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Abstract 

 

Crack-Nicolson algorithm was formulated and applied to solve frictionless water–

hammer equation. The system of partial differential equations are important in 

applied fluid dynamics and thermodynamics study, however are often harder to solve 

analytically and process on how to solve them has been slow. These drawbacks 

motivated the use of the proposed approach with short computational time and lower 

operation count results in reduction of cumulative truncation errors and 

improvement of overall accuracy. The objective is to vary the inner diameters and 

wall thickness on water hammer on four (4) pipes test cases with density of water are 

considered.The numerical solutions obtained are plotted on 2Dplots and 3Dplots to 

illustrate the efficiency of the proposed algorithm. The advantage of the present 

algorithm is that it show high performance in evaluation of the solutions and 

reduction in time taken for solve any system of partial differential equations arises in 

applied sciences and engineering. Finally, all computational and algorithm works 

are implemented using MAPLE 18 software version. 

 

Keywords: Crack-Nicolson algorithm, frictionless water–hammer equation, density of water, inner 

diameters, wall thickness,MAPLE 18 software version. 

 

1.0 INTRODUCTION 

Large pipe systems with long pipelines transporting fluids over great distances are reality in modern society. The usage of 

small pipe diameters, high-velocity together with sophisticated fluid control devices, many types of pumps and valves, 

coupled with electronic sensors have increased the importance of correct design. Nuclear power plants have systems with 

large networks of piping both for the production of electricity and to ensure water cooling at all times in a reliable and safe 

way. The water in nuclear power plants is often under high pressure and at high flow rate generated by pumps. Pump 

failure, improper operations of valves and accidental events like power losses and pipe ruptures create transient flows, 

which can lead to pressure waves through the pipe system. A sudden change in flow like that generates a pressure pulse. 

This phenomenon is called water hammer. 

The waterhammer means that the dynamic loads are induced on the pipe, the pipe support and the equipment in the system 

due to the sudden change of the flow velocity inside the pipe. The sudden changes are mainly caused by the valve sudden 

on/off and pump sudden start/trip. Waterhammer can occur in any thermal-hydraulic systems. Waterhammer can reach 

pressure levels far exceeding the pressure range of a pipe given by the manufacturer, and it can lead to the failure of the 

pipeline integrity. In the past three decades, since a large number of waterhammer events occurred in the light-water- 

reactor power plants, a number of comprehensive studies on the phenomena associated with waterhammer events have been 

performed. There are three basic types of severe waterhammer occurring at power plants that can result in significant plant 

damage: rapid valve operation events; void-induced waterhammer; condensation-induced waterhammer. Correct prediction 

of waterhammer transients, is therefore of paramount importance for the safe operation of the plant. Therefore verifying of 

computer codes capability to simulate waterhammer type transients is very important issue at performing of  
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safety analyses for nuclear power plants [1]. This phenomena can endanger the integrity of structures leading to a possible 

failure of pipes in nuclear power plants as well as in many industrial applications. These phenomena can arise in nuclear 

power plants in the course of transients and accidents induced by the start-up of auxiliary feed water systems or emergency 

core cooling systems in combination with rapid acting valves and pumps [2]. Moreover, Waterhammer can occur in any 

thermal-hydraulic systems. Waterhammer can reach pressure levels far exceeding the pressure range of a pipe given by the 

manufacturer, and it can lead to the failure of the pipeline integrity. In the past three decades, since a large number of 

waterhammer events occurred in the light-water- reactor power plants, a number of comprehensive studies on the 

phenomena associated with waterhammer events have been performed. There are three basic types of severe waterhammer 

occurring at power plants that can result in significant plant damage: rapid valve operation events; void-induced 

waterhammer; condensation-induced waterhammer. Correct prediction of waterhammer transients, is therefore of 

paramount importance for the safe operation of the plant. Therefore verifying of computer codes capability to simulate 

waterhammer type transients is very important issue at performing of safety analyses for nuclear power plants [3]. Many 

examples are given of solution of water hammer of common pipe-line systems as well as calculation of the steady state of 

flow, the determination of discharge through a pipe-line, measurements of characteristics of valves, pumps, turbines, 

determination of the operating régime of a valve in order to ensure a desired pressure and discharge curve which are core 

interest in those civil, mechanical and petroleum engineers dealing with the design and operation of hydraulic systems [4]. 

