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Abstract 

In this paper, we further analyze the Solow model on time scales. The simple growth 

model can only provide an adequate approximation for an initial period, some 

conditions were revised to incorporate numerical upper bound on the growth size. 

We establish an existence and uniqueness of solution on time scale. Then, under the 

more realistic assumption that the labour force growth rate is a monotonically 

decreasing function, we discuss stability and monotonicity of the solutions of the 

Solow model. The economic meanings are also indicated in concluding part. 
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Introduction 

The neoclassical growth model, developed by Solow [1] had a great impact on how the economists think about economic 

growth. Since then, it has stimulated an enormous amount of work [2, 3]. Since differential equation systems are usually 

more easily handled than difference systems from the analytical point of view, some of the economic models have used 

continuous timing [4, 5, 6, 7] while others are given in difference models because some people think economic data are 

collected at discrete intervals and transformation of capital into investments depends on the length of time lag, etc. [8, 9]. 

Hence, in economic modeling, either continuous timing or discrete timing is present, and there is not a common view 

among economists on which representation of time is better for economic models [10]. Meanwhile, many results 

concerning differential equations may carry over quite easily to corresponding results for difference equations, while other 

results seems to be completely different in nature from their continuous counterparts [11]. 

The blanket assumption that economic processes are either solely continuous or solely discrete, while convenient for 

traditional mathematical approaches may sometimes be inappropriate, because in reality many economic phenomena do 

feature both continuous and discrete elements. In biology, a familiar example is a ‘seasonal breeding population in which 

generations do not overlap’ [11]. A similar typical example in economics is the ‘seasonally changing investment and 

revenue in which seasons play an important effect on this kind of economic activity’. In addition, option pricing and stock 

dynamics in finance [12] and the frequency and duration of market trading in economics also contain these hybrid 

continuous-discrete processes. Therefore, there is a great need to find a more flexible mathematical framework to 

accurately model the dynamical blend of such systems, so that they are precisely described and better understood. To meet 

this requirement, an emerging, progressive and modern area of mathematics, known as 'dynamic equations on time scales', 

has been introduced. This calculus has the capacity to act as the framework to effectively describe the above phenomena 

and to make advances in their associate fields, see e.g., [13, 14]. 

This theory was introduced by Stefan Hilger in 1988 in his Ph.D. thesis [15] in order to unify continuous and 

discrete analysis, and has been developed by many mathematicians. A time scale 𝕋 is defined as any nonempty closed 

subset of ℝ. In the time scales setting, once a result is established, special cases include the result for the differential 

equation when the time scale is the set of all real numbers R and the result for the difference equation when the time scale 

is the set of all integers 𝕫. The induction principle and rules of ∆ differentiation plays an important role in the proofs of 

some of our results, so we give it here. 
 

Definitions 

(1) A time scale 𝕋  is an arbitrary non empty closed subset of a real number.  

Let  𝕋 be a time scale. For t ∈  𝕋 we define the forward jump operator  

𝜎 : 𝕋  → 𝕋   by  𝜎 (t) : inf[s ∈  𝕋: s > t] 

while backward jump operator is 
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𝜌 :  𝕋 →    𝕋  by  𝜌(t) : sup[s ∈  𝕋: s < t] 

(2) Classification of points  

(i)  t is right-dense if 𝜎(t) = t 

(ii)  t is left-dense if 𝜌 (t) = t 

(iii)  t is right-scattered if  𝜎(t) > t 

(iv)  t is left-scattered if  𝜌(t) < t 

(v)  t is said to be isolated if  𝜎(t) < t <  𝜎(t)  and 

(vi)  t it dense if  𝜎(t) = t = 𝜌 (t) 

