5$, $7,11, .$.$) . The main result of this paper covering all the permutation groups of degree 4 \mathrm{p}$ is stated in Section 4 .

2. Materials and Methods

$2.1 \quad \mathrm{p}$-group
A finite group G is said to be a p-group if its order is a power of p , where p is prime. A subgroup H of a group G is a psubgroup if it (H) is a p-group. By Lagrange's theorem, this is equivalent to the requirement that the order of H be a power of p for all $H \in G$.

2.2 Stabilizer

Any subset of G which fix a specified element α is called the stabilizer of α in G and is denoted by $G_{\alpha}:=\left\{x \in G \mid \alpha^{x}=\alpha\right\}$.

2.3 Orbit

When a group G acts on a set Ω, a typical point α is moved by elements of G to various other points. The set of these images is called the orbit of α under G, and we denote it by $\quad \alpha^{G}:=\left\{\alpha^{x} \mid x \in G\right\}$.

[^0]
2.4 Wreath product [9]

The wreath product of two permutation groups C by D denoted by $W=C w r D$ is the semi-direct product of P by D, so that,
$W=\{(f, d) \mid f \in P, d \in D\}$,
with multiplication in W defined as
$\left(f_{1}, d_{1}\right)\left(f_{2}, d_{2}\right)=\left(\left(f_{1}, f_{2} d_{1}{ }^{-1}\right)\left(d_{1}, d_{2}\right)\right) \quad \forall \quad f_{1}, f_{2} \in P$ and $d_{1}, d_{2} \in D$
Henceforth, we write $f d$ instead of (f, d) for elements of W.

2.5 Theorem [9]

Let D act on P as $f^{d}(\delta)=f\left(\delta d^{-1}\right)$ where $f \in P, d \in D$ and $\delta \in \Delta$. Let W be group of all juxtaposed symbols fd, with $f \in P, d \in D$ and multiplication given by $\left(f_{1}, d_{1}\right)\left(f_{2}, d_{2}\right)=\left(f_{1} f_{2} d_{1}^{-1}\right)\left(d_{1}, d_{2}\right)$. Then W is a group referred to as the semidirect product of P by D with the action as defined

2.6 Theorem

If G is a group then the commutator subgroup G^{\prime} is a normal subgroup of G and G / G^{\prime} is abelian. If N happens to be a normal subgroup of the group G, then the factor group G / N is abelian if and only if $G^{\prime}<N^{\prime}$.

Proof

Let the mapping $f: G \rightarrow G$ be any automorphism of a group G. Then by any homomorphism property
$f\left(a b a^{-1} b^{-1}\right)=f($ a $) f(\mathrm{~b}) f\left(\mathrm{a}^{-1}\right) f\left(\mathrm{~b}^{-1}\right)=f(\mathrm{a}) f(\mathrm{~b})(f(\mathrm{a}))^{-1}(f(\mathrm{~b}))^{-1} \in G^{\prime}$. Then every element of G^{\prime} is a finite product of powers of commutators $a b a^{-1} b^{-1}$ (where $a, b \in G$) and so $f\left(G^{\prime}\right)<G^{\prime}$. Let f_{a} be the automorphism of G given by the conjugation by a. Then $a G^{\prime} a^{-1}=f_{\mathrm{a}}\left(G^{\prime}\right)<G^{\prime}$. So every conjugate $a G^{\prime} a^{-1}$ is a subgroup of G^{\prime} and then G^{\prime} is a normal subgroup of G. Since all a, $\mathrm{b} \in G$, we have $a^{-1} b^{-1} \in G$ and so $\left(a^{-1}\right)^{-1}\left(b^{-1}\right)^{-1} a b \in G^{\prime}$ and so $a^{-1} b^{-1} a b G^{\prime}=G^{-1}$ or $a b G^{\prime}=b a G^{\prime}$. But then by delinition of coset multiplication, $\left(a G^{\prime}\right)\left(b G^{\prime}\right)=a b G^{\prime}=b a G^{\prime}=\left(b G^{\prime}\right)\left(a G^{\prime}\right)$ and so coset multiplication is commutative and G / G^{\prime} is abelian.

