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Abstract 
 

In this paper we present a deterministic nonlinear model which provides 

mathematical and epidemiological insights to the influence of metapopulation 

paradigm on Schistosomiasis transmission dynamics with variations in available 

control measures between two communities 

The qualitative properties of the model are rigorously analyzed and thresholds for 

Schistosomiasis control and possible eradication was established. Local Asymptotic 

Stability (LAS) result of equilibrium is established. 
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1.0  Introduction 

Schistosomiasis is one of the most prevalent Neglected Tropical Diseases (NTDs) which are a diverse group of tropical 

ulcerations (infections) that are most common in very poor populations in emerging nations of Africa, Asia, and some part 

of the Americas. The NTDs affects over one billion people in the world over and about 90 percent of the entire disease load 

occurred in Africa.  

Based on a 2011 report, it was estimated that about 243 million persons live in high risk locations of Schistosomiasis in 

about 78 countries of the world [1]. In 2012, the figure of those exposed to S. Haematobium were approximately 436 

million persons in sub-Sahara Africa and about 112 million infected with the disease [2]. Also, a global report in 2012 

revealed that about 393 million humans were at high risk to S. Mansoni with about 54 million already infected [1]. 

According to current world reported, Nigerian ranks number one in terms of incidence and prevalence of Schistosomiasis in 

the world [3]. Records show that an estimated 29 million Nigerians (with about 16 million being children) were infected 

with Schistosomiasis [4],[5]. 
Several Mathematical Models for Schistosomiasis transmission dynamics have been formulated since 1973 as seen in [6] - [25]. 

Although these models have indeed brought great understanding into schistosome dynamics, none of them has investigated the influence 

of the metapopulation paradigm on the transmission dynamics of Schistosomiasis to the best of our knowledge. 

Introducing metapopulation to Schistosomiasis transmission dynamics and qualitatively analyzing the formulated model is 

the core of this paper. Typically, a patch may represent a city, a village, or a biological habitat. A full understanding of the 

effect of movement on the geographical spread of infection between patches can definitely improve disease control and 

prevention measures. Firstly, a single patch model is introduced and subsequently extended to incorporate another patch 

and which will have parameters for the short term migration of persons between the patches. The movement in this 

metapopulation model is restricted to the human subpopulation where the susceptible, latently infected and infected humans 

move between the patches. This movement follows the Lagrangian approach, as seen in the work of [26]. 

 
Fig 1.1. Schematic description of movement linking two patches [26]. 
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where 𝑝12 and 𝑝21 respectively denote movement of individuals from patch 1 to 2 and from patch 2 to 1. However, in this 

work we denote the movement from and to the susceptible, latently infected and infected compartments by 𝜂𝑖𝑗, 𝑎𝑖𝑗  and 𝑏𝑖𝑗  

respectively, where ij denote movement from patch i to j.  

In this paper, we focus on formulating a non-linear coupled deterministic mathematical model which will describe the 

disease dynamics for Schistosomiasis in a 2- patch population setting and mathematically analyze the formulated model. 

This dynamic is studied in two patches, where movement is only allowed in all the human subpopulations in both patches. 

The forces of infections for our formulated model (for both human and snail populations in the patches) are modified by 

introducing control parameters that seeks to prevent the interactions between humans and Cercariae; between Snail and 

Miracidia on the other hand.  

 

2.0 Formulating the Metapopulation Schistosomiasis model 

In formulating this model, we make the assumption that the entire population is homogeneous, well-mixed and all 

individuals have equal chances of being infected and that the number of effective contacts (resulting in an infection) is 

assumed to depend on the frequency of contacts between susceptible humans and Cercariae infected water [27], [28]. The 

total population for the metapopulation Schistosomiasis model is partitioned into sixteen non-overlapping compartments 

comprising of two patches; patches 1 and 2. The compartments for the models are: susceptible humans in patch 𝑖 (𝑆ℎ𝑖), 

latently infected or exposed humans in patch 𝑖 (𝐸ℎ𝑖), infected humans in patch 𝑖 (𝐼ℎ𝑖), Miracidia concentration in patch 𝑖 

(𝑀𝑖), population of uninfected Snails in patch 𝑖 (𝑈𝑖), latently-infected Snails in patch 𝑖 (𝐿𝑖), patent infected Snails (not yet 

releasing Cercariae) in patch 𝑖 (𝐼𝑠𝑖) and free swimming Cercariae ready to enter human skin in patch 𝑖 (𝐶𝑖), where 𝑖 = 1,2. 

From the above, the total human population at any time 𝑡, is given by 

𝑁(𝑡) =∑(

2

𝑖=1

𝑆ℎ𝑖(𝑡) + 𝐸ℎ𝑖(𝑡) + 𝐼ℎ𝑖(𝑡)) 

At any time 𝑡, influx of persons into the human populations (through birth or immigration) in both patches are assumed to 

occur only through recruitment into the susceptible human populations in both patches at a rate 𝛬ℎ𝑖 . The human populations 

in both patches decreases as susceptible humans interact with Cercariae (larva) by their activities in water bodies where 

these larvae have been deposited by a specific species of Snails and this results in humans being infected with the parasite; 

Schistosome which results in Schistosomiasis infection at a rate 𝜆ℎ𝑖; which is referred to as the force of infection. This is 

given by: 

𝜆ℎ𝑖 = 𝛽ℎ𝑖
(𝐼 − 𝜙𝜉𝑖)𝐶𝑖
𝐶0 + 휀𝐶𝑖

, 

and 𝛽ℎ𝑖  is the rate at which free swimming Cercariae enters the bodies (where it complete its cycle of developing into full 

blown Schistosomiasis) of susceptible humans in patch 𝑖 as a result of the activities of humans in a Cercariae laden water, 

where we assume that uninfected humans become tainted by coming in contact with Cercariae in infected waters [10]. The 

parameter 𝜙 is the efficacy of control measures in the human populations which is assumed to be the equal in the two 

patches and 𝜉𝑖 is the availability of control measures in the human populations in patch 𝑖. The availability of these control 

measures in the patches is largely dependent on a number of factors like awareness of individuals about the existence of 

these measures, government interventions and commitments, accessing these measure and others. The parameter 𝜙 and 𝜉𝑖 
lies in the interval 0 ≤ 𝜙 ≤ 1 and 0 ≤ 𝜉𝑖 ≤ 1, implying that 𝜙 and 𝜉𝑖 ranges from 0% to 100%. The parameter 𝐶0 is the 

saturation constant for Cercariae in both patches and 휀 is the growth velocity constraint of Cercariae relative to increased 

infection in both patches. When the parasite is not present in both patches, the practical reaction of the susceptible 

populations in both patches to the pathogen is given by 𝛽ℎ𝑖
(𝐼−𝜙𝜉𝑖)𝐶𝑖𝑆ℎ𝑖

𝐶0+𝜀𝐶𝑖
. This reaction refers to the density change of the 

susceptible populations in both patches per unit time per pathogen as the uninfected populations density is altered [10]. We 

assume that recovery from Schistosomiasis does not confer any form of immunity; so recovered individuals becomes 

susceptible at the rate 𝛾ℎ𝑖  in patch 𝑖, which is of course an increase to the susceptible populations in both patches. The 

susceptible human populations in both patches are further depleted as a result of natural mortality rate, 𝜇ℎ, and for the sake 

of simplicity and for the fact that epidemiological data are released country by country and does not vary from community 

to community within the same geographical location, we assume that this rate is the same for all human epidemiological 

classes in both patches since the patches are assumed to be relatively close (within the same geographical location) and that 

the migration only take place in the human classes. The susceptible human population in patch 1 is decreased at a rate 𝜂12 

(migration of susceptible humans from patch 1 to 2), which is a plus to the susceptible population in patch 2. Also, the 

susceptible population in patch 1 is increased at a rate 𝜂21 (migration of susceptible humans from patch 2 to 1), which is a 

decrease to the susceptible population in patch 2. Thus we have 
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𝑑𝑆ℎ1
𝑑𝑡

= 𝛬ℎ1 − 𝜆ℎ1𝑆ℎ1 + 𝛾ℎ1𝐼ℎ1 − 𝜇ℎ𝑆ℎ1 − 𝜂12𝑆ℎ1 + 𝜂21𝑆ℎ2 

and 
𝑑𝑆ℎ2
𝑑𝑡

= 𝛬ℎ2 − 𝜆ℎ2𝑆ℎ2 + 𝛾ℎ2𝐼ℎ2 − 𝜇ℎ𝑆ℎ2 − 𝜂21𝑆ℎ2 + 𝜂12𝑆ℎ1 

respectively for patches 1 and 2. 

