
143 

 

Transactions of the Nigerian Association of Mathematical Physics 

Volume 14, (January - March, 2021 Issue), pp143 –154 

© Trans. of NAMP 

 

ON THEORETICAL STUDY OF RAYLEIGH-EXPONENTIATED ODD GENERALIZED-X 

FAMILY OF DISTRIBUTIONS 

 

A. Yahaya and S. I. S. Doguwa 
 

Department of Statistics, Ahmadu Bello University, Zaria, Nigeria 

 

Abstract 

Over the years, several attempts were made by many researchers, to improve 
the goodness-of-fit of numerous classical probability distributions by inducing 
additional parameters aimed at enhancing their flexibility in describing 
datasets from diverse fields of human endeavour. In this article, a new variant 
of T-Exponentiated Odd Generalized-X family of distributions introduced in an 
earlier research is presented. The new variant titled Rayleigh-Exponentiated 
Odd Generalized-X family becomes what it is, when the variable T follows 
Rayleigh distribution. Some important functions comprising the cumulative 
distribution, probability density, survival function and the hazard function of 
the new sub-family are presented. Other vital derivations include moments, 
moment generating function, quantile function, entropy and function of order 
statistics. Furthermore, the proposed sub-family is shown to belong to the 
Exponentiated-G family of distributions. The method of maximum likelihood is 
used to derive estimates of the unknown parameters; after which parameter 
asymptotic confidence bounds were also obtained. 

 

Keywords: T-X family, Exponentiated-G family, Parameter induction, Order statistics, Maximum 

likelihood Estimation 
 

1. Introduction  

Many challenging problems abound in diverse fields of human endeavour cannot be adequately handled by well-known 

conventional probability distributions. In an attempt to enhance the capability of these classical probability distributions 

and as well improve their goodness-of-fit ability in describing different datasets from different walks of human life; many 

researchers developed new compound distributions either through induction of one or more parameters or via hybridization 

of two or more probability models. Some of the most notably older studies in this regard include Pearson [1] who 

introduced Differential Equation Technique; Burr [2] who proposed another system of generalizing probability distributions 

based on Pearson’s DE approach; Johnson [3] who pioneered the transformation (translation) method of generating new 

probability distributions. The quantile function technique was earlier worked upon by Hastings et al. [4] and much later by 

Tukey [5] for the development of Lambda distribution. Azzalini [6] studied skew-distribution techniques; Mudholkar and 

Srivastava [7] developed exponentiated Weibull family of distribtuions. While Marshall and Olkin [8] visualized the art of 

generalizing probability distributions from lifetime distribution perspective, Gupta et al. [9] worked on exponentiated-G 

family of distributions. 
 

Some fairly recent and notable researches include Alzaatreh et al. [10] who introduced the T-X family of distributions; 

Alzaghal et al. [11] who introduced exponentiated T-X family of distributions. On the other hand, Bourguignon et al. [12] 

introduced Weibull-G family;  Tahir et al. [13] worked on Poisson-X family; Yahaya and Abba [14] presented Odd 

Generalized Exponential Inverse-Exponential distribution, Ieren and Yahaya [15] worked on two Lomax-based probability 

distributions, and Falgore and Doguwa [16] studied the properties of New Weibull distribution. 
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Recently, Yahaya [17] proposed T-Exponentiated Odd Generalized-X family of distributions using an exponentiated odd 

ratio of the distribution function of a (baseline) random variable X while utilizing the novel idea introduced in Alzaatreh et 

al. [10]. According to Yahaya [17]; a new CDF   | , ,F x  


   can be obtained as: 

    
 

   
,

,

( )
| , ,

( )

M x

l

G x
F x b t dt B M x B B T

G x

 

 


   

 
        

  






 



                  (1) 

while the corresponding PDF obtainable from equation (1) is given by: 

      
2

1

,
| , , ( )f x g x G G x b M x x

 


 





      

      
             (2) 

Where α is a nonnegative scale parameter  


 ;  G x
  and  g x

  are the respective CDF and PDF of the random 

variable X indexed by parameter space,  ,  ,
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. While  B t
  and  b t

  are the 

respective CDF and PDF of the random variable T indexed by parameter vector  . l is the lower limit within the domain 

of T. 

Now, assuming T is a Rayleigh distributed random variable; then the T-Exponentiated Odd Generalized-X family of 

distributions proposed earlier reduces to Rayleigh-Exponentiated Odd Generalized-X (Rayleigh-EOG-X) family; and any 

variable X that conforms to this new family can be regarded as Rayleigh-EOG-X random variable. Henceforth, this newly 

proposed family, its applications, estimation and simulations remain the focal point of this article. 

 

2. The Rayleigh-EOG-X Family of Distributions  

Let  0,T    be a Rayleigh distributed random variable indexed by parameter 0   having CDF and PDF respectively 

given by

2
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 with  1p   parameters; equation (1) which gives the CDF of 

the new Rayleigh-EOG-X family of distributions having  2p   parameters is given by: 
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while the corresponding PDF obtainable from equation (2) is given by: 
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Where ( )G x


and ( )g x


represent the CDF and PDF of the baseline random variable X indexed by a p-parameter vector 

 1 2
, , ,

p
    . 

