
81 
 

Transactions of the Nigerian Association of Mathematical Physics 

Volume 15, (April –June, 2021 Issue), pp81 – 90 

© Trans. of NAMP 
   

A COMPARATIVELY EFFICIENT METHOD OF GENERATING RANDOM SAMPLES 

FROM THE GAMMA DISTRIBUTION USING ACCEPTANCE-REJECTION METHOD 
 

N. Ekhosuehi and C. O. Odijie 
 

Department of Statistics, University of Benin, Benin City, Nigeria. 
 

Abstract 
 

This study considered generating random samples from the gamma distribution using 

acceptance-rejection method with the double-exponential (Laplace) distribution as 

proposal or majorizing density. Parameter estimates of some random samples 

generated with the method were compared with parameter estimates of random 

samples generated with the method used for the gamma random variables generator 

‘gamrnd’ in MATLAB® R2010b under simulation study. Efficiency of the method 

was measured by examining some statistical properties of the estimated parameters 

from the random samples generated with the method and comparisons were made 

with these properties, which included average bias, MSE and coverage probability, 

rather than machine time or speed. Results of the study shows that our method 

outperformed the method used in MATLAB® R2010b for the algorithm ‘gamrnd’ in 

most of the cases with different sample sizes that were considered. 

 

Keywords: gamma distribution, acceptance-rejection method, random samples, efficiency. 

 

1.  Introduction 

When considering different versions of acceptance-rejection method of generating random variables from a known 

distribution, authors have commonly compared the efficiency of different methods by the acceptance rate and machine time 

(e.g. [1 – 7], among others). This efficiency is usually measured by  
1

𝑐
 , c being the expected number of uniform random 

deviates required to produce one gamma variate [7], usually computed as the maximum value of the ratio of the target 

distribution to the majorizing density.  
1

𝑐
indicates the acceptance rate of the method [8]. However, comparison of estimates 

of the parameters of the distribution using various sample sizes actually generated from the distribution by each method 

under simulation study is usually not common. Kundu-Gupta compared their method with some existing methods in this 

regard, using K-S statistic and p-value as basis for comparison of the average values of 10,000 sample replicates of the 

parameter estimates computed [7]. One of the primary aims of generating random variables is, to a great extent, to obtain a 

representative sample for a population under study and, as such, the random samples so generated by any method need to be 

considered or tested for true representation of the population, on the average, via the estimates of parameters obtained from 

the random samples. It is arguably possible that a method for which the acceptance rate is higher or the machine time is 

faster may yet not generate random samples whose estimates are closer to the actual parameter values under simulation 

study than some other method with relatively slower acceptance rate or machine time. To this effect, our interest in this 

study was to generate random samples from the gamma distribution using an acceptance-rejection method and then 

compare the parameter estimates from some random samples generated by the method with those estimated from samples 

generated by an existing method, specifically the one used in MATLAB® R2010b (an algorithm sourced from [6]) whose 

reported acceptance rate is nearly 100% for all values of the shape parameter of the standard gamma distribution. The 

method, which was applied for the MATLAB® R2010b (and possibly some other older versions) code ‘gamrnd’, generates 

random gamma samples for various chosen values of the shape and scale parameters. The algorithm’s implementation in 

MATLAB® can be viewed by typing ‘open gamrnd’ in the command window of any of the MATLAB® versions that has it. 

Specifically, [6] reported acceptance rate of the method for different shape parameter 𝛼 as high as 0.951, 0.981, 0.992, 

0.996 for 𝛼 = 1, 2, 4, 8, respectively. The method involved some power of normal random variates and was designed 

basically for the standard gamma density (unit scale parameter) with shape parameter 𝛼 ≥ 1. The algorithm from [6] is 

given as follows (with a ≡ 𝛼):  
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(1) Setup: d = a-1/3, c = 1/sqrt(9d). 

(2) Generate v = (1+cx)ˆ3 with x normal. Repeat if v<=0 [rare; 

requires x < -sqrt(9a-3)]. 

(3) Generate uniform U. 

(4) If U < 1-0.0331*xˆ4 return d*v. 

(5) If log(U) < 0.5*xˆ2+d*(1-v+log(v)) return d*v. 

(6) Go to step 2. 
 