 

2.0   WATER HAMMER MODEL 

When a valve at the end of a pipeline suddenly closes, a pressure surge hits the valve and travels along the pipeline. This is 

known as water hammer phenomenon. This process is modeled by system partial differential equations (SPDEs) which 

represent the fundamental conservation equations of classic frictionless water–hammer equationof the form [6]. 

 
Figure.1 Water Hammer Description [5] 
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Where equations (1) and (2) are continuity and momentum (dynamics) equations, 𝑉and 𝑃 are instantaneous fluid velocity 

(m/s) and transient pressure in temporal dimension (Pa) respectively, 𝜌𝑓 is fluid density and 𝑎ℎwave speed in fluids define 

as  

𝑎ℎ = √
𝐾

𝜌𝑓 (1 +
𝐷𝐾

𝑒𝐸
)
                                                                                                             (3) 

Here, K is bulk modulus of compressibility,𝜌𝑓 is fluid density, 𝐷 is pipe inner diameter and 𝑒 pipe-wall thickness. 

 Couple with initial and boundary conditions 

{
𝑉(0, 𝑡) = 𝑔(𝑡)

𝑃(0, 𝑡) = ℎ(𝑡)
                                                                                                     (4) 

{
𝑉(𝐿, 𝑡) = 𝑔(𝑡)∗

𝑃(𝐿, 𝑡) = ℎ(𝑡)∗
                                                                                                    (5) 

{
𝑉(𝑧, 𝑡) = 𝑔(𝑧)

𝑃(𝑧, 𝑡) = ℎ(𝑧)
                                                                                                      (6) 

In this paper, we consider the following assumptions: 

i. One dimensional flow equations of water hammer. 

ii. The pipe is water (Turbulent state) and remains at this condition during the transients. 

iii. The behavior of both, the liquid and the pipe-wall is linearly elastic. 

iv. Horizontal pipe-slope, subject to variation of diameters and lengths. 

v. There is neither vacuum nor bubbles generation nor separation of column. 

Water hammer phenomenon is basically mean a transient that begins when the steady state flow conditions in a confined 

fluid are partial perturbed with parameters such as inner diameter and wall thickness. The study of this situation have 
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received less attention than the typical ones in fluid dynamics. However, fluid velocity is conditioned since the conduit are 

by pipe diameter and wall thickness as expressed in the mass balance formulation  and fluid velocity shows continuous 

changes during water hammer, therefore pipe diameter and wall thickness must have directs incidence respect to this 

phenomena [7]. 

 

Classical water–hammer theory is also based on this principle. Since then, many researchers have added their contributions 

in a step-wise manner, building up and shaping the theory of hydraulic transients in pipe flow in last four decades. Various 

researchers worked on numerical solution and analysis of this model such as [8] formulated a model of the water Hammer 

effect considering a spring safety valve which he considers a method for calculating the water Hammer effect in a hydraulic 

system with a string safety valve. The developed model enables simulation testing in order to estimate the influence of 

construction parameters of the string activated safety valve on pressures changes and on the velocity of fluid flow along the 

pipe. Author [1] analyze the inner diameter influence on water hammer phenomena and also formulation of analytical 

algorithm for solving the unsteady-one- dimensional water hammer model was carried out and it allowed estimating the 

instantaneous head at any point of a single pipeline. The model was solved by mean of Laplace’s transformed. To 

determine the influence of internal- diameter conduit on the pressure oscillation, four distinct inside-diameter values were 

introduced into the solution.it was founded that the wave frequency is sensitive to the variation of the pipe-diameter. The 

author in [9] presented a different ways of water- hammer computation and the procedure is based on the method of 

characteristics but a numerical grid is not required. The computation was based on back-tracking waves by means of a very 

simple recursion, so that the programming effort is small. Exact solutions are thus obtained for frictionless water-hammer 

and approximate solutions are obtained when the distributed friction in individual’s pipes is concentrated at the pipe 

boundaries. The influence of pipe-Diameter on water Hammer phenomena was discussed in [7], the authors in [10] further 

investigated water hammer model with experimental results are obtained. They considered four different configurations of 

steel and a plastic pipeline. Extremely high pressure peaks were recorded immediately upon collapse of the vapour cavity. 