(3)  The graininess function 𝜈 is defined by  :   𝕋 → [0,∞ )  is defined by 𝜇(t) =  𝜎(t) - t. we define 𝕋𝑘 as follows. If  𝕋  

has a left-scattered maximum 𝑚, then  𝕋𝑘 = 𝕋 −  𝑚.  Else  𝕋𝑘 = 𝕋   
(4) A function  𝑓 ∶ 𝕋 ×  ℝ  →  ℝ  is said to be right-dense (rd) continuous if 𝑔 defined by 𝑔(𝑡) =  𝑓(𝑡, 𝑘(𝑡))  is right-

dense continuous for any continuous function  𝐾 ∶ 𝕋 →  ℝ    

(5)    𝑓  is regressive at 𝑡 𝜖 𝕋𝑘   if the mapping  (𝑖𝑑 +  𝜇 𝑓(𝑡, . )): 𝐾 →  ℝ+  is invertible ( where id is the identity 

function) and 𝑓 is said to be regressive on  𝕋𝑘 if  𝑓 is regressive at each point   𝑡 𝜖 𝕋𝑘 

 

Theorem 1(Induction Principle) 

Let  𝑡0   ∈  𝕋  and assume that  [ 𝑠(𝑡) ∶ 𝑡 ∈ [𝑡0, ∞) ] is a family of statements satisfying  

(i)  The statement  𝑆(𝑡0 ) is true 

(ii)  If 𝑡 ∈ [𝑡0, ∞)  is right-scattered and 𝑆(𝑡) is true, then 𝑆(𝜎(𝑡)) is also true. 

(iii)  If  𝑡 ∈ [𝑡0, ∞)  is right-dense and 𝑆(𝑡) is true, then there exist a neighbourhood 𝑈 of       𝑡 such that  𝑆(𝑠) is 

true for all 𝑠 ∈ 𝑈 ∩  𝑡 ∈ [𝑡, ∞). 

(iv)  If 𝑡 ∈ [𝑡0, ∞)  is left-dense and 𝑆(𝑠) is true for all, 𝑡 ∈ [𝑡0, ∞), then 𝑆(𝑡) is true 

 

 Proof 

Let 𝑆∗ = [𝑡 ∈ [𝑡0, ∞): 𝑆(𝑡)  is not true],  we want to show that  𝑆∗ = [𝜙] . To achieve a contradiction, we assume that 

𝑆∗  ≠ [𝜙].  Since 𝑆∗ is nonempty and 𝕋 is closed, we have 

                                       inf 𝑆∗  ∈  𝕋   

 we claim that 𝑆(𝑡)∗  is true. If  𝑡∗ −  𝑡0, then  𝑆(𝑡)∗  is true from (i).  

If  𝑡∗  ≠  𝑡0  and  𝜌(𝑡∗) =  𝑡∗, then 𝑡∗ is true from (iv). Finally, if 𝜌(𝑡∗) <  𝑡∗  then 𝑆(𝑡∗) is true from (ii). Hence in any case 

𝑆(𝑡∗)  ≠  𝑆∗. Thus  𝑡∗ can not be right-scattered, and   𝑡∗  ≠ max 𝕋  either. Hence 𝑡∗  is right-dense. But now (iii) leads to 

contradiction. ∎ 

 

Improved Solow Model on Time Scales 

The simple Solow growth model assumed that the labour force 𝐿 grows at a constant rate 𝑛 on the time scale, i.e. 

𝐿∆(𝑡)𝑛𝐿(𝑡)            (2.1) 

which implies that the labour force grows exponentially, that is, 

𝐿(𝑡) =  𝐿0 𝑒𝑛 (𝑡, 𝑡0 ) 

where 𝐿0 is the initial labour level at 𝑡0  ∈  𝕋. With the properties of the exponential function on time scales and the fact 

that 𝑛 > 0, we have  lim
𝑡→∞

𝐿(𝑡). This means the labour force approaches ∞ when 𝑡 goes to ∞, which is unrealistic, because 

in reality the environment has a carrying capacity. So the simple growth model of labour in equation (2.1) can provide an 

adequate approximation to such growth only for an initial period, but does not accommodate growth reductions due to 

competition for environmental resources such as food, habitat and the policy factor etc. [4]. Since the 1950s, developing 

countries have recognized that the high 

population growth rate has seriously hampered the economic growth and adopted the population control policy. As a result, 

the population growth rates of many countries decreased fast in the last 40 years, such as in China. Also due to the ageing 

of the population and, consequently, a dramatic increase in the number of deaths, the population growth rate decreased 

below zero in some developed countries, and is projected to decrease to zero during the next few decades in the developing 

countries[4]. 