Before [6], extensive studies have been carried out on generating random variables from the gamma distribution (e.g. [1 – 5] and [9], 

among others).  This extensive study may be attributed to the importance of the gamma distribution in Probability and Statistics 

especially for analyzing positively skewed data. Many of its areas of usefulness can been found in [10] and [11]. Thus, generating a good 

representative sample from the distribution has been of high importance to researchers. [1], for instance, developed a method of 

generating gamma random variates using Cauchy distribution as envelope (i.e. the proposal density) but they observed, however, that the 

algorithm ‘has less potential than another algorithm which compares the gamma densities with normal distributions, except in the tails 

where an exponential distribution is substituted’, where they referred to the latter method as ‘Modified Normal-Exponential Method’. [2] 

made use of some root of normal variates to generate gamma variates. Ahrens and Dieter further presented a modified rejection technique 

where they made use of Laplace density as ‘hat’ for the standard gamma distribution (i.e. with constant scale parameter 𝛽 = 1) with some 

shifting factor for the Laplace density in [9]. [4] worked on generating gamma variables with shape parameter less than unity. Minh 

formulated an algorithm that seems a bit more complicated— with long initialization and generation procedures— when compared to the 

others under reference (see [5]).The method by [6], in terms of high acceptance rate and fast machine time, reportedly bested most of the 

previous methods (specifically those of [2, 3, 5] and [9] which were compared with it). This suggestively prompted its implementation for 

the MATLAB® code ‘gamrnd’  which generates gamma random variables or samples for given values of the shape and scale parameters 

in MATLAB® (our reference being R2010b specifically and possibly other versions). Therefore, in our interest to compare parameters 

estimated from samples generated by our method with those estimated from samples generated by a fast method, it suffices to compare 

with Marsaglia-Tsang’s method via the MATLAB® gamma generator, ‘gamrnd’ or by implementing their algorithm as summarized 

clearly in [8]. It should be noted that all the methods mentioned in the foregoing section are based on acceptance-rejection technique with 

different variations.  

The remaining part of this paper is organized as follows: section 2 reviews the distributions relevant to the study and the general concept 

of acceptance-rejection method, section 3 presents our method, section 4 contains the simulation study and comments on the results while 

section 5 summarizes and concludes the study. 

 

2.  Review of relevant distributions 

2.1 The gamma distribution 

A random variable 𝑋 is said to follow the gamma distribution if its probability density function (PDF) is defined by: 

  𝑓(𝑥; 𝛼, 𝛽) =
1

𝛤(𝛼)𝛽𝛼 𝑥𝛼−1𝑒
−

𝑥

𝛽 , 𝑥 > 0, 𝛼, 𝛽 > 0      (1) 

where𝛼 and  are the shape and scale parameters, respectively. 

For the standard gamma, the scale parameter 𝛽 = 1, and the PDF reduces to: 

  𝑓(𝑥; 𝛼) =
1

𝛤(𝛼)
𝑥𝛼−1𝑒−𝑥, 𝑥 > 0, 𝛼 > 0       (2) 

where, in equations (1) and (2),  𝛤(𝛼) = ∫ 𝑡𝛼−1∞

0
𝑒−𝑡𝑑𝑡 is the complete gamma function. 

The cumulative density function (CDF) of the gamma distribution is given by: 

  𝐹(𝑥;  𝛼, 𝛽) =
1

𝛤(𝛼)
𝛾 (𝛼,

𝑥

𝛽
)         (3) 

where 𝛾(𝛼, 𝑥) = ∫ 𝑡𝛼−1𝑥

0
𝑒−𝑡𝑑𝑡 is the (lower) incomplete gamma function. 

Other properties of the gamma distribution includes: 

Mean: 𝔼(𝑋) = 𝛼𝛽 

Variance: 𝕍(𝑋) = 𝛼𝛽2 

Mode: (𝛼 − 1)𝛽 for 𝛼 ≥ 1 

Skewness: 
2

√𝛼
 

Moment Generating Function (MGF): 𝑀(𝑡) =
1

(1−𝛽𝑡)𝛼  for 𝑡 <
1

𝛽
 

We shall write 𝑋 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) for short for a random variable 𝑋 which follows the gamma distribution with shape and 

scale parameters 𝛼and 𝛽, respectively. 
 

2.2 The Laplace distribution  

The PDF of a random variable 𝑌 having the Laplace distribution is given by: 
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 𝑔(𝑦) =
1

2𝑏
𝑒𝑥𝑝 (−

|𝑦−𝜇|

𝑏
) =

1

2𝑏
{

exp (−
𝜇−𝑦

𝑏
) , 𝑦 < 𝜇

exp (−
𝑦−𝜇

𝑏
) , 𝑦 ≥ 𝜇

         (5) 

with location parameter 𝜇 ∈ ℝ and scale parameter  𝑏 > 0. 