The pressure then dropped to about 40% of the pressure peak level and maintained this level for twice of a second. Authors 

[11] studied one-dimensional fluid–structure interaction models in pressurized fluid-filled pipes. The fluid contained a 

minimal amount of dissolved gas and emphasized on limited cavitation while experimental results showed that the 

maximum pressure may exceed the Joukowsky pressure rise in the form of short duration pressure pulse. They observed 

that the reservoir pressure was rising during the experiment because the tank was too small. 

 

3.0 CRANK-NICOLSON METHOD (CNM) 

Crank Nicolson method is one of the numerical methods to solve a partial differential equation the most successful 

difference method for parabolic equations is due to John Crank and Phyllis Nicolson (1947). Crank  

Nicolson method is a finite difference method used for solving heat equation and similar partial differential equations. This 

method is of order two in space, implicit in time, unconditionally stable and has higher order of accuracy. It is based on a 

convex combination of the spatial terms of the forward and backward difference methods. Crank Nicolson Method for 

solving parabolic partial differential equations was developed by John Crank and Phyllis Nicolson in the mid-20th century. 

A practical method for numerical evaluation of partial differential equations of the heat conduction type was considered by 

[12], Authors [13] applied Crank Nicolson method parabolic partial differential equations, and Author [14] presented 

numerical solution of parabolic initial – boundary value problem with Crank-Nicolson’s finite difference equations. 

Moreover, the modification of explicit scheme and proved that it is much more stable than the simple explicit case, enabling 

larger time steps to be used  and considered the stability and accuracy of finite difference method for option pricing. 

However, the accuracy of the simple explicit method is barely improved upon [15, 16]. 
 

Consider finite difference approximation derivatives of velocity 𝑣 and pressure 𝑝 by Taylors formular 

{
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From (7) neglecting ℎ2and higher power of ℎ we obtain forward difference 
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{

 𝜕𝑣

𝜕𝑡
≈
𝑣(𝑡 + ℎ, 𝑧) − 𝑣(𝑡, 𝑧)
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                                                                                          (9) 

From (8) neglecting ℎ2and higher power of ℎ we obtain backward difference   

{

𝜕𝑣

𝜕𝑡
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Subtracting (8) from (7) and neglecting ℎ2and higher power of ℎ we obtain central difference 

{

𝜕𝑣

𝜕𝑡
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1

2ℎ
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Similarly, 

{

𝜕𝑣
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≈
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                                                                                    (14) 

In order to obtain Crack Nicolson scheme for classic frictionless water–hammer equation (1) and (2), we substitute and 

discretizing equations (9) to (14) as follow: 
 

{
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1
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(𝑣[𝑖 + 1, 𝑗 + 1] − 𝑣[𝑖 − 1, 𝑗 + 1] + 𝑣[𝑖 + 1, 𝑗] − 𝑣[𝑖 − 1, 𝑗]) +
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(𝑝[𝑖, 𝑗 + 1] − 𝑝[𝑖, 𝑗])

    (16) 

Equation (16) is called the Crank Nicolson approximation for numerical solution of water hammer equation and its 

associated with boundary and initial conditions given in (4) to (6) which be arranged with step (𝑖 + 1)  and (𝑗 + 1) of the 

equations to all the nodes to form tridiagonal coefficient matrix at 𝑖 = 1,2, . . ℎ − 1 and 𝑗 = 1,2, . . 𝑘 − 1. 