2.7 Theorem

A permutation group G is said to be a solvable group if and only if it has a solvable series.

Proof

Suppose G is solvable. Then by the definition of "solvable," in the derived series of commutator subgroups we have $G^{(\mathrm{n})}=$ (1), for some $\mathrm{n} \in N$. By Theorem 2.6, in the series $G>G^{(1)}>G^{(2)}>\ldots>G^{(\mathrm{n})}=(1)$, we have that $G^{(\mathrm{i}+1)}$ is normal in $\mathrm{G}^{(\mathrm{i})}$ and $\left.\mathrm{G}^{(\mathrm{i})} / \mathrm{G}^{(\mathrm{i}+1)}\right)$ is abelian. Clearly, each subgroup is normal in the preceding subgroup and it follows that G is solvable since the factor groups are abelian.
Now suppose $G=G_{0}>G_{1}>\ldots>G_{\mathrm{n}}=(\mathrm{l})$ is s solvable series. Then $G_{\mathrm{i}} / \mathrm{G}_{\mathrm{i}+1}$ is abelian (by definition of solvable series) for $0 \leq \mathrm{i} \leq \mathrm{n}-1$. By theorem 2.6, $G_{\mathrm{i}+1}>\left(\mathrm{G}_{i}\right)$ ' for $0 \leq \mathrm{i} \leq \mathrm{n}-1$. Since in the derived series of commutator subgroups we have G $>G^{(1)}>G^{(2)}>\ldots>G^{(\mathrm{n})}$, then
$G_{l}>G_{0}{ }^{\prime}=G^{\prime}=G^{(1)}$
$G_{2}>G_{1}^{\prime}=\left(G^{(1)}\right)^{\prime}=G^{(2)}$
$G_{3}>G_{2}^{\prime}=\left(G^{(2)}\right)^{\prime}=G^{(3)}$
$G_{i+1}>G^{\prime}{ }_{\mathrm{i}}=\left(G^{(\mathrm{i})}\right)^{\prime}=G^{(\mathrm{i}+1)}$
$G_{n}>G_{\mathrm{n}+1}^{\prime}=\left(G^{(\mathrm{n}-1)}\right)^{\prime}=G^{(\mathrm{n})}$
But $G_{\mathrm{n}}=(1)$ so it must be that $G^{(n)}=(1)$ and G is solvable.

2.8 Sylow's Theorems [10]

Let G be a finite group. If $|G|=\mathrm{p}^{r} m$ and $(\mathrm{p}, m)=1$, then

1. There is at least one Sylow p-subgroup H of G.
2. If B is any p-subgroup of G, then $B \subseteq x^{-1} \mathrm{H} x$ for some $x \in G$.
3. If K is any Sylow p-subgroup of $G, K=g^{-1} \mathrm{H} g$ for some $g \in G$
4. If n_{p} is the number of Sylow p -subgroups of G, then n_{p} divides m and $\mathrm{n}_{\mathrm{p}} \equiv 1 \bmod \mathrm{p}$.

2.9 Corollary

A Sylow p-subgroup of a group G is normal if and only if it is unique.
Proof:
Suppose that a Sylow p-subgroup H of a group G is unique. Since all Sylow p-subgroups are conjugate to H, the uniqueness of H implies that $\mathrm{H}=g^{-1} \mathrm{H} g$ for all $g \in G$, that is H is normal in G. Conversely, suppose H is normal in G, then $g^{-1} \mathrm{Hg}=$ H for all $g \in G$. Let k be any other Sylow p-subgroup of G, then $K=g^{-1} \mathrm{H} g$ for some $g \in G$. that is $K=\mathrm{H}$.

3. Wreath product group of degree $4 p(p=3,5,7,11, \ldots)$

We shall now construct some p-groups by means of wreath product of two permutations.