So to incorporate the numerical upper bound on the growth size, on the reference of [9], we have this : 

The labour force 𝐿 satisfies the following properties: 
 

(a) The population is strictly increasing and bounded, i.e., 

𝐿 > 0,    𝐿∆ > 0  𝑜𝑛  𝕋.𝑡0
+   lim

𝑡→∞
𝐿(𝑡) =  ∞, 

(b)  The population growth rate is decreasing to 0, i.e., If  
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 𝑛 =  
𝐿∆

𝐿
  , 𝑡ℎ𝑒𝑛   lim

𝑡→∞
𝐿(𝑡) =  0  𝑎𝑛𝑑  𝑛∆ <  0 𝑜𝑛  𝕋.𝑡0

+      

Hence, we have [4] 

𝐾∆(𝑡) =  
𝑠

1+𝜇(𝑡)𝑛
 𝑓(𝑘(𝑡)) −  

𝛿+𝑛

𝜇(𝑡)𝑛
 𝐾(𝑡)      (2.2) 

Note that this is a non-autonomous dynamic equation on a time scale. Next we give the theorem of existence and 

uniqueness for solutions of initial value problems for (2.2). 

 

Theorem 2 

Assume that 

(i) 𝑓(0) = 0 

(ii) 𝑓′(𝑘) > 0 𝑎𝑛𝑑  𝑓′′(𝑘) < 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈  ℝ+ 

(iii) lim
𝑘→0+

𝑓′(𝑘) =  ∞ 𝑎𝑛𝑑 lim
𝑘→0+

𝑓′′(𝑘) =  0 

For any 𝑡0  ∈  𝕋  𝑎𝑛𝑑 𝑘0  𝜖 ℝ+ 

Then, the initial value problem 

{
𝑘∆(𝑡) =

𝑠

1+𝜇(𝑡)𝑛
𝑓(𝑘(𝑡)) −

𝛿+𝑛

1+𝜇(𝑡)𝑛
𝑘(𝑡)

𝑘(𝑡0) = 𝑘0

      (2.4)  

 

 has a unique solution on  𝕋.𝑡0
+   = {𝑡 ∈  𝕋 ∶ 𝑡 ≠  𝑡0 

Theorem 3 

Assume conditions in theorem 2 hold, let 𝛿 > 0  be such that  −𝛿 𝜖 ℝ+ 

 Let 𝑘1, 𝑘2  be solutions of equation (2.2) on  𝕋.𝑡0
+   with initial conditions 

       𝑘1(𝑡0) − 𝑘01
  𝑎𝑛𝑑 𝑘2(𝑡0) −  𝑘02

  respectively.  

 If      0 <   𝑘01
 <  𝑘02

  then    𝑘1 <  𝑘2   

Theorem 4 

Assume conditions in theorem 2 hold, let 𝛿 > 0  be such that −𝛿 𝜖 ℝ+ . 

 Let  𝑘1, 𝑘2  be solutions of dynamic equation on the same time scale  

𝑘∆(𝑡) =  
𝑠

1+𝜇(𝑡)𝑛1
𝑓(𝑘(𝑡)) −

𝛿+𝑛1

1+𝜇(𝑡)𝑛
𝑘(𝑡) = 𝑢(𝑘(𝑡), 𝑡)      (2.5) 

  and 

  𝑘∆(𝑡) =  
𝑠

1+𝜇(𝑡)𝑛2
𝑓(𝑘(𝑡)) −

𝛿+𝑛2

1+𝜇(𝑡)𝑛
𝑘(𝑡) = 𝑣(𝑘(𝑡), 𝑡)          (2.6)  

 respectively, with the same initial condition𝑘1(𝑡0) = 𝑘2(𝑡0).   If  𝑛1 <  𝑛2  on  

    𝕋.𝑡0
+    then  

𝑘1   ≥  𝑘2  on  𝕋.𝑡0
+    

Proof 

From  𝑛1(𝑡) <  𝑛2(𝑡)  we have 𝑢(𝑘(𝑡), 𝑡) >  𝑣(𝑘(𝑡), 𝑡)  for all  𝑡 ∈ 𝕋.𝑡0
+ . 