In order to reduce the time taken in computational and evaluation to execute crack- Nicolson scheme, we formulate a seven 

steps algorithm using MAPLE 18 software package as follow:  

restart: 
with(PDEtools): 

Step 1: 

𝐷𝑖𝑔𝑖𝑡𝑠 ≔ 15; 
[ρ[f], 𝐾, 𝑑, 𝑒, 𝐸 ∈ ℝ+] 

𝑎[ℎ] ≔ √
𝐾

ρ[f] ∗ (1 +
𝑑∗𝐾

𝑒∗𝐸
)
; 
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Step 2: 

𝑉[𝑧] ≔
1

4 ∗ ℎ
∗ (𝑣[𝑖 + 1, 𝑗 + 1] − 𝑣[𝑖 − 1, 𝑗 + 1] + 𝑣[𝑖 + 1, 𝑗] − 𝑣[𝑖 − 1, 𝑗]); 

𝑃[𝑧] ≔
1

4∗ℎ
∗ (𝑝[𝑖 + 1, 𝑗 + 1] − 𝑝[𝑖 − 1, 𝑗 + 1] + 𝑝[𝑖 + 1, 𝑗] − 𝑝[𝑖 − 1, 𝑗]); 

𝑉[𝑡] ≔
1

𝑘
∗ (𝑣[𝑖, 𝑗 + 1] − 𝑣[𝑖, 𝑗]); 

𝑃[𝑡] ≔
1

𝑘
∗ (𝑝[𝑖, 𝑗 + 1] − 𝑝[𝑖, 𝑗]); 

Step 3: 

𝑉[𝑖, 𝑗] = 𝑣[𝑡] +
1

ρ[f]
∗ ρ[f]; 

𝐵[𝑖, 𝑗] = 𝑣[𝑧] +
1

ρ[f] ∗ 𝑎[ℎ]
∗ 𝑃[𝑡]; 

ℎ ≔ ℝ+; 

𝑘 = ℝ+; 

𝑁 ≔ ℝ+ 

Step 4: 

 𝑓𝑜𝑟𝑡 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑁 𝑑𝑜 [0, 𝑡] =100 ∗ 𝑡2; p [0, 𝑡] = 2 ∗ 𝑡; 𝑒𝑛𝑑 𝑑𝑜: 

𝑓𝑜𝑟𝑡 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑁 𝑑𝑜 𝑣 [10, 𝑡] = 𝑡2; p [10, 𝑡] = 𝑡 + 1; 𝑒𝑛𝑑 𝑑𝑜: 

 𝑓𝑜𝑟𝑧 𝑓𝑟𝑜𝑚 0 𝑡𝑜 9 𝑑𝑜 𝑣 [𝑧, 0] = 𝑧2 + 1; p [𝑧, 0] = 𝑧 + 1; 𝑒𝑛𝑑 𝑑𝑜: 

Step 5: 

 𝑓𝑜𝑟𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 9 𝑑𝑜 

𝑓𝑜𝑟𝑗 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑁 𝑑𝑜  

𝐴[𝑖, 𝑗] =
(𝑣[𝑖,𝑗+1]−𝑣[𝑖,𝑗])

𝑘
 +
1

4
∗ (

1

ρ[f]
)
(𝑝[𝑖+1,𝑗+1]−𝑝[𝑖−1,𝑗+1]+𝑝[𝑖+1,𝑗]−𝑝[𝑖−1,𝑗])

ℎ
 

 

𝐵[𝑖, 𝑗] =
1

4

(𝑣[𝑖+1,𝑗+1]−𝑣[𝑖−1,𝑗+1]+𝑣[𝑖+1,𝑗]−𝑣[𝑖−1,𝑗])

ℎ
 +(

1

ρ[f]∗𝑎[ℎ]
) ∗

(𝑝[𝑖,𝑗+1]−𝑝[𝑖,𝑗])

𝑘
 

𝑒𝑛𝑑 𝑑𝑜  

Step 6: 