3.1 Consider the permutation groups C_{1} and D_{1}

$\begin{array}{ll}C_{1}= \\ D_{1}= & \{(1),(12345),(13524),(14253),(15432)\} \text { and } \\ \{(1),(6,7)\}\end{array}$
acting on the sets $\Omega_{1}=\{1,2,3,4,5\}$ and $\Delta_{1}=\{6,7\}$ respectively.
Let $P_{1}=C_{1}^{\Delta_{1}}=\left\{f: \Delta_{1} \rightarrow \mathrm{C}_{1}\right\}$. Then $\left|P_{1}\right|=\left|C_{1}\right|^{|\Delta|}=5^{2}=25$
The mappings in P_{1} are as list below.
$f_{1}: 6 \rightarrow(1), 7 \rightarrow(1)$
$f_{2}: 6 \rightarrow(12345), 7 \rightarrow(12345)$
$f_{3}: 6 \rightarrow(13524), 7 \rightarrow(13524)$,
$f_{4}: 6 \rightarrow(14253), 7 \rightarrow(14253)$
$f_{5}: 6 \rightarrow(15432), 7 \rightarrow(15432)$
$f_{6}: 6 \rightarrow(1), 7 \rightarrow(12345)$
$f_{7}: 6 \rightarrow(1), 7 \rightarrow(13524)$
$f_{8}: 6 \rightarrow(1), 7 \rightarrow(14253)$
$f_{9}: 6 \rightarrow(1), 7 \rightarrow(15432)$
$f_{10}: 6 \rightarrow(12345), 7 \rightarrow(1)$
$f_{11}: 6 \rightarrow(12345), 7 \rightarrow(13524)$
$f_{12}: 6 \rightarrow(12345), 7 \rightarrow(14253)$
$f_{13}: 6 \rightarrow(12345), 7 \rightarrow(15432)$
$f_{14}: 6 \rightarrow(13524), 7 \rightarrow(1)$
$f_{15}: 6 \rightarrow(13524), 7 \rightarrow(12345)$
$f_{16}: 6 \rightarrow(13524), 7 \rightarrow(14253)$
$f_{17}: 6 \rightarrow(13524), 7 \rightarrow(15432)$
$f_{18}: 6 \rightarrow(14253), 7 \rightarrow(1)$
$f_{19}: 6 \rightarrow(14253), 7 \rightarrow(12345)$
$f_{20}: 6 \rightarrow(14253), 7 \rightarrow(13524)$
$f_{21}: 6 \rightarrow(14253), 7 \rightarrow(15432)$
$f_{22}: 6 \rightarrow(15432), 7 \rightarrow(1)$
$f_{23}: 6 \rightarrow(15432), 7 \rightarrow(12345)$
$f_{24}: 6 \rightarrow(15432), 7 \rightarrow(13524)$
$f_{25}: 6 \rightarrow$ (15432), $7 \rightarrow(14253)$
We can easily verify that P is a group with respect to the operations $\left(f_{1}, f_{2}\right)(\delta)=f_{1}\left(\delta_{1}\right) f_{1}\left(\delta_{1}\right)$, where $\delta_{1} \in \Delta_{1}$
We recall the definition of the action of D_{1} on P as $f^{\mathrm{d}}\left(\delta_{1}\right)=f\left(\delta_{1} d^{-1}\right)$ where $f \in P, d \in D_{1}$ and $\delta_{1} \in \Delta_{1}$, then D_{1} acts on P as a groups.
We also recall the definition $W=C_{l} w r D_{1}$, the semi-direct product of P by D_{1} in that order; i.e. $W=\left\{(f, d) \mid f \in P, \delta_{1} \in \Delta_{1}\right\}$ Now, W is a group with respect to the operation;
$\left(f_{l}, d_{l}\right)\left(f_{2}, d_{2}\right)=\left(f_{1}, f_{2}^{d_{1}^{-1}}\right)\left(d_{l}, d_{2}\right)$, and
accordingly, $d_{1}=(1), d_{2}=(6,7)$.
Then the elements of W_{1} are
