
155

Transactions of the Nigerian Association of Mathematical Physics

Volume 14, (January - March, 2021 Issue), pp155 –158

© Trans. of NAMP

FIREWALL-BASED REGRESSION TESTS SELECTION APPROACHES: A REVIEW

1Samaila Musa and 2Jibril Lawal

1Department of Computer Science, Federal University Gusau

2Department of Mathematical Sciences, Federal University Gusau

Abstract

Regression testing is about running the entire test and is very important activity in

software testing. Regression Test Case Selection (RTCS) aims to reduce regression

testing cost by only selecting and running the tests that may be affected by code

changes. Various RTCS techniques based on firewall analysing at either statement,

methods of class levels have been proposed. This paper presents the result of the

study conducted on different Regression Test Case Selection approaches based on

firewall showing mostly stressed areas by researchers and the areas where there is a

future scope. Papers related to firewall-based Regression Test Case Selection

techniques in regression testing are reported and documented to find the current

trends and future scope for the researchers to work upon.

Keyword: Regression testing, test case selection, software testing, firewall.

Introduction

One of the most important activities in software maintenance is regression testing [1] that is performed in order to ensure

that modifications due to debugging or improvement do not affect the existing functionalities and the initial requirement of

the design. According to [2], regression testing comprises execution of an enormous amount of tests and is tedious, but it

might not be feasible to repetitively re-execute all the test suite in order to tests the software during regression testing due to

resource restraints. In this way, it is reasonable to select test case by selecting part of the test suite so that software is tested

for early identification of faults. There are numerous regression tests selection techniques, for example, retest-all or

randomly selects test cases, however using some pre-defined criteria for selection of test cases might result in more fault

identification. There were recently proposed techniques in regression testing [3-12] in order to improve regression testing

performance so as to make it a cost-effective process. These techniques are categorized as test suite minimization, test case

se-lection, and test case prioritization [13].

Regression test case selection helps in selecting part of tests from the test suite. The most effortless approach is the tester

essentially executes all the current tests to guarantee that the new changes are innocuous and is referred as a retest-all

technique [14]. It is the most secure method; however, it is conceivable just if the test suite is small in size. The tests can be

chosen arbitrarily to diminish the extent of the test suite. In any case, the greater part of the tests chose arbitrarily can bring

about checking little portions of the altered programming, or may not have any connection to the adjusted program.

Formally, regression test selection techniques will be an options to the retest-all and random approaches. Regression tests

selection techniques for object-oriented programs are grouped into 3 categories [15], namely: Firewall-based regression

tests selection, Program model-based regression tests selection and Design-based regression tests selection.

In regression testing, variables are measures from the experiment by measuring the first five values directly and the last

four values (Equations 1, 2, 3 and 4indirect measured as used in our previous approaches [38].

1. Number of killed or detected mutants (#killed mutants)

2. Number of test cases killed mutants (selected test cases) #N

3. Execution time is taken to detect mutants by an approach measured in seconds

4. Position of test: 𝑇𝑓𝑖= position of the first test in T that exposes the faults 𝑖
5. A number of executed test cases: Is the number of tests used to killed mutants (# test case executed).

6. Number of undetected mutants (i.e. #equivalent mutants)

 #𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑚𝑢𝑡𝑎𝑛𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝑚𝑢𝑡𝑎𝑛𝑡𝑠 − #𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠 (1)

7. The effectiveness of fault detection (mutation score) measured as:

 Correspondence Author: Samaila M., Email: samailaagp@gmail.com, Tel: +2348065670727
8.