𝑃[𝑠𝑜𝑙] = 𝑠𝑒𝑞 ∗ (𝑠𝑒𝑞(𝐴[𝑚, 𝑛],𝑚 = (1…9), 𝑛 = 0…𝑁 − 1):                                         

𝑉[𝑠𝑜𝑙] = 𝑠𝑒𝑞 ∗ (𝑠𝑒𝑞(𝐵[𝑚, 𝑛],𝑚 = (1…9), 𝑛 = 0…𝑁 − 1):     

𝑅 = {𝑃, 𝑉}:                                                                                                                                    

𝑠𝑜𝑙𝑣𝑒(𝑅) 
Step 7: 

2Dplot[1] ≔ plot([V[sol]]), t = 0…10, color = [blue], axes = BOXED, title = cases); 

2Dplot[2] ≔ plot([P[sol]]), t = 0…10, color = [red], axes = BOXED, title = cases); 

[3Dplot] ≔ plot3d([P, V], t = 0…1, z = 0…1, grid = [100,100], blue, red); 

Output: See 

               Tables (3,4,5,6) and plots (1,2,3,…,12). 

Where ℝ+ Set of positive integers. 

 

3.0  NUMERICAL IMPLEMENTATION 

In this section, numerical experiment was carried out to illustrate the efficiency of the proposed algorithm. We considered 

four test pipe cases to examine the effect of density of fluid 𝜌𝑓, pipe diameters 𝐷 and wall thickness 𝑒 on a system of 

frictionless partial differential equations (1) and (2). Considering parameters given in Table 1 and nodal point of 𝑁 = 4 

with ℎ = 𝑘 = 0.5.  Subsequently we applied CNA formulated (17) to obtain numerical solutions for instantaneous fluid 

velocity (𝑚/𝑠) and transient pressure in temporal dimension (𝑃𝑎)of frictionless water–hammer equations. 
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Table 1.  Experimental Parameters (pipe diameter and wall thickness) 
Parameters Pipe 1 (water) Pipe 2 (water) Pipe 3 (water) Pipe 4 (water) 

Liquid density 𝜌𝑓 𝜌 = 1.0𝑔/𝑚𝑙 𝜌 = 1.0𝑔/𝑚𝑙 𝜌 = 1.0𝑔/𝑚𝑙 𝜌 = 1.0𝑔/𝑚𝑙 
Bulk modulus K 𝑘 = 200𝐸106 𝑘 = 200𝐸106 𝑘 = 200𝐸106 𝑘 = 200𝐸106 

Pipe diameter D 1000𝑚𝑚 2000𝑚𝑚 3000𝑚𝑚 4000𝑚𝑚 

Wall thickness e 20𝑚𝑚 30𝑚𝑚 40𝑚𝑚 50𝑚𝑚 

Young’s modulus E 𝐸 = 70𝐸109 𝐸 = 70𝐸109 𝐸 = 70𝐸109 𝐸 = 70𝐸109 
Initial condition 𝑔(𝑡) 100𝑡2 100𝑡2 100𝑡2 100𝑡2 

Initial condition ℎ(𝑡) 2𝑡 2𝑡 2𝑡 2𝑡 
Boundary condition 𝑔(𝑡)∗ 𝑡2 𝑡2 𝑡2 𝑡2 

Boundary condition ℎ(𝑡)∗ 𝑡 + 1 𝑡 + 1 𝑡 + 1 𝑡 + 1 

Boundary condition 𝑔(𝑧) 𝑧2 + 1 𝑧2 + 1 𝑧2 + 1 𝑧2 + 1 

Boundary condition ℎ(𝑧) 𝑧 + 1 𝑧 + 1 𝑧 + 1 𝑧 + 1 

   
 

Table 2.  Grid lines with nodal points 𝑵 = 𝟒 

      0, 4 10, 4 

      V,P (600,9)    1,4   2,4   3,4 4,4 5,4 6,4   7,4 8,4    9,4 V,P (9,4) 