Newly infected humans with Schistosomiasis in each patch (𝜆ℎ𝑖𝑆ℎ𝑖) are assumed to advance in their infection and 

subsequently progress to the class of latently infected humans (𝐸ℎ𝑖) in their respective patches per unit time. As the 

infection grows stronger and the symptoms of Schistosomiasis become more glaring, the population of latently infected 

humans with Schistosomiasis is depleted at a rate 𝜅ℎ𝑖 , which is the progression rate from the latently infected class to 

infectious class in patch 𝑖. Since individuals are free to move within the population (within and between patches), the 

population of latently infected individuals in patch 1 is further reduced at the rate 𝑎12 (migration rate of latently infected 

humans from patch 1 to 2), and the population of latently infected individuals in patch 2 is increased at this rate. 

Furthermore, the population of latently infected individuals in patch 1 is increased at a rate 𝑎21 (migration rate of latently 

infected humans from patch 2 to 1), while the population of latently tainted individuals in patch 2 is reduced at this rate. 

The population of persons latently infected with Schistosomiasis in both patches is depleted due to natural death, (𝜇ℎ). The 

differential equations for the latently infected individuals for patches 1 and 2 are respectively given by: 
𝑑𝐸ℎ1
𝑑𝑡

= 𝜆ℎ1𝑆ℎ1 − (𝜅ℎ1 + 𝜇ℎ + 𝑎12)𝐸ℎ1 + 𝑎21𝐸ℎ2 

and 
𝑑𝐸ℎ2
𝑑𝑡

= 𝜆ℎ2𝑆ℎ2 − (𝜅ℎ2 + 𝜇ℎ + 𝑎21)𝐸ℎ2 + 𝑎12𝐸ℎ1 

The population of individuals infected with Schistosomiasis in patch 𝑖 (𝐼ℎ𝑖) is increased due to the influx of latently infected 

individuals in patch 𝑖 (𝐸ℎ𝑖) who have progressed in their infection at a rate 𝜅ℎ𝑖 . Slight or moderate movement of infected 

individuals from one patch to another in search of better medical facilities or better amenities or means of livelihood in that 

sick state can cause a depletion in one patch and an increase in the other. The parameter 𝑏12 is the rate at which infected 

individuals migrate from patch 1 to 2, which is a reduction in the infected class in patch 1 and an increase in the infected 

population in patch 2 while the infected human population in patch 2 is reduced at a rate 𝑏21 (movement rate of infected 

humans from patch 2 to 1), and the infected human population in patch 1 is increased at this rate. The infected humans 

population in patch 𝑖 is again reduced for the following reasons: those treated of Schistosomiasis becomes susceptible and 

move to the susceptible class (since recovery does not guarantee immunity) at a rate 𝛾ℎ𝑖; individuals die from the infection 

at a rate of 𝛿ℎ𝑖 (infection induced death) and natural mortality rate 𝜇ℎ. Thus we have, 
𝑑𝐼ℎ1
𝑑𝑡

= 𝜅ℎ1𝐸ℎ1 − (𝛾ℎ1 + 𝛿ℎ1 + 𝜇ℎ + 𝑏12)𝐼ℎ1 + 𝑏21𝐼ℎ2 

and 
dIh2
dt

= κh2Eh2 − (γh2 + δh2 + μh + b21)Ih2 + b12Ih1 

respectively for patches 1 and 2. 

The pathogenesis of Schistosomiasis is incomplete without man’s interaction with water bodies around the patches. There 

is no direct interaction between human and the intermediate host; the fresh water Snail. The Snail just serve as a host for the 

free swimming Miracidia larva to metamorphose into a another larva called Cercariae that can infect humans once humans 

come in contacted with Cercariae laden water bodies. 

By the activities of infected individuals around water bodies in the patches, a fraction of eggs (Schistosoma spp) is released 

from the bodies of infected humans in both patches with the poo or urine and enters fresh water where they immediately 

hatch into liberated swimming thread-like larva called Miracidium at the rate 𝜃𝑀𝑖  in patch i. These Miracidia are supposed 

to find a suitable Snail species to infect, otherwise it dies naturally at the rate 𝜇𝑀 in both patches; this is a reduction to the 

class of Miracidia . Natural mortality for Miracidium is assumed to be same in both patches. Thus we have 
𝑑𝑀1
𝑑𝑡

= 𝜃𝑀1𝐼ℎ1 − 𝜇𝑀𝑀1 

and 
𝑑𝑀2

𝑑𝑡
= 𝜃𝑀2𝐼ℎ2 − 𝜇𝑀𝑀2 

respectively for patches 1 and 2. 

Now, to model the dynamics of the intermediate host; the fresh water Snail. We assume that Snails infected by Miracidia, 

by reason of castration, do not reproduce and that periodic and climatic variations have no effect on the population of Snails  
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and contact arrangements (Chiyaka and Garira, 2009). We also assume that the Snails do not travel between patches and we 

presume that the entire Snail populace in the freshwater environment at time t is given by 𝑁𝑠(𝑡) and it is broken down into 

the jointly exclusive classes of Uninfected Snails in patch 𝑖 (𝑈𝑖(𝑡)), latently-infected Snails in patch 𝑖 (𝐿𝑖(𝑡)) and Patent 

infected Snails penetrated with Miracidia (not yet releasing Cercariae) in patch 𝑖 (𝐼𝑠𝑖(𝑡)), where 

𝑁𝑠(𝑡) = 𝑈𝑖(𝑡) + 𝐿𝑖(𝑡) + 𝐼𝑠𝑖(𝑡). 

Fresh water Snails of the specific species are assumed to come into the entire Snail populations in both patches only 

through recruitment into the susceptible Snail population in patch 𝑖 at the rate 𝛬𝑠𝑖 . The force at which susceptible fresh 

water Snails are penetrated by Miracidia in patch i is given by 

𝜆𝑠𝑖 = 𝛽𝑠𝑖
(𝐼 − 𝜋𝜈𝑖)𝑀𝑖

𝑀0 + 휀𝑀𝑖
, 

where 𝛽𝑠𝑖 is the rate at which Miracidia penetrates uninfected fresh water Snails in patch 𝑖. 𝜋 is the efficacy of control 

measures in the aquatic environment which is intended to limit the metamorphosis of schistosome eggs into free swimming 

Miracidia larvae which is capable of infecting the fresh water Snail and the efficacy is assumed to be the same in both 

patches. The parameter 𝜈𝑖  is the availability of these control measures in the aquatic environment in patch 𝑖. 𝜋 and 𝜈𝑖  lie in 

the interval 0 ≤ 𝜋 ≤ 1 and 0 ≤ 𝜈𝑖 ≤ 1, implying that 𝜋 and 𝜈𝑖  range from 0% to 100%. The parameter 𝑀0 is the constant 

of saturation for Miracidia in both patches and 휀 is the velocity growth limitation of Miracidia with the rise in infection in 

both patches. The Snail population decreases as susceptible Snails are penetrated by Miracidia (at the rate 𝜆𝑠1). The 

susceptible Snail population in patches 1 and 2 is further reduces due to the natural Snail mortality (𝜇𝑠). Hence the 

equations representing the dynamics of the uninfected/susceptible Snail populations in patches 1 and 2 are respectively 

given as 
𝑑𝑈1
𝑑𝑡

= 𝛬𝑠1 − 𝜆𝑠1𝑈1 − 𝜇𝑠𝑈1 

and 
𝑑𝑈2
𝑑𝑡

= 𝛬𝑠2 − 𝜆𝑠2𝑈2 − 𝜇𝑠𝑈2 

The population of latently infected Snails in patch 𝑖 (𝐿𝑖) is assumed to increase due to the inflow of the population of 

susceptible Snails penetrated by Miracidia at the rate 𝜆𝑠𝑖 . The population of latently infected Snail is reduced at a rate 𝜅𝑠𝑖; 

the rate at which latently tainted Snails penetrated with Miracidia become patently infected Snails (not yet releasing 

Cercariae) and natural snail mortality (𝜇𝑠). Thus, we have 
dL1
dt

= λs1U1 − (κs1 + μs)L1 

and 
𝑑𝐿2
𝑑𝑡

= 𝜆𝑠2𝑈2 − (𝜅𝑠2 + 𝜇𝑠)𝐿2 

respectively for patches 1 and 2. 