The CDF is given by:  

 𝐺(𝑦) = {

1

2
exp (

𝑦−𝜇

𝑏
) , 𝑦 < 𝜇

1 −
1

2
exp (−

𝑦−𝜇

𝑏
) , 𝑦 ≥ 𝜇

      (6) 

 

The inverse of the CDF or the quantile function of the Laplace distribution can easily be derived by solving the following 

equation for 𝑦 as a function of 𝑢. 
 𝐺(𝑦) = 𝑢          (7) 

where  𝑢 = 𝑈𝑛𝑖𝑓(0,1) 

to obtain: 

𝑦 = 𝐺−1(𝑞) = 𝜇 − 𝑏 𝑠𝑔𝑛(𝑞) ln (1 − 2|𝑞|)      (8) 

wheresgn denotes the signum or sign function and 𝑞 = (𝑢 −
1

2
) ~ 𝑈(−1/2, 1/2). The proof of equation (8) is given in 

Appendix. 

 

2.3 Acceptance-rejection (A-R) method 

The general idea behind acceptance rejection method is to generate random samples from a target distribution 𝑓(𝑥), whose 

CDF 𝐹(𝑥) cannot be inverted into a simple closed quantile function such as the gamma distribution of interest here, using 

another distribution whose CDF can be inverted into a closed form quantile function. The random variables generated via 

the other distribution, known variously as proposal distribution, majorizingdensity 𝑔(𝑦), etc., are accepted for the target 

distribution provided that the proposal “majorizes” the target for all the support i.e. 𝑔(𝑦)\𝑓(𝑦) ∀  𝑦.  
The general algorithm for implementing an acceptance rejection method is stated briefly as: 

1. Generate a uniform random number 𝑢 

2. Tranform𝑦 = 𝐺−1(𝑢) 

3. Compute ℎ(𝑦) =
𝑓(𝑦)

𝑐 𝑔(𝑦)
 where 𝑐 = sup

𝑦
{

𝑓(𝑦)

𝑔(𝑦)
} 

4. Accept 𝑦 = 𝑥 if 𝑢 ≤ ℎ(𝑦) 
 

3 Methodology 

Our method is a version of the general A-R method highlighted in section 2.  
 

For 𝛼 = 1, the gamma distribution 𝐺𝑎𝑚𝑚𝑎(1, 𝛽) coincides with the exponential distribution  𝑒𝑥𝑝 (1/𝛽) and, in this case, it 

is sufficient to generate random variables from the distribution directly by the inverse transform method using the quantile 

function of the exponential distribution given by: 

𝑥 = 𝐹−1(𝑢) = −
1

𝜆
ln(1 − 𝑢)          (4) 

 

where𝑢~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) is a uniformly distributed random variable and 𝜆 = 1/𝛽.  

When the value of 𝜆 is suitably chosen, exp (𝜆) can still be used as a good majorizing density for the gamma distribution 

when 𝛼 = 1 + 𝜀 for some 𝜀 ∈ (0,1) and even up to 𝛼 = 2. When 𝛼 ≫ 1, we make use of the double-exponential (Laplace) 

distribution as majorizing density for the gamma distribution. The motivation behind this is the fact that the exponential 

curve no longer lies close enough to the gamma curve at the upper tail and as such will lead to more rejections being made. 

The Laplace density will help to reduce the widening space between the exponential curve and the gamma curve around this 

upper tail. This is because, for suitably selected parameter values of the Laplace distribution, the distribution before its 

mean forms a mirror image of the distribution after its mean (i.e. symmetric about its mean) and thus fits the gamma 

distribution which becomes more and more symmetric as 𝛼 increases. For 𝛼 = 16, for instance, this idea is illustrated in 

Figure 1, which is plotted after setting the parameter values of the majorizing density as will be seen in section 3.1. 
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Figure 1: Illustrating the rationale for choosing the Laplace distribution as envelope for the gamma distribution. 

 

3.2  Setting the parameters of the Laplace distribution 

Observe that when 𝛼 = 1, we have that: 

𝐺𝑎𝑚𝑚𝑎(1, 𝛽) = exp (
1

𝛽
) = 2 × 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 𝛽)            (9)  

where𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 𝛽) denotes the Laplace distribution with location parameter 𝜇 = 0 and scale parameter 𝑏 = 𝛽 (for 𝑥 > 0 

only, in this case, since the gamma distribution has the support 𝑥 > 0). Following this, simple multiples of the scale 

parameter 𝑏 for changing values of 𝛼 will yield a good scaled density to majorize the gamma density gamma density in 

question. Specifically, for the location parameter and scale parameters, 𝜇and 𝑏, we perform the following initialization. 