      0, 3 10, 3 

    V,P (400,4) 1,3    2,3    3,3     4,3   5,3   6,3    7,3    8,3    9,3 V,P (4,3) 

      0, 2 10, 2 

V,P (100,2)  1,2  2,2 3,2   4,2   5,2     6,2   7,2   8,2   9,2 V,P (1,2) 

      0, 1 10, 1 

  1,1   2,1 3,1   4,1 5,1  6,1 7,1 8,1 9,1 V,P (0,1) 
 

      0,0           1,0           2,0              3,0             4,0              5,0             6,0            7,0           8,0            9,0 

V,P           (1,1)        (2,2)         (5,3)          (10,4)        (17,5)         (26,6)        (37,7)        (50,8)      (65,9)       (82,10) 
 

4.1   NUMERICAL SOLUTIONS FOR INSTANTANEOUS FLUID VELOCITY (𝑚/𝑠) AND TRANSIENT 

PRESSURE IN TEMPORAL DIMENSION (𝑃𝑎) 
 

          Table 3.                Case 1.  Pipe diameter 𝑫 = 𝟏𝟎𝟎𝟎𝒎𝒎 and Wall thickness 𝒆 = 𝟐𝟎𝒎𝒎 
𝑉𝑖,𝑗 ,𝑃𝑖,𝑗 𝑡 = 0.5 𝑡 = 1.0 𝑡 = 1.5 𝑡 = 2.0 

𝑉1(0.5) 1.25007441176678 1.25029174147269 2.25063191030195 4.25105712359293 

𝑃1(0.5) 2.00173862621879 2.01105536289034 2.03552817725729 2.08271585201307 

𝑉2(1.0) 4.00054804366449 3.00408668439208 2.01629937978058 1.04665359596992 

𝑃2(1.0) 2.99970235293286 2.99942832824351 2.99921099643944 2.99908815039667 

𝑉3(1.5) 9.00007677401684 8.00031300161159 7.00072876132661 6.00136184693086 

𝑃3(1.5) 3.99954645156083 3.99909297463794 3.99863978395571 3.99818738055730 

𝑉4(2.0) 16.0000755951267 15.0003023983855 14.0006804992140 13.0012101659868 

𝑃4(2.0) 4.99939525686550 4.99879051393188 4.99818577189097 4.99758103252816 

𝑉5(2.5) 25.0000755930062 24.0003023726999 23.0006803418095 22.0012095068064 

𝑃5(2.5) 5.99924407105411 5.99848814210940 5.99773221317040 5.99697628425104 

𝑉6(3.0) 36.0000755884304 35.0003023359992 34.0006801900320 33.0012090642924 

𝑃6(3.0) 6.99909288484071 6.99818576718178 6.99727864220289 6.99637150222832 

𝑉7(3.5) 49.0000980324314 48.0004346417113 47.0010901164968 46.0021352726752 

𝑃7(3.5) 7.99894171733247 7.99788350555584 7.99682543359282 7.99576756678706 

𝑉8(4.0) 63.9991306902834 62.9965511424861 61.9923370505702 60.9866019692225 

𝑃8(4.0) 8.99870075511502 8.99723145978798 8.99561105045481 8.99385846926278 

𝑉9(4.5) 85.7496751887788 88.9986582425045 91.7468688700652 93.9942362499946 

𝑃9(4.5) 10.0024189561988 10.0047244578785 10.0068408489340 10.0086924768366 
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          Table 4.                Case 2.  Pipe diameter 𝑫 = 𝟐𝟎𝟎𝟎𝒎𝒎 and Wall thickness 𝒆 = 𝟑𝟎𝒎𝒎 