Transactions of the Nigerian Association of Mathematical Physics Volume 14, (January -March., 2021), 155–158

156

Firewall-Based Regression Tests… Samaila and Jibril Trans. Of NAMP

𝐸𝑓𝑓𝑀𝑆𝑃 =
#𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑚𝑢𝑡𝑎𝑛𝑡𝑠
∗ 100 (2)

9. The efficiency of test effort measured as:

𝑅𝑇𝐸 =
#𝑚𝑢𝑡𝑎𝑛𝑡𝑠 𝑘𝑖𝑙𝑙𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑑𝑒𝑡𝑒𝑐𝑡 𝑡ℎ𝑒 𝑚𝑢𝑡𝑎𝑛𝑡𝑠
 (3)

10. Average percentage of the rate of fault detection:

𝐴𝑃𝐹𝐷 = 1 −
𝑇𝑓1+𝑇𝑓2+⋯+𝑇𝑓𝑚

#𝑁 ∗ #𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠
+

1

2∗#𝑁
 (4)

Literature Survey

There were a lot of studies performed by researchers and a lot selection techniques were introduced, with the aim of

enhance rate of fault detection. These techniques were categorized into several domains according to the nature of the study

conducted by the researchers. A review was conducted in which various regression test case selection techniques were

examined to enhance the significance of the selection of test cases from test suite in regression testing [16]. The study

conducted by these researchers is elaborated correspondingly into procedural programs. Also another review on Test Case

Selection was presented which was conducted in conferences and journals. But most of the commonly reported techniques

are genetic algorithm, adaptive random testing and greedy algorithm.

Firewall-based techniques for the Object-Oriented Programs depended on the idea of a firewall characterized for the

procedural program [18]. The techniques depended on examination of data and control conditions among modules in the

procedural system. Firewall-based methodology for OOP identifies the changed classes for the altered rendition of the

program as a firewall. The tests to be chosen are those that at any rate practiced one class from the inside of the firewall.

Firewall-based approach for object-oriented program aims to detect the changed classes for the amended form of the

program. They present a selective retest technique directed specifically at inter procedural regression testing that handles

both code and specification changes. Their technique determines where to place a firewall around modified code modules.

Where test selection from T is concerned, the technique selects unit tests for modified modules that lie within the firewall,

and integration tests for groups of interacting modules that lie within the firewall.

A lot of firewall-based approaches for object-oriented programs have been proposed [19, 27]. The notion of class firewall

analysis by taking into account the features of OO languages, such as inheritance was proposed [28]. A state-of-the-art

static file level RTCS technique based on class firewall analysis called STARTS was proposed {24}. STARTS computes

the set of classes that might be affected by the changes and builds a “firewall” around those classes; then, any test classes

within the class firewall can potentially be affected by code changes and are selected as affected test cases. STARTS

performs class firewall analysis based on the Intertype Relation Graph (IRG).

A technique that implemented the traditional class firewall analysis as a practical static RTS tool named STARTS, and

performed an extensive study of STARTS on a number of real-world GitHub projects was presented [24]. The experimental

results verified that STARTS can significantly better than static method-level RTCS. White and Abdullah (1997) proposed

a technique [26] that constructs a firewall to enclose the set of classes affected by the changes; such classes are the only

ones that need to be retested. Another technique by Hsia and colleagues [25] is also based on the concept of class firewall,

but leverages a different representation of the program. But the techniques are limited because they do not handle certain

object-oriented features (e.g., exception handling) and perform analysis only at the class level, which can be imprecise.

Furthermore, they are not implemented and, thus, there is no empirical evidence of their effectiveness or efficiency.

Techniques based on the idea of a class firewall [18, 27] were proposed that enclose the types that need to be retested

because they may be impacted by a code change. The concept of firewall to cover all the affected modules that were

modified at the module integration level was presented [22]. The firewall was based on the call graph defined and the effort

can be decreased by retesting only those modules and links that were present in the firewall of the modified or affected

modules instead of retesting the whole of the system. Later on the authors also introduced data flow based firewalls that

were based on the data flow diagram of the affected modules due to coupling effect.

The work was extended to handle interactions involving global variables [28]. A firewall analysis for regression testing

with integration test cases in the presence of small changes in functionally-designed software was developed [18, 22, 28].