Initialization  

1. Set 𝜇 = 𝛽(𝛼 − 1)  [i.e. the mode of 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) for 𝛼 > 1], 

2. Set  𝑏 = 2𝛽 if1 < 𝛼 < 5 

3. Set  𝑏 = 2𝑛𝛽 if  5𝑛 < 𝛼 < 10𝑛 

where𝑛 = [𝛼/5] and [ 𝑥 ] is the greatest integer function of 𝑥, that is, the largest integer less than or equal to 𝑥. Note that 

the initialization is for the general case of 𝛽 > 0, while for the standard gamma distribution under study here, we recall that 

𝛽 = 1. 

The algorithm for our method is as follows. 

 

Algorithm 

1. Generate 𝑈1~𝑈𝑛𝑖𝑓(0, 1) and then transform to 𝑞 = 𝑈1 −
1

2
 so that 𝑞~𝑈 (−

1

2
,

1

2
) 

2. Compute 𝑌 = 𝜇 − 𝑏 sgn(𝑞) ln (1 − 2|𝑞|)  and  ℎ(𝑌) =
𝑓(𝑌)

𝑐𝑔(𝑌)
 ,   where 𝑐 = sup

x
 {𝑓(𝑥)/𝑔(𝑥)} 

3. Generate 𝑈2~𝑈(0,1) 

4. If 𝑈2 ≤ ℎ(𝑌), return 𝑋 = 𝑌, otherwise, go to step 1. 

Now, computing 𝑐 in this case was not analytically tractable because sup
x

[ℎ(𝑥)]   where  

ℎ(𝑥) =
𝑓(𝑥)

𝑔(𝑥)
=

(
𝑥𝛼−1exp (−𝑥)

Γ(𝛼)
⁄ )

(
1

2𝑏
exp(−

|𝑥−𝜇|

𝑏
))

could not be obtained algebraically. However, we computed the values of 𝑐 numerically by 

assigning values to 𝑥 within the domain of definition of ℎ(𝑥), i.e. 𝑥 > 0,  [e.g. x = linspace(0.001, 10^4, 10^5) which is a 

vector of points 𝑥] using MATLAB®, given the initialized values of the parameters 𝜇 and 𝑏 as set in section 3.1 for different 

values of 𝛼. This assignment helped us to evaluate 𝒉(𝐱), a vector of points evaluated at each element, 𝑥 of the vector, x. 

Then 𝑐 was obtained as the maximum value of the vector 𝒉(𝐱). Table 1 shows thevalues of 𝑐 of our method and the 

corresponding acceptance rates, 1/𝑐 , denoted by 𝑎𝑟(𝑂𝑀) alongside with selected efficiency values from Marsaglia and 

Tsang (2000) denoted by 𝑎𝑟(𝑀𝑀) at three different parameter values. 

 

Table 1: Values of c from our method, acceptance rates 𝒂𝒓(𝑶𝑴) of our method andacceptance rates 𝒂𝒓(𝑴𝑴) of 

Marsaglia & Tsang’s Method. 

𝛼 𝑐 𝑎𝑟(𝑂𝑀) 𝑎𝑟(𝑀𝑀) 

2 1.4715 0.6796 0.9817 

4 1.5997 0.6251 0.9920 

8 2.3037 0.4341 0.9963 

 

4. Simulation Study 
In this section we present the steps taken in performing the simulation study of the two methods of our comparison: namely,  
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Our Method (OM) and Marsaglia& Tsang’s Method (MM). For the comparison, a total of 𝑀 = 10,000 samples, each of 

sizes 𝑛 = 25, 50, 100, 200 were generated from the standard gamma distribution using each of the two methods under 

study, with the same uniform random random number 𝑈 generated and used in each case, using MATLAB® uniform 

random numbers generator, rand. Parameter values were chosen from those for whichefficiencies values were reported in 

Marsaglia and Tsang (2000) for the purpose of comparison. Maximum likelihood estimates (MLEs) of the samples 

generated were computed using the MATLAB code, mle, which returns simultaneously, the confidence intervals (CIs) for 

the parameter estimates. Hence we easily computed the CI widths as the difference between the upper and lower CI bounds. 