𝑉𝑖,𝑗,𝑃𝑖,𝑗 𝑡 = 0.5 𝑡 = 1.0 𝑡 = 1.5 𝑡 = 2.0 

𝑉1(0.5) 1.25007594619169 1.25029775739676 2.25064494077121 4.25107892233760 

𝑃1(0.5) 2.00177447773597 2.01128333043978 2.03626078390213 2.08442147773953 

𝑉2(1.0) 4.00055934462135 3.00417095360333 2.01663547771173 1.04761559766653 

𝑃2(1.0) 2.99969621523326 2.99941653994643 2.99919472655577 2.99906934717868 

𝑉3(1.5) 9.00007835715246 8.00031945592753 7.00074378888442 6.00138992907068 

𝑃3(1.5) 3.99953709925058 3.99907427299724 3.99861174491106 3.99815003691138 

𝑉4(2.0) 16.0000771540001 15.0003086346240 14.0006945350357 13.0012351347919 

𝑃4(2.0) 4.99938278662340 4.99876557345604 4.99814836121859 4.99753115177081 

𝑉5(2.5) 25.0000771517912 24.0003086078682 23.0006943710728 22.0012344481463 

𝑃5(2.5) 5.99922848325031 5.99845696650189 5.99768544975954 5.99691393303808 

𝑉6(3.0) 36.0000771470248 35.0003085696383 34.0006942129714 33.0012339871949 

𝑃6(3.0) 6.99907417945850 6.99814835631320 6.99722252554299 6.99629667915236 

𝑉7(3.5) 49.0001000538871 48.0004436039721 47.0011125939167 46.0021792987795 

𝑃7(3.5) 7.99891989515119 7.99783986414702 7.99675997878187 7.99568030712174 

𝑉8(4.0) 63.9991127646662 62.9964800259772 61.9921790408866 60.9863257091409 

𝑃8(4.0) 8.99867396391023 8.99717437152129 8.99552055055637 8.99373183468788 

𝑉9(4.5) 85.7496684909776 88.9986305748354 91.7468043053549 93.9941174016659 

𝑃9(4.5) 10.0024688364865 10.0048218775675 10.0069819057240 10.0088717071624 

 

          Table 5.                Case 3.  Pipe diameter 𝑫 = 𝟑𝟎𝟎𝟎𝒎𝒎 and Wall thickness 𝒆 = 𝟒𝟎𝒎𝒎 

𝑉𝑖,𝑗,𝑃𝑖,𝑗 𝑡 = 0.5 𝑡 = 1.0 𝑡 = 1.5 𝑡 = 2.0 

𝑉1(0.5) 1.25007670189391 1.25030072023142 2.25065135826031 4.25108965819172 

𝑃1(0.5) 2.00179213455733 2.01139560412447 2.03662159155063 2.08526149562151 

𝑉2(1.0) 4.00056491032609 3.00421245606031 2.01680100539077 1.04808938178885 

𝑃2(1.0) 2.99969319242434 2.99941073422562 2.99918671365882 2.99906008661557 

𝑉3(1.5) 9.00007913684465 8.00032263466949 7.00075118993624 6.00140375948527 

𝑃3(1.5) 3.99953249325297 3.99906506249195 3.99859793586132 3.99813164571852 

𝑉4(2.0) 16.0000779217438 15.0003117059715 14.0007014477102 13.0012474321075 

𝑃4(2.0) 4.99937664504573 4.99875329030489 4.99812993651256 4.99750658556569 

𝑉5(2.5) 25.0000779194908 24.0003116786806 23.0007012804681 22.0012467317294 

𝑃5(2.5) 5.99922080627767 5.99844161255663 5.99766241884184 5.99688322514857 

𝑉6(3.0) 36.0000779146291 35.0003116396861 34.0007011192049 33.0012462615595 

𝑃6(3.0) 6.99906496708248 6.99812993150908 6.99719488815828 6.99625982887471 

𝑉7(3.5) 49.0001010494506 48.0004480178682 47.0011236639929 46.0022009815067 

𝑃7(3.5) 7.99890914776147 7.99781837084446 7.99672774247916 7.99563733209276 

𝑉8(4.0) 63.9991039363262 62.9964450012124 61.9921012214149 60.9861896516707 

𝑃8(4.0) 8.99866076927992 8.99714625564123 8.99547597952747 8.99366946745040 

𝑉9(4.5) 85.7496651923200 88.9986169485503 91.7467725073424 93.9940588690869 

𝑃9(4.5) 10.0024934024567 10.0048698566043 10.0070513759094 10.0089599776391 
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           Table 6.                Case 4.  Pipe diameter 𝑫 = 𝟒𝟎𝟎𝟎𝒎𝒎 and Wall thickness 𝒆 = 𝟓𝟎𝒎𝒎 