 Let =  𝑘1 −  𝑘2 . Obviously, we have 𝑧(𝑡0) =  𝑘1(𝑡0) −  𝑘2(𝑡0) = 0   

 and 

𝑧∆(𝑡0) =  𝑘∆1(𝑡0) −  𝑘∆2(𝑡0) = 𝑢(𝑘( (𝑡0), 𝑡) − 𝑣(𝑘( (𝑡0), 𝑡) > 0 

so, 𝑧 is right-increasing at 𝑡0 i.e if  𝑡0  is right-scattered, then we have 𝑧(𝜎( 𝑡0)) >  𝑧(𝑡0) −  0;   if 𝑡0  is right-dense, then there exists a 

non-empty neighbourhood 𝑈+(𝑡0) ∩  𝕋  of  𝑡0  such that          𝑧(𝑡) >  0 for any 𝑡 ∈  𝑈+(𝑡0) ∩  𝕋. We now show that   𝑧 ≥ 0 holds on 

𝕋.𝑡0

+ . If this is not the case, then there must be a point  𝑡1 >  𝑡0,  𝑡1  ∈  𝕋,  such that 𝑧(𝑡1) <  0,   𝑧(𝑡) ≥ 0,  when    

 𝑡 ∈ (𝑡0, 𝑡1) ∩  𝕋 . If 𝑡1  is left-dense, then continuity of 𝑧 gives that  𝑧(𝑡1) >  0  which contradicts the assumption. Hence  𝑡1 is left-

scattered. Let  𝜌(𝑡1) =  𝑡2   then  𝑧(𝑡2) > 0 

 i.e 𝑘1(𝑡2)  ≥  𝑘2(𝑡1).  Let   𝑘2
′   be solution of equation (2.6) satisfying the initial condition   𝑘′(𝑡2) =  𝑘1(𝑡2). From the discussion in the 

beginning of this proof, we obtain that 

𝑘1 − 𝑘2
′    is also right-increasing at 𝑡2 which implies 

𝑘1(𝑡) >  𝑘2
′   𝑓𝑜𝑟 𝑡 ∈  𝑈+ ̇ (𝑡2) ∩  𝕋 … … … . (2.7) 

where 𝑈+ ̇ (𝑡2) ∩  𝕋  is a nonempty right neighbourhood of  𝑡2 (at least including 1 ). Taking into account that   𝑘2(𝑡2) <
  𝑘2

′  (𝑡2),  theorem 2 gives  

𝑘2(𝑡)  ≤   𝑘2
′  (𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ 𝕋.𝑡2

+   … … … … . . (2.8) 

from (2.7) and (2.8), we have 

𝑘1(𝑡) >   𝑘2(𝑡)  𝑓𝑜𝑟 𝑡 ∈  𝑈+ ̇ (𝑡2) ∩  𝕋 

and thus 𝑘1(𝑡1) >   𝑘2(𝑡1),   which contradicts the fact  𝑧(𝑡1) < 0 $z(t_1 ) < 0     ∎ 
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Theorem 5 

Assume conditions in theorem 2 hold, let 𝛿 > 0  be such that −𝛿 𝜖 ℝ+.   

If 𝑘 solves equation (2.2), then lim
𝑡→∞

𝑘(𝑡) = 𝑘0̃                 

Proof 

We need to show that for any   휀 > 0, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡   𝑇 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡 > 𝑇, 𝑡 𝜖𝕋 . 

we have    |𝑘(𝑡) − 𝑘0̃ | <  휀 .  Now let 휀 > 0.   Since  lim
𝑛→0+

𝑘�̃� = 𝑘0̃ 

we know that there exists  �̅� > 0       such that  𝑘�̃� − 𝑘0̃ <  
3

   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 𝜖 (0, �̅�)    