The population of infected Snails in patch 𝑖 (𝐼𝑠𝑖) is assumed to increase due to the progression of latently infected Snails at a 

rate 𝜅𝑠𝑖 . The population of infected Snail in patch 𝑖 is reduced at a rate 𝛿𝑠𝑖 ; which is the parasite induced death and natural 

Snail mortality (𝜇𝑠). Hence for patches 1 and 2 respectively, we have 
𝑑𝐼𝑠1
𝑑𝑡

= 𝜅𝑠1𝐿1 − (𝛿𝑠1 + 𝜇𝑠)𝐼𝑠1 

and 
𝑑𝐼𝑠2
𝑑𝑡

= 𝜅𝑠2𝐿2 − (𝛿𝑠2 + 𝜇𝑠)𝐼𝑠2 . 

The concentration of free swimming Cercariae (𝐶𝑖(𝑡)) in patch 𝑖 is increased by the released of free swimming Cercariae by 

infected Snails (ready to enter human skin) at the rate 𝜃𝐶𝑖  into the water bodies. We assume that the population decreases 

due to the natural Cercariae mortality (𝜇𝐶). Hence, 
𝑑𝐶1
𝑑𝑡

= 𝜃𝐶1𝐼𝑠1 − 𝜇𝐶𝐶1 

and 
dC2
dt

= θC2Is2 − μCC2 

Based on the assumptions above, the formulated metapopulation model for Schistosomiasis for two patches, which is a system of sixteen 

non-linear ordinary differential equations is given in system (2.1). A schematic representation/description (which is a graphic description 

of the movement of individuals between different compartments, the snail dynamics as well as the different stages in the pathogenesis of 

Schistosomiasis) of the system is given in Figure 2.1. The state variables as well as the parameters in the mathematical formulation are 

given in Tables 2.1 and 2.2, respectively. 
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𝑑𝑆ℎ1
𝑑𝑡

= 𝛬ℎ1 − 𝜆ℎ1𝑆ℎ1 + 𝛾ℎ1𝐼ℎ1 − 𝜇ℎ𝑆ℎ1 − 𝜂12𝑆ℎ1 + 𝜂21𝑆ℎ2 ,

𝑑𝐸ℎ1
𝑑𝑡

= 𝜆ℎ1𝑆ℎ1 − (𝜅ℎ1 + 𝜇ℎ + 𝑎12)𝐸ℎ1 + 𝑎21𝐸ℎ2 ,

𝑑𝐼ℎ1
𝑑𝑡

= 𝜅ℎ1𝐸ℎ1 − (𝛾ℎ1 + 𝛿ℎ1 + 𝜇ℎ + 𝑏12)𝐼ℎ1 + 𝑏21𝐼ℎ2 ,

𝑑𝑀1

𝑑𝑡
= 𝜃𝑀1𝐼ℎ1 − 𝜇𝑀𝑀1,

𝑑𝑈1
𝑑𝑡

= 𝛬𝑠1 − 𝜆𝑠1𝑈1 − 𝜇𝑠𝑈1,

𝑑𝐿1
𝑑𝑡

= 𝜆𝑠1𝑈1 − (𝜅𝑠1 + 𝜇𝑠)𝐿1,

𝑑𝐼𝑠1
𝑑𝑡

= 𝜅𝑠1𝐿1 − (𝛿𝑠1 + 𝜇𝑠)𝐼𝑠1 ,

𝑑𝐶1
𝑑𝑡

= 𝜃𝐶1𝐼𝑠1 − 𝜇𝐶𝐶1,

𝑑𝑆ℎ2
𝑑𝑡

= 𝛬ℎ2 − 𝜆ℎ2𝑆ℎ2 + 𝛾ℎ2𝐼ℎ2 − 𝜇ℎ𝑆ℎ2 − 𝜂21𝑆ℎ2 + 𝜂12𝑆ℎ1 ,

𝑑𝐸ℎ2
𝑑𝑡

= 𝜆ℎ2𝑆ℎ2 − (𝜅ℎ2 + 𝜇ℎ + 𝑎21)𝐸ℎ2 + 𝑎12𝐸ℎ1 ,

𝑑𝐼ℎ2
𝑑𝑡

= 𝜅ℎ2𝐸ℎ2 − (𝛾ℎ2 + 𝛿ℎ2 + 𝜇ℎ + 𝑏21)𝐼ℎ2 + 𝑏12𝐼ℎ1 ,

𝑑𝑀2

𝑑𝑡
= 𝜃𝑀2𝐼ℎ2 − 𝜇𝑀𝑀2,

𝑑𝑈2
𝑑𝑡

= 𝛬𝑠2 − 𝜆𝑠2𝑈2 − 𝜇𝑠𝑈2,

𝑑𝐿2
𝑑𝑡

= 𝜆𝑠2𝑈2 − (𝜅𝑠2 + 𝜇𝑠)𝐿2,

𝑑𝐼𝑠2
𝑑𝑡

= 𝜅𝑠2𝐿2 − (𝛿𝑠2 + 𝜇𝑠)𝐼𝑠2 ,

𝑑𝐶2
𝑑𝑡

= 𝜃𝐶2𝐼𝑠2 − 𝜇𝐶                                                                                (2.1) 

 

 

Figure 2.1. Schematic representation of a two patch metapopulation Schistosomiasis model. 

  
 

Table 2.1: Model Variables and Description 

Variables Description 

𝑆ℎ𝑖(𝑡) Susceptible individuals in patch 𝑖 

𝐸ℎ𝑖(𝑡) Latently tainted individuals in patch 𝑖 

𝐼ℎ𝑖(𝑡) Infected individuals in patch 𝑖 

𝑀𝑖(𝑡) Miracidia concentration in patch 𝑖 
𝑈𝑖(𝑡) Uninfected snails in patch 𝑖 
𝐿𝑖(𝑡) Latently-infected snails in patch 𝑖 
𝐼𝑠𝑖(𝑡) Tainted snails not yet releasing cercariae in patch 𝑖 

𝐶𝑖(𝑡) Free swimming Cercariae ready to enter human skin patch 𝑖. 
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Table 2.2: Model Parameters and Description 

Parameter Description 

𝜇𝑘(𝑘 = ℎ,𝑀, 𝑠, 𝐶) Natural death rate for the kth sub population. 

𝛬𝑘𝑖(𝑘 = ℎ, 𝑠) Recruitment rate for the kth sub population in patch 𝑖. 

𝛽𝑘𝑖(𝑘 = ℎ, 𝑠) Cercariae and Miracidia infectious rate respectively for the kth sub population in patch 𝑖. 

𝐶0 Saturation constant for Cercariae. 

𝑀0 Saturation constant for Miracidia. 

휀 Limitation of growth velocity of Cercariae and Miracidia. 

𝜅𝑘𝑖(𝑘 = ℎ, 𝑠) Progression rate from latent class to infectious classes in the kth sub population in patch 𝑖. 

𝛿𝑘𝑖(𝑘 = ℎ, 𝑠) Disease and parasite induced death respectively for humans and snails the kth sub 

population in patch 𝑖. 
𝛾ℎ𝑖 Recovery rate for humans in patch 𝑖 

𝜃𝑀𝑖  Rate at which egg produced by adult Schistosome hatch and develop to free swimming 

Miracidia in patch 𝑖. 
𝜃𝐶𝑖  Rate at which patent infected snails release cercariae in patch 𝑖. 

𝜂𝑖𝑗 Movement rate of susceptible individuals from patch 𝑖 to 𝑗. 

𝑎𝑖𝑗  Rate at which latently infected individuals move from patch 𝑖 to 𝑗. 

𝑏𝑖𝑗  Movement rate of infected individuals from patch 𝑖 to 𝑗. 

𝜙 Efficacy of control in the human population. 

𝜉𝑖 Availability of control in the human population in patch 𝑖. 
𝜋 Efficacy of control in the aquatic (Snail) environment. 

𝜈𝑖  Availability of control in the aquatic environment in patch 𝑖. 
 