$\left(f_{l}, d_{l}\right),\left(f_{2}, d_{l}\right),\left(f_{3}, d_{l}\right),\left(f_{4}, d_{l}\right),\left(f_{5}, d_{l}\right),\left(f_{6}, d_{l}\right),\left(f_{7}, d_{l}\right),\left(f_{8}, d_{l}\right),\left(f_{9}, d_{l}\right),\left(f_{10}, d_{l}\right),\left(f_{11}, d_{l}\right),\left(f_{12}, d_{l}\right)$,
$\left(f_{13}, d_{l}\right),\left(f_{14}, d_{l}\right),\left(f_{15}, d_{l}\right),\left(f_{16}, d_{l}\right),\left(f_{17}, d_{l}\right),\left(f_{18}, d_{1}\right),\left(f_{19}, d_{1}\right),\left(f_{20}, d_{l}\right),\left(f_{21}, d_{1}\right),\left(f_{22}, d_{l}\right),\left(f_{23}, d_{1}\right)\left(f_{24}, d_{1}\right),\left(f_{25}, d_{1}\right),\left(f_{1}, d_{2}\right),\left(f_{2}, d_{2}\right),\left(f_{3}\right.$, $\left.d_{2}\right),\left(f_{4}, d_{2}\right),\left(f_{5}, d_{2}\right),\left(f_{6}, d_{2}\right),\left(f_{7}, d_{2}\right),\left(f_{8,}, d_{2}\right),\left(f_{9}, d_{2}\right),\left(f_{10}, d_{2}\right),\left(f_{11}, d_{2}\right),\left(f_{12}, d_{2}\right),\left(f_{13}, d_{2}\right),\left(f_{14}, d_{2}\right),\left(f_{15,}, d_{2}\right),\left(f_{16}, d_{2}\right),\left(f_{17}, d_{2}\right),\left(f_{18,}, d_{2}\right)$, $\left(f_{19}, d_{2}\right),\left(f_{20}, d_{2}\right),\left(f_{21}, d_{2}\right),\left(f_{22}, d_{2}\right),\left(f_{23}, d_{2}\right),\left(f_{24}, d_{2}\right),\left(f_{25,} d_{2}\right)$
Now, define action of W_{1} on $\Omega_{1} \times \Delta_{1}$ as
$\left(\beta, \delta_{1}\right) f d=(\beta f(\delta), d \delta)$ where $\beta \in \Omega_{1}$ and $\delta_{1} \in \Delta_{1}$
Further, $\Omega_{1} \times \Delta_{1}=\{(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)\}$
We obtain the following permutation by action of W_{1} on $\Omega_{1} \times \Delta_{1}$
$(1,6) f_{1} d_{1}=\left(1 f_{1}(6), \mathrm{d}_{1}\right)=(1(1), 6(1))=(1,6)$
$(1,7) f_{1} d_{1}=\left(1 f_{1}(7), \mathrm{d}_{1}\right)=(1(1), 7(1))=(1,7)$
$(2,6) f_{1} d_{1}=\left(2 f_{1}(6), d_{1}\right)=(2(1), 6(1))=(2,6)$
$(2,7) f_{1} d_{1}=\left(2 f_{1}(7), d_{1}\right)=(2(1), 7(1))=(2,7)$
$(3,6) f_{1} d_{1}=\left(3 f_{1}(6), d_{1}\right)=(3(1), 6(1))=(3,6)$
Transactions of the Nigerian Association of Mathematical Physics Volume 17, (October - December, 2021), 11 -16

```
(3,7) flid}\mp@subsup{d}{1}{}=(3\mp@subsup{f}{1}{}(7),\mp@subsup{d}{1}{})=(3(1),7(1))=(3,7
(4,6) fil d}\mp@subsup{d}{1}{}=(4\mp@subsup{f}{1}{}(6),\mp@subsup{d}{1}{})=(4(1),6(1))=(4,6
(4,7) fid d}\mp@subsup{d}{1}{}=(4\mp@subsup{f}{1}{}(7),\mp@subsup{d}{1}{})=(4(1),7(1))=(4,7
(5,6)f}\mp@subsup{f}{1}{}\mp@subsup{d}{1}{}=(5\mp@subsup{f}{1}{}(6),\mp@subsup{d}{1}{})=(5(1),6(1))=(5,6
(5,7) fid d = (5fi(7), d
And in summary,
```