Let  𝑡1  ∈ 𝕋.𝑡0
+     such that 𝑛𝑡1

=  𝑛(𝑡1) <  �̅�   and let  𝑘𝑛𝑡1
   and  𝑘0 be the solutions of  

𝑘∆(𝑡) =  
𝑠

1 + 𝜇(𝑡)𝑛𝑡1

𝑓(𝑘(𝑡)) −
𝛿 + 𝑛𝑡1

1 + 𝜇(𝑡)𝑛𝑡1

𝑘(𝑡) 

and 

𝑘∆(𝑡)  = 𝑠𝑓(𝑘(𝑡)) − 𝛿𝑘(𝑡)   
respectively, with the initial conditions 

𝑘𝑛𝑡1
(𝑡1) =   𝑘0 ( 𝑡1) −  𝑘(𝑡1)            

Then Theorem 3 implies that 

𝑘𝑛𝑡1
(𝑡1)  ≤ 𝑘(𝑡) ≤   𝑘0(𝑡)  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑡 ∈ 𝕋.𝑡1

+  

Since lim
𝑡→∞

𝑘0  (𝑡) = 𝑘0̃   𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡  𝑇1 > 0   such that 

 |𝑘(𝑡) − 𝑘0̃ |   <  
3

   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥  𝑇1  

Moreover,   since   lim
𝑡→∞

𝑘𝑛𝑡1
(𝑡) =  𝑘𝑛𝑡1

̌   𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡  𝑇2 > 0    such that 

|𝑘𝑛𝑡1
(𝑡) − 𝑘𝑛𝑡1

̃  |   <  
휀

3
   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥  𝑇2. 

Hence for     𝑡 > 𝑇 ∶ max 𝑇1, 𝑇2, 𝑡1,  we have  

 𝑘0̃  −  
2

3
 휀 <   𝑘𝑛𝑡1

̃ − 
3

<  𝑘𝑛𝑡1
≤  𝑘0(𝑡) <  𝑘0̃ + 

3
  

which implies that      |𝑘(𝑡) −  𝑘0̌ | <  휀   𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈ 𝕋.𝑇
+  .     ∎ $| 

 

Theorem 6 

Assume conditions in theorem 2 hold, let  𝛿 > 0  be such that −𝛿 𝜖 ℝ+.  Then, the solution 𝑘 solves equation (2.2)  with  

 𝑘(𝑡0) =  𝑘0   is asymptotically stable. 
 

Proof 

To prove the Lyapunov stability of 𝑘 in equation (2.2) with initial condition 𝑘(𝑡0) =  𝑘0,  we have to show that for any  휀 >
0 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝜂 > 0, such that for any solution 𝑞 of equation (2.2) with initial condition 𝑞(𝑡0) =  𝑞0  and such that  

|  𝑘(𝑡0) − 𝑞 (𝑡0)| <  𝜂     
 we have 

|𝑘(𝑡) −  𝑞(𝑡)| <  휀  𝑓𝑜𝑟 𝑎𝑛𝑦  𝑡 ∈ 𝕋.𝑡0
+   

 Let  𝜑1   𝑎𝑛𝑑  𝜑2    be the solutions of equation (2.2) with initial conditions  

𝜑1(𝑡0) =  
3

2
 𝑘(𝑡0) 𝑎𝑛𝑑  𝜑2(𝑡0) =  

1

2
 𝑘(𝑡0)   

  respectively. From Theorem 5, we have 

lim
𝑡→∞

𝜑1(𝑡) =   lim
𝑡→∞

𝜑2(𝑡) =  𝑘0̃ = lim
𝑡→∞

𝑘(𝑡)  

Thus, for any 휀 > 0 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡   𝑡1 >  𝑡0 ,   𝑡1  𝑡 ∈ 𝕋.𝑡1
+ , such that 

|𝜑1(𝑡) −  𝑘(𝑡)| <  
휀

2
   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝕋.𝑡1

+    

Let 𝑞 solve (2.2) with the initial condition 𝑞0 𝜖 (
1

2
 𝑘(𝑡0),

3

2
  𝑘(𝑡0)).  