3.0 Fundamental properties of the Metapopulation Schistosomiasis model 

In this section, we show that the state variables of the model are always non-negative and bounded for all time, 𝑡, since the 

model describes human and Snail populations, Miracidia and Cercariae concentrations which cannot be non-positive. We 

also showed that the orbits generated by the model (2.1) are positively invariant for all time, 𝑡. 
Theorem 3.1 

Let the initial data of the metapopulation Schistosomiasis model be given as 𝑋(0) ≥ 0, 

where: X(t)= (S_{h_1}(t), S_{h_2}(t), E_{h_1}(t), E_{h_2}(t), I_{h_1}(t), I_{h_2}(t), M_1(t), M_2(t), U_1(t), U_2(t), 

L_1(t), L_2(t), I_{s_1}(t), I_{s_2}(t), C_1(t), C_2(t)). Then the orbits X(t) of the metapopulation schistosomiasis model 

with non-negative initial conditions will always be non-negative for all time  𝑡 > 0. 
Proof: 

Let 𝑡1 = sup{𝑡 > 0: 𝑋(𝑡) ≥ 0 ∈ [0, 𝑡]}. Thus for 𝑡1 > 0, from the first equation of model (2,1), it follows 
𝑑𝑆ℎ1(𝑡)

𝑑𝑡
= 𝛬ℎ1 − (𝜆ℎ1 + 𝜇ℎ + 𝜂12)𝑆ℎ1(𝑡) + 𝛾ℎ1𝐼ℎ1(𝑡) + 𝜂21𝑆ℎ2(𝑡),                                     (3.1) 

Equation (3.1) can be rewritten as 

[
𝑑

𝑑𝑡
+ (𝜆ℎ1 + 𝜇ℎ + 𝜂12)]𝑆ℎ1(𝑡) ≥ 𝛬ℎ1 

which implies 
𝑑

𝑑𝑡
[𝑆ℎ1(𝑡)exp{(𝜇ℎ + 𝜂12)𝑡 + ∫ 𝜆ℎ1

𝑡

0

(𝜏)𝑑𝜏}] ≥ 𝛬ℎ1exp{(𝜇ℎ + 𝜂12)𝑡 + ∫ 𝜆ℎ1

𝑡

0

(𝜏)𝑑𝜏}. 

as a result, 

𝑆ℎ1(𝑡1)exp{(𝜇ℎ + 𝜂12)𝑡1 +∫ 𝜆ℎ1

𝑡1

0

(𝜏)𝑑𝜏} − 𝑆ℎ1(0) ≥ ∫ 𝛬ℎ1

𝑡1

0

[exp{(𝜇ℎ + 𝜂12)𝑦 +

∫ 𝜆ℎ1

𝑦

0

(𝜏)𝑑𝜏}]𝑑𝑦,

 

hence, 

𝑆ℎ1(𝑡1) ≥ 𝑆ℎ1(0)exp[−(𝜇ℎ + 𝜂12)𝑡1 −∫ 𝜆ℎ1

𝑡1

0

(𝜏)𝑑𝜏] + [exp{−(𝜇ℎ + 𝜂12)𝑡1 −

∫ 𝜆ℎ1

𝑡1

0

(𝜏)𝑑𝜏}]∫ 𝛬ℎ1

𝑡1

0

[exp{(𝜇ℎ + 𝜂12)𝑦 + ∫ 𝜆ℎ1

𝑦

0

(𝜏)𝑑𝜏}]𝑑𝑦 ≥ 0.
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Hence 𝑆ℎ1(𝑡) ≥ 0,  ∀ 𝑡 > 0. 

Considering equation 2 of model (2.1) 
𝑑𝐸ℎ1
𝑑𝑡

= 𝜆ℎ1𝑆ℎ1 − (𝜅ℎ1 + 𝜇ℎ + 𝑎12)𝐸ℎ1 + 𝑎21𝐸ℎ2 . 

It follows from that 
𝑑𝐸ℎ1
𝑑𝑡

≥ −(𝜅ℎ1 + 𝜇ℎ + 𝑎12)𝐸ℎ1 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 
𝐸ℎ1(𝑡1) ≥ 𝐸ℎ1(0)exp{−(𝜅ℎ1 + 𝜇ℎ + 𝑎12)𝑡1} > 0. 
Hence 𝐸ℎ1(𝑡) > 0 for all 𝑡 > 0. 

Consider the third equation of model (2.1) which is given as 
𝑑𝐼ℎ1
𝑑𝑡

= 𝜅ℎ1𝐸ℎ1 − (𝛾ℎ1 + 𝛿ℎ1 + 𝜇ℎ + 𝑏12)𝐼ℎ1 + 𝑏21𝐼ℎ2 . 

It follows from that 
𝑑𝐼ℎ1
𝑑𝑡

≥ −(𝛾ℎ1 + 𝛿ℎ1 + 𝜇ℎ + 𝑏12)𝐼ℎ1 , 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 
𝐼ℎ1(𝑡1) ≥ 𝐼ℎ1(0)exp{−(𝛾ℎ1 + 𝛿ℎ1 + 𝜇ℎ + 𝑏12)𝑡1} > 0. 

Hence 𝐼ℎ1(𝑡) > 0 for all 𝑡 > 0. 

Consider equation 4 of model (2.1) given as 
𝑑𝑀1
𝑑𝑡

= 𝜃𝑀1𝐼ℎ1 − 𝜇𝑀𝑀1. 

It follows from that 
𝑑𝑀1
𝑑𝑡

≥ −𝜇𝑀𝑀1, 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 
𝑀1(𝑡1) ≥ 𝑀1(0)exp{−𝜇𝑀𝑡1} > 0. 

Hence 𝑀1(𝑡) > 0 for all 𝑡 > 0. 
Consider equation 5 of model (2.1) given as 
𝑑𝑈1
𝑑𝑡

= 𝛬𝑠1 − (𝜆𝑠1 + 𝜇𝑠)𝑈1. 

It follows from that 
𝑑𝑈1
𝑑𝑡

≥ −(𝜆𝑠1 + 𝜇𝑠)𝑈1. 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 
𝑈1(𝑡1) ≥ 𝑈1(0)exp{−(𝜆𝑠1 + 𝜇𝑠)𝑡1} > 0. 
Hence 𝑈1(𝑡) > 0 for all 𝑡 > 0. 
Consider equation 6 of model (2.1) given as 
𝑑𝐿1
𝑑𝑡

= 𝜆𝑠1𝑈1 − (𝜅𝑠1 + 𝜇𝑠)𝐿1. 

It follows from that 
𝑑𝐿1
𝑑𝑡

≥ −(𝜅𝑠1 + 𝜇𝑠)𝐿1. 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 
𝐿1(𝑡1) ≥ 𝐿1(0)exp{−(𝜅𝑠1 + 𝜇𝑠)𝑡1} > 0. 
Hence 𝐿1(𝑡) > 0 for all 𝑡 > 0. 
Consider equation 7 of model (2.1) given as 
𝑑𝐼𝑠1
𝑑𝑡

= 𝜅𝑠1𝐿1 − (𝛿𝑠1 + 𝜇𝑠)𝐼𝑠1 . 

It follows from that 
𝑑𝐼𝑠1
𝑑𝑡

≥ −(𝛿𝑠1 + 𝜇𝑠)𝐼𝑠1 . 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 
𝐼𝑠1(𝑡1) ≥ 𝐼ℎ1(0)exp{−(𝛿𝑠1 + 𝜇𝑠)𝑡1} > 0. 
Hence 𝐼𝑠1(𝑡) > 0 for all 𝑡 > 0. 
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Consider equation 8 of model (2.1) given as 
𝑑𝐶1
𝑑𝑡

= 𝜃𝐶1𝐼𝑠1 − 𝜇𝐶𝐶1. 