$\left(\Omega_{1} \times \Delta_{1}\right) f_{1} d_{1}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{2} d_{1}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)(1,6)(1,7)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{3} d_{1}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{3,6)(3,7)(4,6)(4,7)(5,6)(5,7)(1,6)(1,7)(2,6)(2,7)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{4} d_{1}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{4,6)(4,7)(5,6)(5,7)(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{5} d_{1}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{5,6)(5,7)(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{6} d_{1}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{1,6)(2,7)(2,6)(3,7)(3,6)(4,7)(4,6)(5,7)(5,6)(1,7)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{7} d_{1}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{1,6)(3,7)(2,6)(4,7)(3,6)(5,7)(4,6)(1,7)(5,6)(2,7)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{3} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{3,7)(3,6)(4,7)(4,6)(5,7)(5,6)(1,7)(1,6)(2,7)(2,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{4} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{4,7)(4,6)(5,7)(5,6)(1,7)(1,6)(2,7)(2,6)(3,7)(3,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{5} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{5,7)(5,6)(1,7)(1,6)(2,7)(2,6)(3,7)(3,6)(4,7)(4,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{6} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{7} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{1,7)(3,6)(2,7)(4,6)(3,7)(5,6)(4,7)(1,6)(5,7)(2,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{8} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{1,7)(4,6)(2,7)(5,6)(3,7)(1,6)(4,7)(2,6)(5,7)(3,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{9} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{(1,7)(5,6)(2,7)(1,6)(3,7)(2,6)(4,7)(3,6)(5,7)(4,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{10} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{2,7)(1,6)(3,7)(2,6)(4,7)(3,6)(5,7)(4,6)(1,7)(5,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{11} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)(1,6)(1,7)(2,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{12} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{2,7)(4,6)(3,7)(5,6)(4,7)(1,6)(5,7)(2,6)(1,7)(3,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{13} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{2,7)(5,6)(3,7)(1,6)(4,7)(2,6)(5,7)(3,6)(1,7)(4,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{14} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{3,7)(1,6)(4,7)(2,6)(5,7)(3,6)(1,7)(4,6)(2,7)(5,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{15} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{3,7)(2,6)(4,7)(3,6)(5,7)(4,6)(1,7)(5,6)(2,7)(1,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{16} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{3,7)(4,6)(4,7)(5,6)(5,7)(1,6)(1,7)(2,6)(2,7)(3,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{17} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{3,7)(5,6)(4,7)(1,6)(5,7)(2,6)(1,7)(3,6)(2,7)(4,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{18} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{4,7)(1,6)(5,7)(2,6)(1,7)(3,6)(2,7)(4,6)(3,7)(5,6)}$
$\left(\Omega_{1} \times \Delta_{1}\right) f_{19} d_{2}=\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{4,7)(2,6)(5,7)(3,6)(1,7)(4,6)(2,7)(5,6)(3,7)(1,6)}$