 From theorem 3, we have 

𝜑1(𝑡) < 𝑞(𝑡) <   𝜑2(𝑡)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝕋.𝑡1
+  

Thus  

|𝑞(𝑡) −  𝑘(𝑡)| <  
휀

2
   𝑓𝑜𝑟 𝑎𝑛𝑦  𝑡 ∈ 𝕋.𝑡1

+    

Next we choose  𝜂 such that for any solution 𝑞 with initial value𝑞0, |𝑞0 −  𝑘0  | <  𝜂    implies  

|𝑘 − 𝑞| <  휀 𝑜𝑛  [𝑡0 ,   𝑡1]  ∩  𝕋 
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Following the proof of the theorem of continuous dependence on initial conditions, making use of the finite covering 

theorem, we can obtain that for any 휀 > 0, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝜂 <  
𝑘0

2
   such that  

|𝑞0 −  𝑘0  | <   휀   implies      𝑘(𝑡) −  𝑞(𝑡) <  휀   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ [𝑡0, 𝑡1 ] ∩ 𝕋.  From Theorem 5, for any solutions 𝑘 𝑎𝑛𝑑 𝑞 of 

equation (2.2), we have that 

lim
𝑡→∞

𝑘(𝑡)  =   lim
𝑡→∞

𝑞(𝑡)  =  𝑘0̃ 

and then 

  lim
𝑡→∞

|𝑞(𝑡) −  𝑘(𝑡)| = 0 

So the solution of equation (2.2) is asymptotically stable.  ∎ 

Next we will present the monotonicity of the solutions of (2.2). 

 

Theorem 7 

Assume conditions in theorem 2 hold, let  𝛿 > 0  be such that −𝛿 𝜖 ℝ+.  

Let   𝑡0  ∈   𝕋  𝑎𝑛𝑑  𝑘, 𝑘𝑛𝑡0
 , 𝑘0  be solutions of dynamic equation (2.2), 

𝑘∆(𝑡) =  
𝑠

1 + 𝜇(𝑡0)𝑛𝑡0

𝑓(𝑘(𝑡)) −
𝛿 + 𝑛𝑡0

1 + 𝜇(𝑡)𝑛𝑡0

𝑘(𝑡) … … … (2.8) 

and 

𝑘∆(𝑡) =  𝑠𝑓(𝑘(𝑡)) −   𝛿 𝑘(𝑡) … … … (2.9)    

respectively, with the initial values 

𝑘(𝑡0) =     𝑘𝑛𝑡0
 = 𝑘0 (𝑡0) 

Then 

(i)  𝑘𝑛𝑡0
    ≤ 𝑘 ≤  𝑘0   𝑜𝑛  𝕋.𝑡0

+  

(ii)  If  𝑘 (𝑡0) ≤   𝑘𝑛0
̃  , 𝑡ℎ𝑒𝑛 𝑘  𝑖𝑠 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑛 𝕋.𝑡0

+      

(iii) If 𝑘𝑛0
̃  <  𝑘(𝑡0)  ≤   𝑘0̃  𝑡ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 �̃�  ∈  𝕋  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑘 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑛 

 [𝑡0, �̃�]  ∩  𝕋  𝑎𝑛𝑑 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔  𝑜𝑛  𝕋.𝑡
+    

(iv) If  𝑘0 <  𝑘(𝑡0), 𝑡ℎ𝑒𝑛  𝑘 𝑖𝑠 𝑖𝑛𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑛 𝕋.𝑡0
+  𝑜𝑟 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡   

 �̃�  ∈  𝕋  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑘 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑛 [𝑡0, �̃�]  ∩  𝕋  𝑎𝑛𝑑 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔  𝑜𝑛  𝕋.𝑡
+     

                  Here   𝑘𝑛0
̃  𝑎𝑛𝑑   𝑘(𝑡0)   are the equilibria of (2.8) and (2.9), respectively. 

Proof 

(i) For  𝑡 >  𝑡0, 𝑡 ∈   𝕋, 𝑤𝑒 ℎ𝑎𝑣𝑒  𝑛(𝑡0) > 𝑛(𝑡) > 0. So from theorem 5, we obtain the result easily. 