It follows from that 
𝑑𝐶1
𝑑𝑡

≥ −𝜇𝐶𝐶1. 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 

𝐶1(𝑡1) ≥ 𝐶1(0)exp{−𝜇𝐶𝑡1} > 0. 
Hence 𝐶1(𝑡) > 0 for all 𝑡 > 0. 
Consider equation 9 of model (2.1) given as 
𝑑𝑆ℎ2

𝑑𝑡
= 𝛬ℎ2 − (𝜆ℎ2 + 𝜇ℎ + 𝜂21)𝑆ℎ2 + 𝛾ℎ2𝐼ℎ2 + 𝜂12𝑆ℎ1 .                                                (3.2) 

Equation (3.2) can be rewritten as 

[
𝑑

𝑑𝑡
+ (𝜆ℎ2 + 𝜇ℎ + 𝜂21)]𝑆ℎ2(𝑡) ≥ 𝛬ℎ2 

Which follows that 
𝑑

𝑑𝑡
[𝑆ℎ2(𝑡)exp{(𝜇ℎ + 𝜂21)𝑡 + ∫ 𝜆ℎ2

𝑡

0
(𝜏)𝑑𝜏}] ≥ 𝛬ℎ2exp{(𝜇ℎ + 𝜂21)𝑡 + ∫ 𝜆ℎ2

𝑡

0
(𝜏)𝑑𝜏}.(3.3) 

Equation (3.3) results to 

𝑆ℎ2(𝑡1)exp{(𝜇ℎ + 𝜂21)𝑡1 + ∫ 𝜆ℎ2
𝑡1
0

(𝜏)𝑑𝜏} − 𝑆ℎ2(0) ≥ ∫ 𝛬ℎ2
𝑡1
0

[exp{(𝜇ℎ + 𝜂21)𝑦 +

∫ 𝜆ℎ2
𝑦

0
(𝜏)𝑑𝜏}]𝑑𝑦,

  (3.4) 

Simplifying equation (3.4) gives 

𝑆ℎ2(𝑡1) ≥ 𝑆ℎ2(0)exp[−(𝜇ℎ + 𝜂21)𝑡1 −∫ 𝜆ℎ2

𝑡1

0

(𝜏)𝑑𝜏] + [exp{−(𝜇ℎ + 𝜂21)𝑡1 −

∫ 𝜆ℎ2

𝑡1

0

(𝜏)𝑑𝜏}]∫ 𝛬ℎ2

𝑡1

0

[exp{(𝜇ℎ + 𝜂21)𝑦 + ∫ 𝜆ℎ2

𝑦

0

(𝜏)𝑑𝜏}]𝑑𝑦 ≥ 0.

 

Hence 𝑆ℎ2(𝑡) > 0 for all 𝑡 > 0. 

Consider the tenth equation of model (2.1) , given below as 
𝑑𝐸ℎ2
𝑑𝑡

= 𝜆ℎ2𝑆ℎ2 − (𝜅ℎ2 + 𝜇ℎ + 𝑎21)𝐸ℎ2 + 𝑎12𝐸ℎ1 . 

It follows from that 
𝑑𝐸ℎ2
𝑑𝑡

≥ −(𝜅ℎ2 + 𝜇ℎ + 𝑎21)𝐸ℎ2 . 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 
𝐸ℎ2(𝑡1) ≥ 𝐸ℎ2(0)exp{−(𝜅ℎ2 + 𝜇ℎ + 𝑎21)𝑡1} > 0. 
Hence 𝐸ℎ2(𝑡) > 0 for all 𝑡 > 0. 

Consider the eleventh equation of model (2.1), given below as 
𝑑𝐼ℎ2
𝑑𝑡

= 𝜅ℎ2𝐸ℎ2 − (𝛾ℎ2 + 𝛿ℎ2 + 𝜇ℎ + 𝑏21)𝐼ℎ2 + 𝑏12𝐼ℎ1 . 

It follows from that 
𝑑𝐼ℎ2
𝑑𝑡

≥ −(𝛾ℎ2 + 𝛿ℎ2 + 𝜇ℎ + 𝑏21)𝐼ℎ2 . 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 
𝐼ℎ2(𝑡1) ≥ 𝐼ℎ2(0)exp{−(𝛾ℎ2 + 𝛿ℎ2 + 𝜇ℎ + 𝑏21)𝑡1} > 0. 

Hence 𝐼ℎ2(𝑡) > 0 for all 𝑡 > 0. 

Consider the twelfth equation of model (2.1), given below as 
𝑑𝑀2

𝑑𝑡
= 𝜃𝑀2𝐼ℎ2 − 𝜇𝑀𝑀2. 

It follows from that 
𝑑𝑀2

𝑑𝑡
≥ −𝜇𝑀𝑀2. 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 

𝑀2(𝑡1) ≥ 𝑀2(0)exp{−𝜇𝑀𝑡1} > 0. 
Hence 𝑀2(𝑡) > 0 for all 𝑡 > 0. 
Consider the thirteenth equation of model (2.1), given below as 
𝑑𝑈2
𝑑𝑡

= 𝛬𝑠2 − (𝜆𝑠2 + 𝜇𝑠)𝑈2. 
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It follows from that 
𝑑𝑈2
𝑑𝑡

≥ −(𝜆𝑠2 + 𝜇𝑠)𝑈2. 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 
𝑈2(𝑡1) ≥ 𝑈2(0)exp{−(𝜆𝑠2 + 𝜇𝑠)𝑡1} > 0. 
Hence 𝑈2(𝑡) > 0 for all 𝑡 > 0. 
Consider the fourteenth equation of model (2.1), given below as 
𝑑𝐿2
𝑑𝑡

= 𝜆𝑠2𝑈2 − (𝜅𝑠2 + 𝜇𝑠)𝐿2. 

It follows from that 
𝑑𝐿2
𝑑𝑡

≥ −(𝜅𝑠2 + 𝜇𝑠)𝐿2. 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 
𝐿2(𝑡1) ≥ 𝐿2(0)exp{−(𝜅𝑠2 + 𝜇𝑠)𝑡1} > 0. 

Hence 𝐿2(𝑡) > 0 for all 𝑡 > 0. 
Consider the fifteenth equation of model (2.1), given below as 
𝑑𝐼𝑠2
𝑑𝑡

= 𝜅𝑠2𝐿2 − (𝛿𝑠2 + 𝜇𝑠)𝐼𝑠2 . 

It follows from that 
dIs2
dt

≥ −(δs2 + μs)Is2 . 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 
𝐼𝑠2(𝑡1) ≥ 𝐼𝑠2(0)exp{−(𝛿𝑠2 + 𝜇𝑠)𝑡1} > 0. 
Hence 𝐼𝑠2(𝑡) > 0 for all 𝑡 > 0. 

And finally last equation of model (2.1), given as 
𝑑𝐶2
𝑑𝑡

= 𝜃𝐶2𝐼𝑠2 − 𝜇𝐶𝐶2. 

It follows from that 
𝑑𝐶2
𝑑𝑡

≥ −𝜇𝐶𝐶2. 

Integrating with respect to 𝑡 in [0, 𝑡1], yields 

𝐶2(𝑡1) ≥ 𝐶2(0)exp{−𝜇𝐶𝑡1} > 0. 
Hence 𝐶2(𝑡) > 0 for all 𝑡 > 0. 
From the above, we have thus shown that for the metapopulation Schistosomiasis model (2.1), 𝑋(𝑡) ≥ 0, where X(t)= 

(S_{h_1}(t), S_{h_2}(t), E_{h_1}(t),\\ E_{h_2}(t), I_{h_1}(t), I_{h_2}(t), M_1(t), M_2(t), U_1(t), U_2(t), L_1(t), L_2(t), 

I_{s_1}(t), I_{s_2}(t), C_1(t), C_2(t)). Hence the trajectories X(t) generated by the metapopulation Schistosomiasis model 

with non-negative initial data/conditions will always be non-negative for all time  𝑡 > 0. 
Next, we need to prove that each of the subpopulations: Humans, Miracidia, Snails and Cercariae (since we cannot lump all 

the subpopulations in one invariant set) are bounded and also determine the bound and finally show that the domains of 

these subpopulations are positively-invariant and attracts all the positive trajectories (there exist a unique solution to the 

initial value problem, and solution exists for all time) of the model (2.1) 

Theorem 3.2 

Let S_{h_1}(t), S_{h_2}(t), E_{h_1}(t), E_{h_2}(t), I_{h_1}(t), I_{h_2}(t), M_1(t), M_2(t), U_1(t) ,U_2(t), L_1(t), 

L_2(t), I_{s_1}(t), I_{s_2}(t), C_1(t), C_2(t) be trajectories of the system with initial conditions and the biological feasible 

region given by the set 𝒟 = 𝒟ℎ × 𝒟𝑀 × 𝒟𝑆 × 𝒟𝐶 ⊂ ℝ+
6 × ℝ+

2 × ℝ+
6 × ℝ+

2 ⊂ ℝ+
16 where: 