Transactions of the Nigerian Association of Mathematical Physics Volume 17, (October - December, 2021), 11 -16

$$
\begin{aligned}
\left(\Omega_{1} \times \Delta_{1}\right) f_{20} d_{2} & =\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{4,7)(3,6)(5,7)(4,6)(1,7)(5,6)(2,7)(1,6)(3,7)(2,6)} \\
\left(\Omega_{1} \times \Delta_{1}\right) f_{21} d_{2} & =\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{4,7)(5,6)(5,7)(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)} \\
\left(\Omega_{1} \times \Delta_{1}\right) f_{22} d_{2} & =\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{5,7)(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)} \\
\left(\Omega_{1} \times \Delta_{1}\right) f_{23} d_{2} & =\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{5,7)(2,6)(1,7)(3,6)(2,7)(4,6)(3,7)(5,6)(4,7)(1,6)} \\
\left(\Omega_{1} \times \Delta_{1}\right) f_{24} d_{2} & =\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{5,7)(3,6)(1,7)(4,6)(2,7)(5,6)(3,7)(1,6)(4,7)(2,6)} \\
\left(\Omega_{1} \times \Delta_{1}\right) f_{25} d_{2} & =\binom{(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)(4,6)(4,7)(5,6)(5,7)}{5,7)(4,6)(1,7)(5,6)(2,7)(1,6)(3,7)(2,6)(4,7)(3,6)}
\end{aligned}
$$

Renaming the symbols as
$(1,6) \rightarrow 1,(1,7) \rightarrow 2,(2,6) \rightarrow 3,(2,7) \rightarrow 4,(3,6) \rightarrow 5,(3,7) \rightarrow 6,(4,6) \rightarrow 7,(4,7) \rightarrow 8,(5,6) \rightarrow 9,(5,7) \rightarrow 10$,
The permutations in cyclic form are as follows.
$G_{1}=\{(1),(6,7,8,9,10),(6,8,10,7,9),(6,9,7,10,8),(6,10,9,8,7),(1,2,3,4,5),(1,2,3,4,5)(6,7,8,9,10),(1,2,3,4,5)(6,8,10,7,9)$, $(1,2,3,4,5)(6,9,7,10,8), \quad(1,2,3,4,5)(6,10,9,8,7), \quad(1,3,5,2,4), \quad(1,3,5,2,4) \quad(6,7,8,9,10), \quad(1,3,5,2,4)(6,8,10,7,9)$, $(1,3,5,2,4)(6,9,7,10,8)$, (1,3,5,2,4)(6,10,9,8,7), (1,4,2,5,3), (1,4,2,5,3)(6,7,8,9,10), (1,4,2,5,3)(6,8,10,7,9), $(1,4,2,5,3)(6,9,7,10,8), \quad(1,4,2,5,3)(6,10,9,8,7), \quad(1,5,4,3,2), \quad(1,5,4,3,2)(6,7,8,9,10), \quad(1,5,4,3,2)(6,8,10,7,9)$, $(1,5,4,3,2)(6,9,7,10,8),(1,5,4,3,2)(6,10,9,8,7),(1,6)(2,7)(3,8)(4,9)(5,10),(1,6,2,7,3,8,4,9,5,10),(1,6,3,8,5,10,2,7,4,9)$, $(1,6,4,9,2,7,5,10,3,8), \quad(1,6,5,10,4,9,3,8,2,7), \quad(1,7,2,8,3,9,4,10,5,6), \quad(1,7,3,9,5,6,2,8,4,10), \quad(1,7,4,10,2,8,5,6,3,9)$, $(1,7,5,6,4,10,3,9,2,8), \quad(1,7)(2,8)(3,9)(4,10)(5,6), \quad(1,8,3,10,5,7,2,9,4,6), \quad(1,8,4,6,2,9,5,7,3,10), \quad(1,8,5,7,4,6,3,10,2,9)$, $(1,8)(2,9)(3,10)(4,6)(5,7), \quad(1,8,2,9,3,10,4,6,5,7), \quad(1,9,4,7,2,10,5,8,3,6), \quad(1,9,5,8,4,7,3,6,2,10), \quad(1,9)(2,10)(3,6)(4,7)(5,8)$, $(1,9,2,10,3,6,4,7,5,8), \quad(1,9,3,6,5,8,2,10,4,7), \quad(1,10,5,9,4,8,3,7,2,6), \quad(1,10)(2,6)(3,7)(4,8)(5,9), \quad(1,10,2,6,3,7,4,8,5,9)$, $(1,10,3,7,5,9,2,6,4,8),(1,10,4,8,2,6,5,9,3,7)\}$
The degree of the wreath product $\left(W_{1}\right)=\left|C_{1}\right| \times\left|D_{1}\right|=10$, while the order is given by
$\left|W_{1}\right|=\left|C_{1}\right|^{|\Delta 1|} \times\left|D_{1}\right|=5^{2} \times 2=50$