(ii) we want to show that   𝑆(𝑡)  𝑔𝑖𝑣𝑒𝑛 𝑏𝑦  𝑘∆(𝑡) > 0  is true for any  𝑡 ∈  𝕋.𝑡0
+ ,  using the principle of induction 

(theorem 1)  

(a)  Since  𝑘 (𝑡0) ≤   𝑘𝑛0
̃    we have  𝑘∆(𝑡0) > 0 , 𝑠𝑜 𝑆(𝑡)ℎ𝑜𝑙𝑑 𝑎𝑡 𝑡 = 0     

(b) If 𝑡 is right-scattered and   𝑘∆(𝑡) > 0,  then 

𝑘(𝜎(𝑡)) =  𝑘(𝑡) +  𝜇(𝑡)𝑘∆(𝑡) 

= 𝑘(𝑡) +  𝜇(𝑡)
𝑠𝑓(𝑘(𝑡)) − (𝛿 + 𝑛(𝑡)(𝑘(𝑡))

1 + 𝜇(𝑡)𝑛
 

=
(1 − 𝜇(𝑡)𝛿)(𝑘(𝑡)) + 𝑠 𝜇(𝑡)𝑓(𝑘(𝑡))

1 + 𝜇(𝑡)𝑛(𝑡)
<   

(1 − 𝜇(𝑡)𝛿)(𝑘𝜎(𝑡)) + 𝑠 𝜇(𝑡)𝑓(𝑘𝜎(𝑡))

1 + 𝜇(𝑡)𝑛𝜎(𝑡)
 

=
[(1 + 𝜇(𝑡)𝑛𝜎(𝑡))](𝑘𝜎(𝑡))

1 + 𝜇(𝑡)𝑛𝜎(𝑡)
+   

(𝜇(𝑡))[𝑠𝑓(𝑘𝜎(𝑡)) − (𝛿 + 𝑛𝜎(𝑡)) (𝑘𝜎(𝑡))]

1 + 𝜇(𝑡)𝑛𝜎(𝑡)
 

𝑘(𝜎(𝑡)) + 
𝜇(𝑡)

1 + 𝜇(𝑡)𝑛(𝜎(𝑡))
[1 + 𝜇(𝑡)𝑛(𝜎(𝑡))]𝑘∆(𝜎(𝑡)) 

𝑠𝑜,    𝑘∆(𝜎(𝑡)) >  0 

(c)  If 𝑡 is right-dense and  𝑘∆(𝜎(𝑡)) > 0 then there exists a neighbourhood 𝑈+ ̇ (𝑡) ∩  𝕋  such that 𝑘∆(𝜎(𝑡)) >  0  for 

any  𝑟 ∈  𝑈+ ̇ (𝑡) ∩  𝕋.  To prove this, we assume that there does not exist such a neighbourhood. Then there must 

exist a decreasing sequence {𝑡𝑛} ⊂   𝑈+ ̇ (𝑡) ∩  𝕋     such that lim
𝑛→∞

𝑡𝑛 = 𝑡  𝑎𝑛𝑑 𝑘∆ 𝑡𝑛  ≤ 0.  From the properties of 

𝑓 taking limit on both sides, we obtain 𝑘∆ 𝑡𝑛  ≤ 0  which is a contradiction. 

(d)  Assume that 𝑡 is left-dense and 𝑘∆ (𝑟) > 0  for any 𝑟 ∈  [𝑡0, 𝑡)  ∩  𝕋.  From continuity, we can get 𝑘∆((𝑡))  ≤

 0  𝑖𝑓  𝑘∆(𝑡) =  0,   then for any 𝑟 ∈  [𝑡0, 𝑡)  ∩  𝕋,  from the chain rule in [6], we have 
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[(1 + 𝜇𝑛)𝑘∆](𝑟) = [𝑠(𝑓 ∘ 𝑘) − (𝛿 + 𝑛)𝑘]∆(𝑟) 