Apart from the Average CI widths, the CIs were also used to compute the coverage probabilities (CPs). The main statistics 

computed as basis for comparison (see [12]) were: 

 

(a)  Average bias of parameter estimates of �̂�𝑖 , 𝑖 = 1,2 … , 𝑀, is given by: 

  
1

𝑀
∑ (𝑀

𝑖=1 �̂�𝑖 − 𝛼) 

 (b)  Average Mean Square Error (MSE) of parameter estimates of  �̂�𝑖 , 𝑖 = 1,2 … , 𝑀, is given by: 

  
1

𝑀
∑ (𝑀

𝑖=1 �̂�𝑖 − 𝛼)2 

(c)  Average width of 95% confidence intervals (CIs) of parameter estimates, given by: 

  
1

𝑀
∑ (𝑀

𝑖=1 𝑈�̂� − 𝐿�̂�) 

where𝑈�̂�and 𝐿�̂� are the upper and lower limits of the 𝑖th CI of the parameter estimate �̂�𝑖 , 𝑖 = 1,2, … , 𝑀, respectively. 

(d) Coverage Probability (CP) which is computed as the proportion of 𝑀 = 5, 000 estimated CIs that contained the true 

parameter value,  𝛼. 

 

4.  Results and discussion:  

In Table 2a, we present the results of simulation of four sample sizes (𝑛 = 25, 50, 100, 200) of the standard gamma 

distribution with 𝛼 = 2, that is, 𝐺𝑎𝑚𝑚𝑎(2,1). In Table 2b, the corresponding CI widths and CPs of the estimates in Table 

2a are displayed. Please note that the results in  Tables 2a – 4b are displayed here in the format in which they were output in 

MATLA® R2010b. 

In Table 2a, for 𝛼 = 2, we can easily see that the sample estimates for is better (having closer average MLEs to actual 

parameters values and hence smaller biases and MSEs) for all the sample sizes considered using our method (O-M) than 

using Marsaglia and Tsang’s method (M-M). In the same vein, the average width of confidence intervals (Ave. Width) for 

O-M in Table 2b, are smaller than those of M-M and the coverage probabilities (Cov. Prob) are higher for O-M than for M-

M for all the sample sizes considered. Yet at this value (i.e. 𝛼 = 2), the acceptance rate is just about 68% compared to that 

of M-M which is about 98%. 

 

Table 2a: Ave. MLE, Ave. Bias and Ave. MSE of 10000 parameter estimates of Gamma(2,1) for n = 25, 50, 100, 200. 
                       Our Method(O-M)      M&T Method (M-M) 
            Sample   ------------------    ------------------- 
size(n)   alpha      beta       alpha      beta    
-------------------------------------------------------------- 
              25 
Ave. MLE:             2.2361     0.9658     2.2574     0.9552 
Ave. Bias:            0.2361    -0.0342     0.2574    -0.0448 
Ave. MSE:             0.0558     0.0012     0.0663     0.0020 
-------------------------------------------------------------- 
              50 
Ave. MLE:             2.1138     0.9812     2.1277     0.9744 
Ave. Bias:            0.1138    -0.0188     0.1277    -0.0256 
Ave. MSE:             0.0129     0.0004     0.0163     0.0007 
-------------------------------------------------------------- 
              100 
Ave. MLE:             2.0549     0.9903     2.0701     0.9828 
Ave. Bias:            0.0549    -0.0097     0.0701    -0.0172 
Ave. MSE:             0.0030     0.0001     0.0049     0.0003 
-------------------------------------------------------------- 
              200 
Ave. MLE:             2.0256     0.9972     2.0388     0.9884 
Ave. Bias:            0.0256    -0.0028     0.0388    -0.0116 
Ave. MSE:             0.0007     0.0000     0.0015     0.0001 
------------------------------------------------------------- 
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Table 2b: Ave. Width of 10000 estimated 95% CIs and CPs for parameter estimates of Gamma(2,1) for n = 25, 50, 

100, 200. 
                      Our Method (O-M)      M&T Method(M-M) 
     Sample   ------------------    ------------------- 
size(n)   alpha      beta       alpha      beta    
-------------------------------------------------------------- 
              25 
Ave.Width:            2.4258     1.1986     2.4502     1.1848 
Cov.Prob(%):           93.25      93.13      92.99      92.99 
              50 
Ave.Width:            1.5797     0.8358     1.5907     0.8297 
Cov.Prob(%):           94.31      93.99      94.17      94.17 
              100 
Ave.Width:            1.0718     0.5878     1.0802     0.5830 
Cov.Prob(%):           94.26      94.17      94.05      94.05 
              200 
Ave.Width:            0.7422     0.4155     0.7473     0.4116 
Cov.Prob(%):           94.72      94.73      94.69      94.69 
-------------------------------------------------------------- 

Table 3a shows the results of average estimates of 10,000 replicates of sample sizes 𝑛 = 25, 50, 100, 200 under simulation 

study. Table 3b shows the corresponding CI widths and CPs of the estimates in Table 3a. 