$3.2 \quad$ Consider the permutation groups C_{2} and D_{2}

Let C_{6} be a group of degree 6 and D_{6} a group of degree 2 acting on the sets $\Omega_{6}=\{1,2,3,4,5,6\}$ and $\Delta_{6}=\{7,8\}$ respectively. Let $P_{6}=C_{6}^{\Delta_{6}}=\left\{f: \Delta_{6} \rightarrow \mathrm{C}_{3}\right\}$. Then $\left|P_{6}\right|=\left|C_{6}\right|^{|\Delta 6|}=6^{2}=36$. Then Wreath product $W_{2}=G_{2}$ is soluble.

Proof:

After following the same procedure as in 3.1, we obtained the permutations group G_{2} with order $\left|W_{6}\right|=\left|C_{6}\right|^{|\Delta 6|} \times\left|D_{6}\right|=72=$ $2^{3} 3^{2}$
G_{2} has Sylow 2-subgroups of order 8 and large number of Sylow 3-subgroups of order 9 .
This implies that the subgroups of G_{2} include: H_{1} of order $1, H_{2}$ of order $2, H_{3}$ of $3, H_{4}$ of order $6, H_{4}$ of order 12, H_{5} of order 24 and H_{6} of order 72.
G_{2} is solvable by theorem 2.7, since it has solvable series
$G_{6}=H_{6} \triangleright H_{5} \triangleright H_{4} \triangleright H_{3} \triangleright H_{2} \triangleright H_{1}=(1)$
with cyclic factor groups $C_{3}, C_{2}, C_{2}, C_{2}$ and C_{2}, therefore the factor groups are abelian. Thus G_{6} solvable.

3.3 Consider the permutation groups C_{3} and D_{3}

Let C_{7} be a group of degree 10 and D_{7} a group of degree 2 acting on the sets $\Omega_{7}=\{1,2,3,4,5,6,7,8,9,10\}$ and $\Delta_{7}=\{11,12\}$ respectively. Let $P_{7}=C_{7}^{\Delta_{7}}=\left\{f: \Delta_{7} \rightarrow \mathrm{C}_{7}\right\}$. Then $\left|P_{7}\right|=\left|C_{7}\right|^{|\Delta 7|}=10^{2}=100$. Then Wreath product $W_{3}=G_{3}$ is soluble.

Proof:

After following the same procedure as in 3.1, we obtained the permutations group G_{3}
with order $\left|G_{3}\right|=\left|C_{7}\right|^{|\Delta 7|} \times\left|D_{7}\right|=200=2^{3} 5^{2}$.
G_{3} has Sylow 2-subgroups of order 8 and large number of Sylow 5-subgroups of order 25.
This implies that the subgroups of G_{3} include: H_{1} of order $1, H_{2}$ of order $5, H_{3}$ of order $25, H_{4}$ of order $50, H_{4}$ of order 100 and H_{5} of order 200.
G_{3} is solvable by theorem 2.7, since it has solvable series
$G_{7}=H_{6} \triangleright H_{5} \triangleright H_{4} \triangleright H_{3} \triangleright H_{2} \triangleright H_{1}=(1)$
with cyclic factor groups $C_{3}, C_{2}, C_{2}, C_{5}$ and C_{5}, therefore the factor groups are abelian. Thus G_{6} solvable.
The main results obtain from the investigation of wreath product groups are as follows:
Transactions of the Nigerian Association of Mathematical Physics Volume 17, (October - December, 2021), 11 -16

3.4 Proposition

Let G be the Wreath product of pairs arbitrary permutation groups C and D of degree $4 \mathrm{p}(\mathrm{p} \geq 3$) and H the Sylow psubgroup of G. Then (i) H is normal in G and is soluble (ii) G / H is soluble and (iii) G is soluble.