= 𝑠𝑓′(𝑘(𝑟))𝑘∆(𝑟) −  𝑛∆(𝑟)𝑘(𝑟) − (𝛿 + 𝑛𝜎(𝑟)𝑘∆(𝑟) 

Taking limit on both sides when   𝑟 → 𝑡, we obtain 

[(1 + 𝜇𝑛)𝑘∆)]∆ (𝑡) =  −𝑛∆(𝑡)𝑘(𝑡) >  0 

So since 𝑡 is left-dense and from the continuity, we have 

 (1 + 𝜇(𝑡)𝑛(𝑡)𝑘∆(𝑡) > (1 + 𝜇(𝑟)𝑛(𝑟))𝑘∆(𝑟) > 0  

for all  𝑟 ∈  𝑈+ ̇ (𝑡) ∩  𝕋.  Hence 𝑘∆(𝑡) > 0 . 

(e) If 𝑘𝑛𝑡0
̃  ≤  𝑘(𝑡0)  ≤   𝑘0̃,  then 

𝑘∆(𝑡0) =  
𝑠

1 + 𝜇(𝑡0)𝑛𝑡0

𝑓(𝑘(𝑡)) −
𝛿 + 𝑛𝑡0

1 + 𝜇(𝑡)𝑛𝑡0

𝑘(𝑡0) 

  =  
𝑠

1+𝜇(𝑡0)𝑛𝑡0

𝑓 (𝑘𝑛𝑡0
(𝑡)) −

𝛿+𝑛𝑡0

1+𝜇(𝑡)𝑛𝑡0

(𝑘𝑛𝑡0
𝑡0) 

 𝑘𝑛𝑡0

∆(𝑡0) <  0 

Hence 𝑘 is right-decreasing at 𝑡0 i.e., if 𝑡0  is right-scattered, then 𝑘(𝜎(𝑡0)) <   𝑘(𝑡0) ; 𝑖𝑓  (𝑡0)    is right-dense, then there exists a 

nonempty neighborhood𝑈+ ̇ (𝑡) ∩  𝕋   of (𝑡0)    such that 𝑘(𝑡) < 𝑘(𝑡0)  for any  𝑡 ∈ 𝑈− ̇ (𝑡) ∩  𝕋   is true on 𝕋.𝑡0

+  then 𝑘 is decreasing on 

𝕋.𝑡0

+ . Considering 

lim
𝑡→∞

𝑘(𝑡) =   𝑘0̃  in theorem 5, we have  

𝑘0̃   ≤ 𝑘(𝑡) < 𝑘(𝑡0) ≤   𝑘0̃     𝑓𝑜𝑟  𝑡 ∈  𝕋.𝑡0

+  

which is a contradiction. So there must exist �̃�  ∈  𝕋.𝑡0

+    𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑘∆(�̃�) > 0   and for simplicity we assume �̃� is the first point that 

verifies the inequality. So it must be proved that   𝑘∆(𝑡) > 0   𝑓𝑜𝑟  𝑎𝑙𝑙 𝑡 ∈  𝕋.�̃�
+   which is similar to the proof of Statement 2. 

item Following the same proof as in Statement 3, we can obtain the monotonicity.∎ 
 

Conclusion 

Theorem 3 means that if two economies have the same fundamentals, then the one with the bigger initial capital per worker will always 

have the bigger capital per worker for ever on any time scale. The result in Theorem 3 includes the results in [16] and [9] as special 

cases. 

Theorem 4 implies that, on any economic domain, for two economies with the same initial capital per worker, the economy with the 

smaller population growth rate will always have the bigger capital per worker on any time scale. The result here also includes the results 

in [16, 6] and [9] as special cases. Theorem 5 says that for any economic domain 𝕋 the population growth rate n(t) has no influence on 

the level of per worker output in the long run. That is, provided that the economy possesses a population growth rate strictly decreasing 

to zero, the capital per worker always converges to the positive steady state of the Solow model on a time scale with a population growth 

rate of zero. Theorem 6 says that under the same fundamentals, if two economies operating on the same time domain have nearly the 

same initial capital per worker, the following capitals per worker will take on similar behaviour. 
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