𝒟ℎ = {(𝑆ℎ1 , 𝑆ℎ2, 𝐸ℎ1 , 𝐸ℎ2 , 𝐼ℎ1 , 𝐼ℎ2) ∈ ℝ+
6 : 𝑁ℎ ≤

𝛬ℎ
𝜇ℎ
}

𝒟𝑀 = {(𝑀1, 𝑀2) ∈ ℝ+
2 : 𝑀 ≤

𝜃𝑀𝛬ℎ
𝜇𝑀𝜇ℎ

}

𝒟𝑆 = {(𝑈1, 𝑈2, 𝐿1, 𝐿2, 𝐼𝑠1 , 𝐼𝑠2) ∈ ℝ+
6 : 𝑁𝑆 ≤

𝛬𝑠
𝜇𝑠
}

𝒟𝐶 = {(𝐶1, 𝐶2) ∈ ℝ+
2 : 𝐶 ≤

𝜃𝐶𝛬𝑠
𝜇𝐶𝜇𝑠

}

 

is positively-invariant and attracts all the non-negative trajectories of model (2.1). 
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Proof 
To determine the bound for the human subpopulation, we add up the right hand side of the vector field for the human 

population in both patches in model (2.1), which is the rate of change of the total population described by the system and it 

is given by: 
𝑑𝑁ℎ

𝑑𝑡
= 𝛬ℎ1 + 𝛬ℎ2 − 𝜇ℎ𝑁 − (𝛿ℎ1𝐼ℎ1 + 𝛿ℎ2𝐼ℎ2).                                                                   (3.5) 

From (3.5), we have 
𝑑𝑁ℎ

𝑑𝑡
= 𝛬ℎ − 𝜇ℎ𝑁ℎ − 𝛿ℎ𝐼ℎ .                                                                                                    (3.6) 

From (3.6), it follows that 
𝑑𝑁ℎ

𝑑𝑡
≤ 𝛬ℎ − 𝜇ℎ𝑁ℎ.                                                                                                                (3.7) 

Equation (3.7) is a linear first order ODE with integrating factor given as 𝑒𝜇ℎ𝑡. Thus, we obtain 
𝑑𝑁ℎ

𝑑𝑡
𝑒𝜇ℎ𝑡 + 𝜇ℎ𝑁ℎ𝑒

𝜇ℎ𝑡 ≤ 𝛬ℎ𝑒
𝜇ℎ𝑡 .                                                                                           (3.8)    

Equation (3.8) can be rewritten as 

∫
𝑑𝑁ℎ
𝑑𝜏

𝑡

0

𝑒𝜇ℎ𝜏𝑑𝜏 ≤ 𝛬ℎ∫ 𝑒𝜇ℎ𝜏
𝑡

0

𝑑𝜏. 

Integrating and using the starting condition 𝑁ℎ(𝑡) = 𝑁ℎ(0), we obtain 

𝑁ℎ(𝑡)𝑒
𝜇ℎ𝑡 − 𝑁ℎ(0) ≤

𝛬ℎ
𝜇ℎ
(𝑒𝜇ℎ𝑡 − 1). 

Solving for 𝑁ℎ(𝑡) from , gives 

𝑁ℎ(𝑡) ≤ 𝑁ℎ(0)𝑒
𝜇ℎ𝑡 +

𝛬ℎ
𝜇ℎ
(1 − 𝑒𝜇ℎ𝑡). 

If 𝑁ℎ(0) ≤
𝛬ℎ

𝜇ℎ
, then 𝑁ℎ(𝑡) ≤

𝛬ℎ

𝜇ℎ
. Hence, the domain 𝒟ℎ is positively invariant under the flows of the system . Moreover, if 

𝑁ℎ(0) >
𝛬ℎ

𝜇ℎ
, then either the orbits enters the domain 𝒟ℎ in finite time or 𝑁ℎ(𝑡) asymptotically approaches 

𝛬ℎ

𝜇ℎ
 as 𝑡 → ∞. 

Thus, the domain 𝒟ℎ attracts all trajectories and no trajectory goes out of any boundary of 𝒟ℎ in ℝ+
6 . 

To determine the bound for the concentration of the Miracidia in both patches, we add up the right hand side of the vector 

field 𝑀1 and 𝑀2 in and it yields 
𝑑𝑀

𝑑𝑡
= 𝜃𝑀1𝐼ℎ1 + 𝜃𝑀2𝐼ℎ2 − (𝑀1 +𝑀2)𝜇𝑀 .                                                                    (3.9) 

From (3.9) , we have 
𝑑𝑀

𝑑𝑡
= 𝜃𝑀𝐼ℎ − 𝜇𝑀𝑀.                                                                                                     (3.10) 

From (3.10), it follows that, 
𝑑𝑀

𝑑𝑡
≤ 𝜃𝑀

𝛬ℎ

𝜇ℎ
− 𝜇𝑀𝑀.                                                                                                    (3.11)     

since 𝑁ℎ = 𝑆ℎ + 𝐸ℎ + 𝐼ℎ ≤
𝛬ℎ

𝜇ℎ
⇒ 𝐼ℎ ≤

𝛬ℎ

𝜇ℎ
. 

Equation (3.11) is a linear equation with integrating factor given as 𝑒𝜇𝑀𝑡. Thus, we obtain 
𝑑𝑀

𝑑𝑡
𝑒𝜇𝑀𝑡 + 𝜇𝑀𝑀𝑒

𝜇𝑀𝑡 ≤ 𝜃𝑀
𝛬ℎ

𝜇ℎ
𝑒𝜇𝑀𝑡 .                                                              (3.12) 

We can rewrite equation (3.12) as 

∫
𝑑𝑀

𝑑𝜏

𝑡

0

𝑒𝜇𝑀𝜏𝑑𝜏 ≤ 𝜃𝑀
𝛬ℎ
𝜇ℎ
∫ 𝑒𝜇𝑀𝜏
𝑡

0

𝑑𝜏. 

Integrating and using the initial condition 𝑀(𝑡) = 𝑀(0), we obtain 

𝑀(𝑡)𝑒𝜇𝑀𝑡 −𝑀(0) ≤
𝛬ℎ𝜃𝑀
𝜇ℎ𝜇𝑀

(𝑒𝜇𝑀𝑡 − 1). 

Solving for 𝑀(𝑡) from , gives 

𝑀(𝑡) ≤ 𝑀(0)𝑒𝜇𝑀𝑡 +
𝛬ℎ𝜃𝑀
𝜇ℎ𝜇𝑀

(1 − 𝑒𝜇𝑀𝑡). 

If 𝑀(0) ≤
𝛬ℎ𝜃𝑀

𝜇ℎ𝜇𝑀
, then 𝑀(𝑡) ≤

𝛬ℎ𝜃𝑀

𝜇ℎ𝜇𝑀
. Hence, the domain 𝒟𝑀 is positively invariant under the flow of the system . Moreover, 

if 𝑀(0) >
𝛬ℎ𝜃𝑀

𝜇ℎ𝜇𝑀
, then either the orbits enters the domain 𝒟𝑀 in finite time or 𝑀(𝑡) asymptotically approaches 

𝛬ℎ𝜃𝑀

𝜇ℎ𝜇𝑀
 as 𝑡 →

∞. Thus, the domain 𝒟𝑀 attracts all trajectories and no trajectory goes out of any boundary of 𝒟𝑀 in ℝ+
2 . 

For the bound of the Snail population, we add up the right hand side of the vector field of the Snail population in both 

patches in model and this yields 
𝑑𝑁𝑠

𝑑𝑡
= 𝛬𝑠1 + 𝛬𝑠2 + (𝑈 + 𝐿 + 𝐼𝑠)𝜇𝑠 − 𝛿𝑠1𝐼𝑠1 − 𝛿𝑠2𝐼𝑠2 .                                                 (3.13) 
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From (3.13), we have 
𝑑𝑁𝑠

𝑑𝑡
= 𝛬𝑠 − 𝜇ℎ𝑁𝑠 − 𝛿𝑠𝐼𝑠.                                                                                           (3.14) 

From (3.14), it follows that 
𝑑𝑁𝑠

𝑑𝑡
≤ 𝛬𝑠 − 𝜇𝑠𝑁𝑠.                                                                                                (3.15) 

Equation (3.15) is a linear equation with integrating factor given as 𝑒𝜇𝑠𝑡. Thus, we obtain 
𝑑𝑁𝑠

𝑑𝑡
𝑒𝜇𝑠𝑡 + 𝜇𝑠𝑁𝑠𝑒

𝜇𝑠𝑡 ≤ 𝛬𝑠𝑒
𝜇𝑠𝑡 .                                                                                  (3.16) 

Equation (3.16) can be rewritten as 

∫
𝑑𝑁𝑠
𝑑𝜏

𝑡

0

𝑒𝜇𝑠𝜏𝑑𝜏 ≤ 𝛬𝑠∫ 𝑒𝜇𝑠𝜏
𝑡

0

𝑑𝜏. 