Table 3a: Ave. MLE, Ave. Bias and Ave. MSE of 10000 parameter  estimates Gamma(4,1)for n = 25, 50, 100, 200. 
    Our Method(O-M)      M&T Method (M-M) 
            Sample   ------------------    ------------------- 
size(n)   alpha      beta       alpha      beta    
-------------------------------------------------------------- 
              25 
Ave. MLE:             4.4933     0.9632     4.5054     0.9641 
Ave. Bias:            0.4933    -0.0368     0.5054    -0.0359 
Ave. MSE:             0.2433     0.0014     0.2555     0.0013 
-------------------------------------------------------------- 
              50 
Ave. MLE:             4.2525     0.9778     4.2544     0.9773 
Ave. Bias:            0.2525    -0.0222     0.2544    -0.0227 
Ave. MSE:             0.0638     0.0005     0.0647     0.0005 
-------------------------------------------------------------- 
              100 
Ave. MLE:             4.1033     0.9929     4.1308     0.9873 
Ave. Bias:            0.1033    -0.0071     0.1308    -0.0127 
Ave. MSE:             0.0107     0.0001     0.0171     0.0002 
-------------------------------------------------------------- 
              200 
Ave. MLE:             4.0508     0.9959     4.0673     0.9927 
Ave. Bias:            0.0508    -0.0041     0.0673    -0.0073 
Ave. MSE:             0.0026     0.0000     0.0045     0.0001 

-------------------------------------------------------------- 

Table 3b: Ave. Width of 10000 estimated 95% CIs and CPs for parameter estimatesof Gamma(4,1) for n = 25, 50, 

100, 200. 
   Our Method (O-M)      M&T Method(M-M) 
            Sample   ------------------    ------------------- 
size(n)   alpha      beta       alpha      beta    
-------------------------------------------------------------- 
              25 
Ave.Width:            5.0424     1.1550     5.0564     1.1561 
Cov.Prob(%):           93.55      93.36      93.43      93.43 
              50 
Ave.Width:            3.2891     0.8069     3.2905     0.8064 
Cov.Prob(%):           93.98      93.99      94.14      94.14 
              100 
Ave.Width:            2.2148     0.5716     2.2301     0.5683 
Cov.Prob(%):           94.23      94.63      93.95      93.95 
              200 
Ave.Width:            1.5362     0.4026     1.5426     0.4013 
Cov.Prob(%):           94.77      94.71      94.41      94.41 

-------------------------------------------------------------- 

Again, in Tables 3a and 3b, Our Method O-M seems to have outperformed M-M in terms of smaller biases and MSEs, 

smaller CIs and higher CPs for the estimates of 𝛼, except for the CPs under the sample size 50 where that of M-M exceeds  
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O-M. Yet again, this happened even though the acceptance rate of our method, 𝑎𝑟(𝑂𝑀), has reduced from roughly 68% to 

63% whereas that of Marsaglia and Tsang (2000), 𝑎𝑟(𝑀𝑀), has increased from roughly 98% to 99% as shown in Table 1 

 

Table 4a: Ave. MLE, Ave. Bias and Ave. MSE of 10000 parameter estimates of Gamma(100,1)for n = 25, 50, 100, 

200. 
  Our Method(O-M)       M&T Method (M-M)  
            Sample   ------------------    ------------------- 
size(n)   alpha      beta       alpha      beta    
-------------------------------------------------------------- 
              25 
Ave. MLE:           114.0807     0.9579   113.3447     0.9600 
Ave. Bias:           14.0807    -0.0421    13.3447    -0.0400 
Ave. MSE:           198.2655     0.0018   178.0808     0.0016 
-------------------------------------------------------------- 
              50 
Ave. MLE:           106.0085     0.9816   106.4552     0.9792 
Ave. Bias:            6.0085    -0.0184     6.4552    -0.0208 
Ave. MSE:            36.1021     0.0003    41.6698     0.0004 
-------------------------------------------------------------- 
              100 
Ave. MLE:           102.2162     0.9985   103.0975     0.9904 
Ave. Bias:            2.2162    -0.0015     3.0975    -0.0096 
Ave. MSE:             4.9116     0.0000     9.5942     0.0001 
-------------------------------------------------------------- 
              200 
Ave. MLE:           101.4403     0.9961   101.5630     0.9949 
Ave. Bias:            1.4403    -0.0039     1.5630    -0.0051 
Ave. MSE:             2.0746     0.0000     2.4429     0.0000 
-------------------------------------------------------------- 
 