Firewall analysis restricts regression testing to potentially-affected system elements directly dependent upon changed

system elements [22, 29]. Affected system elements include modified functions and data structures, and their calling

functions. The firewall concept has been utilized on object-oriented systems [30, 31] and for regression testing of graphical

user interfaces [32].

Firewall methods can only be guaranteed to select all modification-revealing tests and to be safe if all unit and integration

tests initially used to test system components are reliable. Modification-revealing test cases are those test cases, when

executed before and after the modification, for which the program will generate different output [33]. A safe RTS process

guarantees that the subset of tests selected contains all test cases in the original test suite that can reveal faults based upon

the modified program [33, 34]. Tests are reliable if the correctness of modules exercised by those tests for the tested inputs

Transactions of the Nigerian Association of Mathematical Physics Volume 14, (January -March., 2021), 155–158

157

Firewall-Based Regression Tests… Samaila and Jibril Trans. Of NAMP

implies correctness of those modules for all inputs [33]. Since test suites are typically not reliable in practice [29], the

firewall technique may omit modification-revealing tests and/or may admit some non-modification-traversing tests.

However, via empirical studies of industrial real-time systems, firewall was shown to be effective despite these theoretical

limitations [29].

A class firewall regression test selection technique was reported on the empirical evaluation in combination with scenario

testing, on a large scale industrial software system using the Java byte code in the analysis [35]. It was conducted on a large

complex distributed software system in one of Sweden's largest banks. The results show that not all test cases were selected

by the class firewall selection technique. A hypothesis was formulated stating that the empirical observations of class

firewall are not incidental, but an inherent property of the Class firewall technique [36]. It was proved that the hypothesis

holds for Java in a stable testing environment, and concluded that the effectiveness of the Class firewall regression testing

technique can be improved without sacrificing the defect detection capability of the technique, by removing the class

firewall. A technique that investigates situations when data-flow paths are longer and the testing of modules and

components only one level away from the changed elements may not detect certain regression faults; an extended firewall

considers these longer data paths. The results show that empirically the degree to which an extended firewall detected more

faults, and how much more testing was required to achieve this increased detection [37].

 An evolutionary regression testing for object-oriented software based on extended system dependence graph model of the

affected program was presented in one of previous work [39]. The approach is based on optimization of selected test case

from dependency analysis of the source codes. The goal is to identify changes in a method’s body due to data dependence,

control dependence and dependent due to object relation such as inheritance and polymorphism, select the test cases based

on affected statements. The number of affected statements determined how fit a test case is good for regression testing. A

case study is reported to provide evidence of the feasibility of the approach and its benefits in increasing the rate of fault

detection and reduction in regression testing effort compared with retest-all. It was shown that our approach needs 30% of

the test cases to cover all the faults, while 80% is needed to cover all the faults using retest-all, which is time consuming

and costly.

Conclusion

This paper presents a review on regression test selection techniques based on firewall which assesses the
research work related to this area. The paper summarises the research papers along with the approaches
based on firewall. It can conclude that there are so many approaches that are used for test case selection
based on firewall and each approach has its advantages and disadvantages. Based on the requirement a
tester/researcher can use any of the firewall-based approach.

REFERENCES
[1] Zhang, L., Hou, S. S., Guo, C., Xie, T., & Mei, H. (2009, July). Time-aware test-case prioritization using integer

linear programming. In Proceedings of the eighteenth international symposium on Software testing and

analysis (pp. 213-224). ACM.

[2] Rothermel, G., Roland, H.U., Chu, C., &Harrold, M.J. (2001). Prioritizing test cases for regression testing. IEEE

Transactions on Software Engineering, 27(10), 929-948

[3] Ngah A, Munro M, Abdallah M. An Overview of Regression Testing. Journal of Telecommunication, Electronic

and Computer Engineering (JTEC). 2017; 9(3-5): 45-49.