Integrating and using the initial condition 𝑁𝑠(𝑡) = 𝑁𝑠(0), we obtain 

𝑁𝑠(𝑡)𝑒
𝜇𝑠𝑡 − 𝑁𝑠(0) ≤

𝛬𝑠
𝜇𝑠
(𝑒𝜇𝑠𝑡 − 1). 

Solving for 𝑁𝑠(𝑡) from , gives 

𝑁𝑠(𝑡) ≤ 𝑁𝑠(0)𝑒
−𝜇𝑠𝑡 +

𝛬𝑠
𝜇𝑠
(1 − 𝑒−𝜇𝑠𝑡). 

If 𝑁𝑠(0) ≤
𝛬𝑠

𝜇𝑠
, then 𝑁𝑠(𝑡) ≤

𝛬𝑠

𝜇𝑠
. Hence, the domain 𝒟𝑠 is positively invariant under the flow of the system . Moreover, if 

𝑁𝑠(0) >
𝛬𝑠

𝜇𝑠
, then either the orbits enters the domain 𝒟𝑠 in finite time or 𝑁𝑠(𝑡) asymptotically approaches 

𝛬𝑠

𝜇𝑠
 as 𝑡 → ∞. Thus, 

the domain 𝒟𝑠 attracts all trajectories and no trajectory goes out of any boundary of 𝒟𝑠 in ℝ+
6 . 

To determine the bound for the concentration of the Cercariae in both patches, we add up the right hand side of the vector 

field 𝐶1 and 𝐶2 in and it yields 
𝑑𝐶

𝑑𝑡
= 𝜃𝐶1𝐼𝑠1 + 𝜃𝐶2𝐼𝑠2 − (𝐶1 + 𝐶2)𝜇𝐶 .                                                       (3.17) 

From (3.17) , we have 
𝑑𝐶

𝑑𝑡
= 𝜃𝐶𝐼𝑠 − 𝜇𝐶𝐶.                                                                                    (3.18) 

From (3.18), it follows that, 
𝑑𝐶

𝑑𝑡
≤ 𝜃𝐶

𝛬𝑠

𝜇𝑠
− 𝜇𝐶𝐶.                                                                                   (3.19) 

since 𝑁𝑠 = 𝑈 + 𝐿 + 𝐼𝑠 ≤
𝛬𝑠

𝜇𝑠
⇒ 𝐼𝑠 ≤

𝛬𝑠

𝜇𝑠
. 

Equation (3.19) is a linear equation with integrating factor given as 𝑒𝜇𝐶𝑡. Thus, we obtain 
𝑑𝐶

𝑑𝑡
𝑒𝜇𝐶𝑡 + 𝜇𝐶𝐶𝑒

𝜇𝐶𝑡 ≤ 𝜃𝐶
𝛬𝑠

𝜇𝐶
𝑒𝜇𝐶𝑡 .                                                               (3.20)   

Equation (3.20) can be rewritten as 

∫
𝑑𝐶

𝑑𝜏

𝑡

0

𝑒𝜇𝐶𝜏𝑑𝜏 ≤ 𝜃𝐶
𝛬𝑠
𝜇𝑠
∫ 𝑒𝜇𝐶𝜏
𝑡

0

𝑑𝜏. 

Integrating and using the initial condition 𝐶(𝑡) = 𝐶(0), we obtain 

𝐶(𝑡)𝑒𝜇𝐶𝑡 − 𝐶(0) ≤
𝛬𝑠𝜃𝐶
𝜇𝑠𝜇𝐶

(𝑒𝜇𝐶𝑡 − 1). 

Solving for 𝐶(𝑡) from , gives 

𝐶(𝑡) ≤ 𝐶(0)𝑒−𝜇𝐶𝑡 +
𝛬𝑠𝜃𝐶
𝜇𝑠𝜇𝐶

(1 − 𝑒−𝜇𝐶𝑡). 

If 𝐶(0) ≤
𝛬𝑠𝜃𝐶

𝜇𝑠𝜇𝐶
, then 𝐶(𝑡) ≤

𝛬𝑠𝜃𝐶

𝜇𝑠𝜇𝐶
. Hence, the domain 𝒟𝐶  is positively invariant under the flow of the system . Moreover, if 

𝐶(0) >
𝛬𝑠𝜃𝐶

𝜇𝑠𝜇𝐶
, then either the orbits enters the domain 𝒟𝐶  in finite time or 𝐶(𝑡) asymptotically approaches 

𝛬𝑠𝜃𝐶

𝜇𝑠𝜇𝐶
 as 𝑡 → ∞. 

Thus, the domain 𝒟𝐶  attracts all trajectories and no trajectory goes out of any boundary of 𝒟𝐶  in ℝ+
2 . 

From the above, we have shown that 𝒟ℎ , 𝒟𝑀 , 𝒟𝑠 and 𝒟𝐶  are positively invariant and since 𝒟 = 𝒟ℎ × 𝒟𝑀 × 𝒟𝑠 × 𝒟𝐶 , it 

implies that the domain 𝒟 is positively-invariant and an attractor, so that no trajectory leaves via any boundary of 𝒟. 

𝒟 =

{
 
 
 
 

 
 
 
 (𝑆ℎ1 , 𝑆ℎ2 , 𝐸ℎ1 , 𝐸ℎ2 , 𝐼ℎ1 , 𝐼ℎ2) ∈ ℝ+

6 : 𝑁ℎ ≤
𝛬ℎ
𝜇ℎ

(𝑀1,𝑀2) ∈ ℝ+
2 : 𝑀 ≤

𝜃𝑀𝛬ℎ
𝜇𝑀𝜇ℎ

(𝑈1, 𝑈2, 𝐿1, 𝐿2, 𝐼𝑠1 , 𝐼𝑠2) ∈ ℝ+
6 : 𝑁𝑆 ≤

𝛬𝑠
𝜇𝑠

(𝐶1, 𝐶2) ∈ ℝ+
2 : 𝐶 ≤

𝜃𝐶𝛬𝑠
𝜇𝐶𝜇𝑠
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It implies that the right hand side of the system is smooth, hence there exist a unique solution to the initial value problem, 

and solution exists for all time. Hence the system is well posed when considered from both mathematical and 

epidemiological point of views and it is therefore sufficient to study the dynamics of the flows generated by the system in 

𝒟. 

 

4.0. Local Asymptotic Stability of the Disease Free Equilibrium 

The Disease Free Equilibrium (DFE) of the system is obtained by equating the right-hand side of the equations in system as 

well as the infected compartments (i.e., state variables of the infected classes) to zero and solving the resulting system. The 

DFE given by 
ℰ0 = (𝑆ℎ1

0 , 𝑆ℎ2
0 , 𝐸ℎ1

0 , 𝐸ℎ2
0 , 𝐼ℎ1

0 , 𝐼ℎ2
0 ,𝑀1

0,𝑀2
0, 𝑈1

0, 𝑈2
0, 𝐿1

0 , 𝐿2
0 , 𝐼𝑠1 , 𝐼𝑠2 , 𝐶1

0, 𝐶2
0) =

(
𝑃6𝛬ℎ1 + 𝜂21𝛬ℎ2
𝑃1𝑃6 − 𝜂12𝜂21

,
𝜂12𝛬ℎ1 + 𝑃1𝛬ℎ2
𝑃1𝑃6 − 𝜂12𝜂21

, 0,0,0,0,0,0,
𝛬𝑠1
𝜇𝑠
,
𝛬𝑠2
𝜇𝑠
, 0,0,0,0,0,0).

 

where: 

𝑃1 = (𝜂12 + 𝜇ℎ), 𝑃2 = (𝜅ℎ1 + 𝜇ℎ + 𝑎12), 𝑃3 = (𝛾ℎ1 + 𝛿ℎ1 + 𝜇ℎ + 𝑏12), 

 

𝑃4 = (𝜅𝑠1 + 𝜇𝑠), 𝑃5 = (𝛿𝑠1 + 𝜇𝑠), 𝑃6 = (𝜂21 + 𝜇ℎ). 