Table 4b: Ave. Width of 10000 estimated 95% CIs and CPs for parameter estimatesof Gamma(100,1) for n = 25, 50, 

100, 200. 
   Our Method (A-M)       M&T Method(M-M)   
            Sample   ------------------    ------------------- 
size(n)   alpha      beta       alpha      beta    
-------------------------------------------------------------- 
              25 
Ave.Width:          132.9293     1.1186   131.9908     1.1208 
Cov.Prob(%):           92.66      92.63      93.20      93.20 
              50 
Ave.Width:           85.1370     0.7903    85.4727     0.7882 
Cov.Prob(%):           94.43      94.42      93.73      93.73 
              100 
Ave.Width:           57.3063     0.5612    57.7922     0.5566 
Cov.Prob(%):           94.63      94.61      94.11      94.11 
              200 
Ave.Width:           39.9579     0.3933    40.0009     0.3928 
Cov.Prob(%):           94.18      94.30      94.68      94.68 
-------------------------------------------------------------- 

 

Finally, in Table 4a, a very large value of 𝛼 = 100 was considered. The results yet again are better for O-M than M-M. 

Except for the smallest sample size of 𝑛 =25, the average estimates of the samples generated were closer to the actual value 

for O-M than M-M in all cases. As a result, they have smaller average biases and MSEs. The coverage probabilities (CPs) 

are higher for O-M for sample sizes 𝑛 = 50, 100. However, the CPs are higher for sample sizes   𝑛 = 25, 100 for M-M. 
 

Figures 2a, 2b, 2c and 2d show the distributions of the estimates of the parameters of 𝐺𝑎𝑚𝑚𝑎(2,1)for sample sizes 25, 50, 

100 and 200, respectively, whose MLEs are shown in Table 2a. It can easily be noticed that the distributions are spread 

around the true parameter values (𝛼 = 2and 𝛽 = 1) for both methods. The distributions are more symmetric about the true 

parameters values as the sample size increases. 
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Figure 2a: Distribution of 10,000 estimates of 𝑮𝒂𝒎𝒎𝒂(𝟐, 𝟏) for sample size 𝒏 = 𝟐𝟓 

 

  
 

Figure 2b: Distribution of 10,000 estimates of 𝑮𝒂𝒎𝒎𝒂(𝟐, 𝟏) for sample size 𝒏 = 𝟓𝟎       Figure 2c: Distribution of 10,000 estimates of 𝑮(𝟐, 𝟏) for sample size 𝒏 = 𝟏𝟎𝟎 
 

 
Figure 2d: Distribution of 10,000 estimates of 𝑮(𝟐, 𝟏) for sample size 𝒏 = 𝟐𝟎𝟎 
 

In a similar manner, Figures 3a – 3d, show the distributions of the estimates of the parameters of 𝐺𝑎𝑚𝑚𝑎(4,1)for sample 

sizes 25 – 200 whose MLEs are shown in Table 3a. Again the distributions have the true parameter values approximately as 

their mode and the distributions become more symmetric about the true parameter values as the sample size increases. 
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Figure 3a: Distribution of 10,000 estimates of 𝑮(𝟒, 𝟏) for sample size 𝒏 = 𝟐𝟓 Figure 3b: Distribution of 10,000 estimates of 𝑮(𝟒, 𝟏) for sample size 𝒏 = 𝟓𝟎 

  
Figure 3c: Distribution of 10,000 estimates of 𝑮(𝟒, 𝟏)for sample size 𝒏 = 𝟏𝟎𝟎 Figure 3d: Distribution of 10,000 estimates of 𝑮(𝟒, 𝟏)for sample size 𝒏 = 𝟏𝟎𝟎 
 

Finally, the last set of figures (Figures 4a – 4d) show the distribution of the estimates of the parameters corresponding to 

Table 4a for 𝐺𝑎𝑚𝑚𝑎(100,1). A similar thing to the cases of 𝐺𝑎𝑚𝑚𝑎(2,1)and 𝐺𝑎𝑚𝑚𝑎(4,1)can be inferred from Figures 

4a – 4d. 