The Rayleigh-EOG-X family can be interpreted as follows: suppose the random variable T represents a (lifetime) variable 

aimed at defining a certain stochastic phenomenon via the CDF  G x



 for some  > 0. Furthermore, if we let  ,

H x
   to 

signify the risk (odds ratio) that a certain component ceases to operate or expires at some time, say x; then the variability of 

this odds ratio can be modelled by utilizing a Rayleigh probability model, R


 as in: 
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( )
; , ,

( )

G x
P X x P X H x R F x

G x



  
 

 
       

  








which gives the same relation as found in equation (4) – the CDF of 

Rayleigh-EOG-X family of distributions. The Rayleigh-EOG-X family can be shown to belong to an exponentiated-G 

family of distributions due to Gupta et al. [9] through the following propositions: 

 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 14, (January -March., 2021), 143–154 



145 

 

On Theoretical Study of Rayleigh…                       Yahaya and Doguwa                          Trans. Of NAMP 

 

Proposition 1: Let X be any nonnegative random variable having respective CDF and PDF denoted as ( )g x


 and ( )G x


 

indexed by p-parameter vector  1 2
, , ,

p
    ; then the PDF of Rayleigh-EOG-X family of distributions can be 

represented as: 
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Proof:  

The PDF of Rayleigh-EOG-X family of distributions given in equation (4) can be rewritten as: 
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By utilizing power series expansions, one can express 
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Thus, equation (6) becomes: 
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By utilizing binomial expansions, one can write  
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By substituting equation (9) into (8); then simplifying the resultant expression, equation (6) becomes: 
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represents the PDF of exponentiated-G distribution 

with power parameter c. 

Proposition 2: Let X be any nonnegative random variable having respective CDF and PDF denoted as ( )g x


 and ( )G x


 

indexed by p-parameter vector  1 2
, , ,

p
    ; then the CDF of Rayleigh-EOG-X family of distributions can be 

represented as: 
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Proof:  

Going by the relation that    F x f x dx





  ; one can then write equation (3) as: 
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But one can write  
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By using integration by parts, equation (13) simplifies to: 
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After further simplifications and rearrangements of like terms, equation (14) becomes: 
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Hence, equation (12) can, finally, be written as: 
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represents the CDF of exponentiated-G distribution with power 

parameter c. 

 

2.1 Checking the validity Rayleigh-EOG-X family of distributions  

It is important to ascertain whether the PDF of Rayleigh-EOG-X family of distributions as given in equation (4) constitute a 

valid probability density; and this can be achieved by making sure that its integral over the domain of X equates to unity. 

That is to say   | , , 1
Ray EO G X

f x dx 





 

  
  . 

Thus, 

      

2

( )

3
2 ( )2 1

0 0

| , , ( )

G x

G x

Ray EO G X
f x dx g x G x G x e dx







 
  

    
 

   


  
  





   
                (17) 

Let

2

( )

2 ( )

G x

G x

y e





   
 
  





; then 
   

3

2 1

( )dy G x
dx

g x G x








 
 




 

. Furthermore, as 0; 0x y   and as ;x y    . 

Thus, equation (17) can be rewritten as: 

      
   

3

3
2 1

2 1

0 0 0

( )
| , , ( ) 1

y y

Ray EOGX

G x
f x dx g x G x G x e dy e dy

g x G x



 


  



  


  

 

 
 

    
   



   

 

   

Hence, the PDF of Rayleigh-EOG-X family of distributions is a valid PDF as required. 

 

2.2 Survival and Hazard rate functions of Rayleigh-EOG-X Family of Distributions 

The survival function of Rayleigh-EOG-X family of distributions is given by: 
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The hazard rate function of Rayleigh-EOG-X family of distributions is given by: 
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3. Properties of Rayleigh-EOG-X Family of Distributions  

In this section, some of the properties of Rayleigh-EOG-X family of distributions will be derived. Some of these properties 

comprise moments, moment generating function, quantile function, Entropy measures, and distributions of Order Statistics. 

 

3.1 Moments  

The rth moment, say  r
E x  of a random variable X that follows Rayleigh-EOG-X family of distributions can be obtained 

through the relation: 
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3.2 Moments Generating Function  

The moment generating function, say  X
M t  of a random variable X that follows Rayleigh-EOG-X family of distributions 

can be obtained through the relation: 
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Where 
r

   is the rth moment as defined earlier in equation (20) 

 

3.3 Quantile Function  

Proposition 3: The quantile function of Rayleigh-EOG-X family, denoted as  
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Proof: 

Consider a random variable Z having CDF F(Z), the quantile function,   | 0 1
Z

Q p p  
 

 can be obtained via the relation: 
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Hence from equation (23), in relation to our variable X; while utilizing equation (3), one can write:  
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Upon simplifying equation (24), it can be deduced that: 
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Where (.)
X

Q  represents the quantile function of the random variables X. 