Proof

Now, the order of G that is, $|G|=8 \times \mathrm{p}^{2}$.
Let $\mathrm{n}_{\mathrm{p}}(G)$ be the number of Sylow p -subgroups of the group G.
By Sylow theorem 2.8, we have
$\mathrm{n}_{\mathrm{p}}(G) \equiv 1(\bmod \mathrm{p})$ and $\mathrm{n}_{\mathrm{p}}(G) \mid 8$.
It follows from this constraints that we have $\mathrm{n}_{\mathrm{p}}(G)=1$.
Let H be the unique p-Sylow subgroup of G.
The subgroup H is normal in G as is the unique p-sylow subgroup by corollary 2.9 proving (i).
Then consider the subnormal series
$G^{\triangleright} H^{\triangleright}\{\mathrm{e}\}$.
Note, e here, is the identity element of the group G.
Then the factor groups $G / H, H /\{\mathrm{e}\}$ have order 2^{3} and p^{2} respectively, and hence these are cyclic groups and in particular abelian by theorem 2.7 proving (ii).
Therefore the group G of order $8 \mathrm{p}^{2}$ has a subnormal series whose factor groups are abelian groups, and thus G is a solvable group by theorem 2.7 proving (iii).

References

[1] Cameron, P. J. (1981). Finite Permutation Groups and Finite Simple Groups. Bulletin of the London Mathematical Society. Volume 13, Number 1, pp. 1-22.
[2] Thanos, G. (2006). Solvable Groups - A Numerial Approach. Mathematics Department, University of florida, Gainesville, USA.
[3] Bello, M., Danjuma, M., Musa, S. and Kashim, M. R. (2017). Construction of Transitive Supersolvable permutation groups. Journal of Natural Sciences Research. ISSN 2224-3186, Vol. 7 No.24.
[4] Gandi, T. I. \& Hamma, S. (2019). Investigating solvable and Nilpotent concepts on Dihedral Groups of an even degree regular polygon. Frontiers of knowledge, International Journal of pure and applied sciences. ISSBN: 2635-3393| Vol. 2.
[5] Kimura, H and Nakagawa, N. (1973). On Transitive Permutation Groups of Degrees 3p and 4p. Hokkaido mathematical journal. 2(1): 55-59.
[6] Ito N. and Wada T. (1972). A note on transitive permutation groups of degree 2p. (Unpublished) Remark by Wada T.
[7] Cai, Q. and Zhang, H. (2015). A Note on Primitive Permutation Groups of Prime Power Degree. Journal of Discrete Marthematics. Volume 2015, Article ID 194741. Pp. 4.
[8] GAP 4.11.1 (2021). The GAP Group, GAP -- Groups, Algorithms, and Programming, Version 4.11.1; 2021. (https://www.gap-system.org).
[9] Joseph, P. X. and Audu, M. S. (1991), "Wreath Product of Permutation Groups" Nigeria Journal of Mathematics and Application, NJMA. Vol. 4 No 5.
[10] Ma'u, S. (2015). Notes on Sylows Theorems, Lecture notes. Link: https://math.berkeley.edu/ kpmann/SylowNotes.pdf.

Transactions of the Nigerian Association of Mathematical Physics Volume 17, (October - December, 2021), 11 -16

[^0]: Correspondence Author: Johnson B.O., Email: bjobakpo@fuwukari.edu.ng, Tel: +2348149655987, +2348036050911 (SH)
 Transactions of the Nigerian Association of Mathematical Physics Volume 17, (October - December, 2021), 11 -16