  
Figure 4a: Distribution of 10,000 estimates of 𝑮𝒂𝒎𝒎𝒂(𝟏𝟎𝟎, 𝟏)for sample size 𝒏 = 𝟏𝟎𝟎Figure 4b: Distribution of 10,000 estimates of 𝑮𝒂𝒎𝒎𝒂(𝟏𝟎𝟎, 𝟏)for sample size 𝒏 = 𝟏𝟎𝟎 

  
Figure 4c: Distribution of 10,000 estimates of 𝑮𝒂𝒎𝒎𝒂(𝟏𝟎𝟎, 𝟏)for sample size 𝒏 = 𝟏𝟎𝟎Figure 4d: Distribution of 10,000 estimates of 𝑮𝒂𝒎𝒎𝒂(𝟏𝟎𝟎, 𝟏)for sample size 𝒏 = 𝟐𝟎𝟎 
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5.  Conclusion 

The fact that a method has a high acceptance rate is plausible but does not necessarily imply that it generates samples with 

the best statistical properties for a given distribution under simulation. This claim has been justified to a great extent by this 

study which compared the fast method by [6] for generating gamma variables with our method for which the acceptance 

rate is relatively smaller. Although the acceptance rate differ very much (e.g. only approximately 63% for O-M as against 

nearly 100% for M-M at 𝛼 = 4), the estimates of 10,000 samples have better properties (smaller biases, MSEs and CIs, 

higher coverage probabilities, etc.) for most of the sample values using O-M than using M-M. Since there seems to be a 

tradeoff between high acceptance rate and better sample estimates, the choice for any of the two methods compared may be 

determined by the researcher’s immediate need. If the need is to perform a bulk of time-efficient simulations, Marsaglia and 

Tsang’s method may prove more useful because of its speed of generating gamma random variables, whereas if the need is 

a good representative sample for a simple study which does not require a large number of simulations, our method may be 

preferable. 
 

Appendix  

Solving the equation: 

  𝑢 = 𝐺(𝑦) = {

1

2
exp (

𝑦−𝜇

𝑏
) , 𝑦 < 𝜇

1 −
1

2
exp (−

𝑦−𝜇

𝑏
) , 𝑦 ≥ 𝜇

 

for y in terms of 𝑢, we have: 

  𝑦 = 𝐺−1(𝑢) = {
𝜇 + 𝑏ln(2𝑢), 𝑦 < 𝜇

𝜇 − 𝑏ln[2(1 − 𝑢)], 𝑦 ≥ 𝜇
 

Now, we express 𝑦 = 𝐺−1(𝑢) in a single equation with the signum (sgn) function as: 

  𝑦 = 𝐺−1(𝑢) = 𝜇 − sgn(𝑦 − 𝜇)𝑏ln{1 + sgn(𝑦 − 𝜇)[1 − 2𝑢]} 

Where  sgn(𝑦 − 𝜇) = {

−1, 𝑦 < 𝜇
   0, 𝑦 = 𝜇
   1, 𝑦 > 𝜇

 

Since the random variable 𝑌~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜇, 𝑏) is symmetric about its mean, 𝜇, and the random variable, 𝑈~𝑢𝑛𝑖𝑓(0,1) is also 

symmetric about its mean, 1/2, it follows that: 

  sgn(𝑦 − 𝜇) = sgn (𝑢 −
1

2
) 

Thus,    

  𝑦 = 𝐺−1(𝑢) = 𝜇 − sgn (𝑢 −
1

2
) 𝑏 ln {1 + 𝑠𝑔𝑛 (𝑢 −

1

2
) − 2𝑢 𝑠𝑔𝑛 (𝑢 −

1

2
)} 

Finally, we know that 𝑎 + (𝑏 − 𝑎)𝑢 ~ 𝑢𝑛𝑖𝑓(𝑎, 𝑏) if 𝑢 ~ 𝑢𝑛𝑖𝑓(0,1).  

Hence,  −
1

2
+ [

1

2
− (−

1

2
)] 𝑢 = 𝑢 −

1

2
 ~ 𝑢𝑛𝑖𝑓 (−

1

2
,

1

2
). 

Let   𝑞 = 𝑢 −
1

2
 , so that 𝑞 ~ 𝑢𝑛𝑖𝑓 (−

1

2
,

1

2
).  Then, 

  𝑦 = 𝐺−1(𝑞) = 𝜇 − 𝑏 sgn(𝑞) ln {1 + 𝑠𝑔𝑛(𝑞) − 2 (𝑞 +
1

2
) 𝑠𝑔𝑛(𝑞)} 

                         = 𝜇 − 𝑏 sgn(𝑞) ln{1 − 2𝑞 𝑠𝑔𝑛(𝑞)} 

                         = 𝜇 − 𝑏 sgn(𝑞) ln(1 − 2|𝑞|) ■ 

We have used the fact that = 𝑞 +
1

2
 , sgn(𝑞) = {

−1, 𝑞 < 0
    0, 𝑞 = 0
    1, 𝑞 > 0

  and |𝑞| = {
−𝑞, 𝑞 < 0
   𝑞, 𝑞 ≥ 0
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