𝑉𝑖,𝑗 ,𝑃𝑖,𝑗 𝑡 = 0.5 𝑡 = 1.0 𝑡 = 1.5 𝑡 = 2.0 

𝑉1(0.5) 1.25007715176232 1.25030248400248 2.25065517858207 4.25109604923003 

𝑃1(0.5) 2.00180264563566 2.01146244047147 2.03683637975687 2.08576155684657 

𝑉2(1.0) 4.00056822358132 3.00423716240533 2.01689954373740 1.04837142463177 

𝑃2(1.0) 2.99969139295071 2.99940727808866 2.99918194359298 2.99905457381519 

𝑉3(1.5) 9.00007960099424 8.00032452696980 7.00075559577117 6.00141199270977 

𝑃3(1.5) 3.99952975131038 3.99905957950070 3.99858971539935 3.99812069762663 

𝑉4(2.0) 16.0000783787808 15.0003135343427 14.0007055628310 13.0012547527478 

𝑃4(2.0) 4.99937298897374 4.99874597816341 4.99811896831275 4.99749196134102 

𝑉5(2.5) 25.0000783765013 24.0003135067308 23.0007053936214 22.0012540441302 

𝑃5(2.5) 5.99921623618731 5.99843247237595 5.99764870857096 5.99686494478785 

𝑉6(3.0) 36.0000783715823 35.0003134672775 34.0007052304609 33.0012535684289 

𝑃6(3.0) 6.99905948296873 6.99811896325037 6.99717843566312 6.99623789195569 

𝑉7(3.5) 49.0001016421079 48.0004506454522 47.0011302539853 46.0022138891794 

𝑃7(3.5) 7.99890274985822 7.99780557592406 7.99670855228923 7.99561174919761 

𝑉8(4.0) 63.9990986808294 62.9964241510290 61.9920548956272 60.9861086569416 

𝑃8(4.0) 8.99865291453704 8.99712951830476 8.99544944647661 8.99363234036562 

𝑉9(4.5) 85.7496632286343 88.9986088368447 91.7467535780401 93.9940240247506 

𝑃9(4.5) 10.0025080265405 10.0048984184435 10.0070927313768 10.0090125248527 
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5.0 DISCUSSION AND CONCLUSION  

5.1        Discussion 

In this paper, we formulate seven steps Crack-Nichoson algorithm for the numerical solutions of one dimension classic 

frictionless water–hammer equation for density of water was considered. The variation in diameter and pipe wall thickness 

are examine and numerical solutions are obtained. From the results obtained we observe the following: 

i. The flow pertain for instantaneous velocity and transient pressure for equations (1) to (6) are under intermediate 

influence of diameter and wall thickness (Figures 2 to 9). 

ii. Instantaneous velocity flow maintained higher numerical solution at every nodes compare to transient pressure 

(Tables 3-7). 

iii. The numerical solutions obtained for instantaneous velocity 𝑣(𝑡, 𝑧) and transient pressure 𝑝(𝑡, 𝑧) are plotted on 3D 

plots (Figures 10 to 13) where significant difference are observed.   

 

5.2   Conclusion 

We successfully formulate and applied seven steps algorithm for the numerical solutions of system of partial differential 

equations which occur in fluid dynamics and water flow phenomenon. The algorithm is applied in a discretization way of 

finite element method. Density of water, diameter and wall thickness of pipe are considered for computational experiment. 

From the numerical points of view, the algorithm is feasible, efficiency, stable and accurate. We therefore recommend 

Crank- Nicolson algorithm for solving similar problems in applied sciences, engineering, water transportation and fluid 

mechanics. 
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