Consequently, by setting p = 
1
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1
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3.4 Shannon Entropy  

Proposition 4: The Shannon entropy of Rayleigh-EOG-X family, denoted as 
R ayleigh E O G X

X


 

 is given by: 
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Where  
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Proof: 

The Shannon entropy of any given PDF, say f(Z) of a random variable, Z is given by:  Z
E log f Z   
 

. Thus, for a 

random variable, X ~ Rayleigh-EOG-X; the Shannon entropy is: 
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Thus, by using equation (4), one can write equation (31) as: 
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Thus equation (32) becomes: 
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After some algebraic simplifications, equation (34) becomes: 
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Hence, equation (35) can be, finally, written as: 
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Where  
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3.5 Order Statistics  

Given 
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Thus, based on the foregoing, the PDF of the ith order statistic, 
 :i n

X  of Rayleigh-EOG-X, can be captured in the following 

proposition: 
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Proof: 

Based on equation (37), the PDF of the ith order statistic
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X  of Rayleigh-EOG-X family can be written as: 
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By utilizing power series expansion equations (39) becomes: 
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By utilizing Binomial & power series expansions:    
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Corollary 5.1: The PDF of the 1st (minimum) order statistic
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X  of Rayleigh-EOG-X family is given by: 
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Proof: The proof follows from Proposition 5 for i = 1 and 
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Corollary 5.2: The PDF of the nth (maximum) order statistic
 :n n

X  of Rayleigh -EOG-X family is given by: 
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Proof: The proof follows from Proposition 6 for i = n and        
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3.6 Parameter Estimation and ACBs for Rayleigh-EOG-X Family of Distributions  

This section discusses the MLE for the parameters of the proposed family as well as ACBs for such parameters that can be 

utilized in interval estimation and tests of statistical hypotheses.  

 

3.6.1 MLE for Rayleigh-EOG-X Family  
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The corresponding log-likelihood function,  l  can be obtained from equation (45) as: 
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The ML estimators of the parameters that maximize the likelihood function (equation 45), can be obtained by 

differentiating the log-likelihood function (equation 46) with respect to the unknown  2r   parameters,  , ,
T

   . By 

so doing, we get the following nonlinear system of equations: 
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For the parameters of the baseline distribution, the associated gradients can be obtained through: 
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On setting the nonlinear equations (47), (48) and (49) to zero and solving them simultaneously, one obtains the estimates 

 ˆˆ ˆ ˆ, ,
T

   of the unknown parameters: 
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Due to the complexity inherent in the above nonlinear equations, closed-form analytical solutions cannot be obtained; 

however, some iterative optimization techniques such as Newton-Raphson, Particle Swarm Optimization, Simulated 

Annealing and Genetic Algorithms can be used to obtain numerical solutions of the parameter estimates that will be found 

to maximize the likelihood function based on some given datasets. 

 

3.6.2 ACB for parameters of Rayleigh-EOG-X Family  

The ACB for the  2r   unknown parameters  , and    of the Rayleigh-Exponentiated Odd Generalized X sub-family 

of distributions can be utilized and would be found very useful in interval estimation and statistical test of hypotheses. In 

order to obtain these bounds; we’ve to (first) determine the asymptotic variance-covariance matrix     of the estimators 

{which is square of order    2 2r r   
  } from the inverse of the Fisher Information matrix  

1
I


 
 

 , given by: 

Table 1: Fisher Information Matrix for Rayleigh-EOG-X family 
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From the foregoing Fisher Information matrix in Table (1), it can be observed that, its elements constitute the negatives of 

the second derivatives of the log-likelihood function with respect to the unknown parameters. These elements are 

obtainable: 
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It is noteworthy to state that, when the sample size gets larger  . .i e n   , the distribution of the vector of parameter 

estimates,  ˆˆ ˆ ˆ, ,
T

   , is approximated by a multivariate normal distribution with zero mean vector [of order  2 1r   ] 

and a variance-covariance matrix given by the inverse of the Fisher information matrix. 

Based on the foregoing, one can derive approximate confidence intervals for the unknown parameters of the new 

distribution. For instance, one can construct  1 100%  approximate confidence intervals for the unknown parameters 

 , ,
T

    using the information matrix as follows: 
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Where 
1

2

Z
 

 
 

is the upper 
2

th

 
 
 

percentile of the standard normal distribution. 

4 Conclusion  

In this article, a new probability distribution generator titled Rayleigh-Exponentiated Odd Generalized-X family of 

distributions was proposed. All important functions of the proposed family such as distribution function, probability density 

function, survival function, and hazard rate function were derived. It was further established that, the proposed family 

belongs to the Exponentiated–G class of distributions introduced in earlier research. Some important properties of the new 

family including moments, moment generating function, quantile function, entropy as well as functions of order statistics 

were obtained. The method of maximum likelihood was used to estimate the parameters of the new family and the 

functions for obtaining the Asymptotic Confidence Bounds of the parameters were provided. It was further demonstrated 

how the asymptotic confidence bounds can be used to obtain interval estimates of the parameters of the proposed family. 
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