[4] Pandey A, Banerjee S. Test suite minimization in regression testing using hybrid approach of ACO and GA.

International Journal of Applied Metaheuristic Computing. 2018; 9(3): 88-104.

[5] Chen L, Zhang L. Speeding up mutation testing via regression test selection: An extensive study. Proceedings of

the 11th IEEE International Conference on Software Testing, Verification and Validation (ICST 2018). 2018: 58-

69.

[6] Jimenez I, Watkins N, Sevilla M, Lofstead J, Maltzahn C. Quiho: Automated performance regression testing using

inferred resource utilization profiles. Proceedings of the ACM/SPEC International Conference on Performance

Engineering. 2018: 273-284.

[7] Minhas N. M, Petersen K, Ali N, Wnuk K. Regression testing goals-view of practitioners and researchers.

Proceedings of the 24th Asia-Pacific Software Engineering Conference Workshops (APSECW 2017). 2018: 25-

31.

[8] Tulasiraman M, Kalimuthu V. Cost cognizant history based prioritization of test case for regression testing using

immune algorithm. International Journal of Intelligent Engineering and Systems. 2018; 11(1): 221-228.

[9] L. Zhang. Hybrid regression test selection. Proceedings of the IEEE/ACM 40th International Conference on

Software Engineering (ICSE 2018). 2018: 199-209.

[10] A. Panichella and R. Oliveto, M. Di Penta, and A. De Lucia. Improving Multi- Objective Test Case Selection by

Injecting Diversity in Genetic Algorithms. IEEE Transactions on Software Engineering. 2015; 41(4): 358-383.

Transactions of the Nigerian Association of Mathematical Physics Volume 14, (January -March., 2021), 155–158

158

Firewall-Based Regression Tests… Samaila and Jibril Trans. Of NAMP

[11] S. Dahiya, R. K.Bhatia, and D. Rattan. Regression Test Selection using Class, Sequence, and Activity Diagrams.

IET Software. 2016; 10(3): 72-80.

[12] S. S. Emam and J. Miller. Test Case Prioritization using Extended Digraphs. ACM Transactions on Software

Engineering and Methodology (TOSEM). 2015; 25(1): 6:1-6:41.

[13] Yoo, S., & Harman, M. (2012). Regression testing minimization, se-lection and prioritization: a survey. Software

Testing, Verification and Reliability, 22(2), 67-120. https://doi.org/10.1002/stv.430.
[14] M. Rani and A. Singh (2014). Review of Regression Test Case Selection Techniques, International Journal of Engineering

Research & Technology (IJERT), ISSN: 2278-0181.IJERTV3IS051262 www.ijert.org. Vol. 3 Issue 5, May – 2014.

[15] S. Narula (2016) Review Paper on Test Case Selection. Saakshi Narula| IJCSET(www.ijcset.net) |April 2016 | Vol 6, Issue 4,

126-128

[16] M. Rani and A. Singh (2014). Review of Regression Test Case Selection Techniques, International Journal of Engineering

Research & Technology (IJERT), ISSN: 2278-0181.IJERTV3IS051262 www.ijert.org. Vol. 3 Issue 5, May - 2014

[17] S. Narula (2016) Review Paper on Test Case Selection. Saakshi Narula| IJCSET (www.ijcset.net) |April 2016 | Vol

6, Issue 4, 126-128

[18] Leung, H. and White, L., "A Study of Integration Testing and Software Regression at the Integration Level,"

International Conference on Software Maintenance, San Diego, 1990, pp. 290-301.

[19] Jang, Y., Munro, M.,& Kwon, Y. (2001). An improved method of selecting regression tests for C++ programs.

Journal of Software Maintenance: Research and Practice, 13(5), 331–350.

[20] Rothermel, G., & Harrold, M. J. (1997). A safe, efficient regression test selection technique. ACM Transactions on

Software Engineering and Methodology (TOSEM), 6(2), 173-210.

[21] Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y. and Chen, C. (1996). On regression testing of object oriented

programs. Journal of Systems and Software, 32(1), 21–40.

[22] Leung, H.,& White, L. (1992, November). A firewall concept for both control-flow and data-flow in regression

integration testing. In Proceedings of the Conference on Software Maintenance,(pp. 262 – 271). IEEE.

[23] D. C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima, “Class firewall, test order, and regression testing of object-

oriented programs,” JOOP, vol. 8, no. 2, pp. 51–65, 1995
[24] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An extensive study of static regression test selection in

modern software evolution,” in FSE, pp. 583–594, November 13-19, 2016, Seattle, WA, USA. 2016 ACM. ISBN 978-1-4503-

4218-6/16/11. DOI: http://dx.doi.org/10.1145/295029

[25] P. Hsia, X. Li, D. Kung, C.-T. Hsu, L. Li, Y. Toyoshima, and C. Chen. A technique for the selective revalidation of OO

software. Software Maintenance: Research and Practice, 9:217–233, 1997.

[26] L. J. White and K. Abdullah. A firewall approach for regression testing of object-oriented software. In Proceedings of 10th

Annual Software Quality Week, May 1997.

[27] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large software systems. In Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering, pages 241–251, 2004.

[28] Leung, H. and White, L., "Insights into Testing and Regression Testing Global Variables," Journal of Software Maintenance,

2(4), 1991, pp. 209-222.

[29] White, L. and Robinson, B., "Industrial Real-Time Regression Testing and Analysis Using Firewall," International Conference

on Software Maintenance, Chicago, 2004, pp. 18-27.

[30] Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., and Chen, C., "Change Impact Identification in Object-Oriented Software

Maintenance," International Conference on Software Maintenance, Victoria, B.C., Canada, 1994, pp. 202-211.

[31] White, L. and Abdullah, K., "A Firewall Approach for the Regression Testing of Object-Oriented Software," in Software

Quality Week, San Francisco, 1997

[32] White, L., Almezen, H., and Sastry, S., "Firewall Regression Testing of GUI Sequences and Their Interactions," International

Conference on Software Maintenance, Amsterdam, The Netherlands, 2003, pp. 398-409.

[33] Rothermel, G. and Harrold, M., "Analyzing regression test selection techniques," IEEE Trans. on Software Engineering, 22(8),

1996, pp.529-551.

[34] Bible, J., Rothermel, G., and Rosenblum, D., "A Comparative Study of Course- and Fine-Grained Safe Regression Test-

Selection Techniques," ACM Transactions on Software Engineering and Methodology, 10(2), 2001, pp. 149-183.

[35] M. Skoglund and P. Runeson. A Case Study of The Class Firewall Regression Test Selection Technique on a Large Scale

Distributed Software System

[36] M. Skoglund and P. Runeson Improving Class Firewall Regression Test Selection By Removing The Class Firewall.

International Journal of Software Engineering and Knowledge Engineering Vol. 17, No. 03, pp. 359-378 (2007)

[37] L. White, K. Jaber, Brian Robinson and Václav Rajlich (2008) firewall for regression testing: an experience report Journal of

Software Maintenance and Evolution: Research and Practice November 2008

[38] Musa, S., Sultan, A. B. M., Ghani, A. B., & Baharom, S. (2015). Software regression test case prioritization for object-oriented

programs using genetic algorithm with reduced-fitness severity. Indian Journal of Science and Technology, 8(30), 1-9.

[39] Musa, S., Sultan, A. B. M., Abdul Ghani, A. A. B., & Baharom, S. (2014). Regression Test Case Selection & Prioritization

Using Dependence Graph and Genetic Algorithm. IOSR Journal of Computer Engineering, 4(3), 2278-661.
Transactions of the Nigerian Association of Mathematical Physics Volume 14, (January -March., 2021), 155–158

http://www.ijert.org/
http://www.ijert.org/
http://dx.doi.org/10.1145/295029