The method of next generation matrix operator proposed by [29] is used to investigate whether the DFE of the system is 

Locally Asymptotically Stable (LAS). Using notations similar to the ones used in van den Driessche and Watmough 

(2002), the matrices 𝐹 and 𝑉, of new infection terms as well as the remaining transfer terms, are respectively, given by 

𝐅 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0

𝐴1𝛽𝑠1𝛬𝑠1
𝑀0𝜇𝑠

0 0 0 0 0 0 0

0 0 0 0 0
𝐴2𝛽ℎ1𝑃11

𝐶0𝑃13
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
𝐴3𝛽𝑠2𝛬𝑠2
𝑀0𝜇𝑠

0

0 0 0 0 0 0 0 0 0 0 0
𝐴4𝛽ℎ2𝑃12

𝐶0𝑃13
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

and 

𝐕 =

(

 
 
 
 
 
 
 
 
 
 
 

𝑃4 0 0 0 0 0 0 0 0 0 0 0
0 𝑃2 0 0 0 0 −𝑎21 0 0 0 0 0

−𝜅𝑠1 0 𝑃5 0 0 0 0 0 0 0 0 0

0 −𝜅ℎ1 0 𝑃3 0 0 0 0 0 −𝑏21 0 0

0 0 0 −𝜃𝑀1 𝜇𝑀 0 0 0 0 0 0 0

0 0 −𝜃𝐶1 0 0 𝜇𝑠 0 0 0 0 0 0

0 0 0 0 0 0 𝑃9 0 0 0 0 0
0 −𝑎12 0 0 0 0 0 𝑃7 0 0 0 0
0 0 0 0 0 0 −𝜅𝑠2 0 𝑃10 0 0 0

0 0 0 −𝑏12 0 0 0 −𝜅ℎ2 0 𝑃8 0 −𝑏12
0 0 0 0 0 0 0 0 0 −𝜃𝑀2 𝜇𝑀 0

0 0 0 0 0 0 0 0 −𝜃𝐶2 0 0 𝜇𝑠 )

 
 
 
 
 
 
 
 
 
 
 

 

The reproduction number, ℛ0 = 𝜌(𝐹𝑉
−1), with 𝜌(⋅) being the spectral radius (largest eigenvalue) associated with matrix 

𝐹𝑉−1, is given by 

ℛ0
2 =

1

2
[ℎ1 + √ℎ1

2 − 4ℎ2], 

where: 

ℎ1 =
𝐻1 +𝐻2
𝐻3

 

𝐻1 = 𝐴1𝐴2(𝑃7𝑃8𝜅ℎ1 + 𝑎12𝑏21𝜅ℎ2)𝑃9𝑃10𝑃11𝛽ℎ1𝛽𝑠1𝜃𝑀1𝜃𝐶1𝛬𝑠1𝜅𝑠1  

𝐻2 = 𝐴3𝐴4𝑃4𝑃5𝑃12(𝑎21𝑏12𝜅ℎ1 + 𝑃2𝑃3𝜅ℎ2)𝛽ℎ2𝛽𝑠2𝜃𝑀2𝜃𝐶2𝛬𝑠2𝜅𝑠2  
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𝐻3 = (𝑃2𝑃7 − 𝑎12𝑎21)(𝑃3𝑃8 − 𝑏12𝑏21)𝑃4𝑃5𝑃9𝑃10𝑃13

2 𝐶0
2𝑀0

2𝜇𝐶𝜇𝑀𝜇𝑠, 

ℎ2 =
𝐻4
𝐻5

 

𝐻4 = 𝐴1𝐴2𝐴3𝐴4𝛽ℎ1𝛽𝑠1𝛽ℎ2𝛽𝑠2𝜃𝑀1𝜃𝐶1𝜃𝑀2𝜃𝐶2𝛬𝑠1𝛬𝑠2𝜅ℎ1𝜅ℎ2𝜅𝑠1𝜅𝑠2  

𝐻5 = (𝑃2𝑃7 − 𝑎12𝑎21)(𝑃3𝑃8 − 𝑏12𝑏21)𝑃4𝑃5𝑃9𝑃10𝑃13
2 𝐶0

2𝑀0
2𝜇𝐶

2𝜇𝑀
2 𝜇𝑠

2 𝐴1 = (1 − 𝜋𝜈1), 𝐴2 = (1 − 𝜙𝜉1), 𝐴3 = (1 − 𝜋𝜈2), 
𝐴4 = (1 − 𝜙𝜉2), 
𝑃7 = (𝜅ℎ2 + 𝜇ℎ + 𝑎21), 

𝑃8 = (𝛾ℎ2 + 𝛿ℎ2 + 𝜇ℎ + 𝑏21), 𝑃9 = (𝜅𝑠2 + 𝜇𝑠), 𝑃10 = (𝛿𝑠2 + 𝜇𝑠), 

𝑃13 = (𝑃1𝑃6 − 𝜂12𝜂21) = (𝜂12𝜇ℎ + 𝜂21𝜇ℎ + 𝜇ℎ
2) > 0, 

𝑃14 = (𝑃2𝑃7 − 𝑎12𝑎21) > 0 
 

The result in Lemma (4.1) follows from Theorem 2 of [29]. 

Lemma 4.1 

The DFE of the model , ℰ0 is LAS in 𝒟 whenever ℛ0
2 < 1, and it is not stable when ℛ0

2 > 1. 

The threshold number, ℛ0
2, is a very important epidemiological concept, which is a measure of the mean number of 

secondary cases engendered by one infected individual in a totally exposed populace [27]. Epidemiologically, Lemma (4.1) 

implies that whenever ℛ0
2 < 1, then the initial sizes of the subpopulations of the model lie in the basin of attraction of the 

DFE and that a little influx of infected humans with Schistosomiasis into the population in both patches where control is 

available and humans are free to move without restriction between patches would not generate large outbreaks and 

Schistosomiasis will become endemic in the population in both patches if ℛ0
2 > 1. 

5.0. Existence of endemic steady states 

We examine the existence of Endemic Equilibrium Points (EEP) for a special case of the model when 𝛾ℎ1 = 𝛾ℎ2 = 0. 

Consider the existence of an EEP associated with a special case of the system (with negligible recovery rate in patches 1 

and 2, i.e., 𝛾ℎ1 = 𝛾ℎ2 = 0). Hence, substituting 𝛾ℎ1 = 𝛾ℎ2 = 0 into the model yields: 
𝑑𝑆ℎ1
𝑑𝑡

= 𝛬ℎ1 − 𝜆ℎ1𝑆ℎ1 + 𝛾ℎ1𝐼ℎ1 − 𝜇ℎ𝑆ℎ1 − 𝜂12𝑆ℎ1 + 𝜂21𝑆ℎ2 ,

𝑑𝐸ℎ1
𝑑𝑡

= 𝜆ℎ1𝑆ℎ1 − (𝜅ℎ1 + 𝜇ℎ + 𝑎12)𝐸ℎ1 + 𝑎21𝐸ℎ2 ,

𝑑𝐼ℎ1
𝑑𝑡

= 𝜅ℎ1𝐸ℎ1 − (𝛿ℎ1 + 𝜇ℎ + 𝑏12)𝐼ℎ1 + 𝑏21𝐼ℎ2 ,

𝑑𝑀1

𝑑𝑡
= 𝜃𝑀1𝐼ℎ1 − 𝜇𝑀𝑀1,

𝑑𝑈1
𝑑𝑡

= 𝛬𝑠1 − 𝜆𝑠1𝑈1 − 𝜇𝑠𝑈1,

𝑑𝐿1
𝑑𝑡

= 𝜆𝑠1𝑈1 − (𝜅𝑠1 + 𝜇𝑠)𝐿1,

𝑑𝐼𝑠1
𝑑𝑡

= 𝜅𝑠1𝐿1 − (𝛿𝑠1 + 𝜇𝑠)𝐼𝑠1 ,

𝑑𝐶1
𝑑𝑡

= 𝜃𝐶1𝐼𝑠1 − 𝜇𝐶𝐶1,

𝑑𝑆ℎ2
𝑑𝑡

= 𝛬ℎ2 − 𝜆ℎ2𝑆ℎ2 + 𝛾ℎ2𝐼ℎ2 − 𝜇ℎ𝑆ℎ2 − 𝜂21𝑆ℎ2 + 𝜂12𝑆ℎ1 ,

𝑑𝐸ℎ2
𝑑𝑡

= 𝜆ℎ2𝑆ℎ2 − (𝜅ℎ2 + 𝜇ℎ + 𝑎21)𝐸ℎ2 + 𝑎12𝐸ℎ1 ,

𝑑𝐼ℎ2
𝑑𝑡

= 𝜅ℎ2𝐸ℎ2 − (𝛿ℎ2 + 𝜇ℎ + 𝑏21)𝐼ℎ2 + 𝑏12𝐼ℎ1 ,

𝑑𝑀2

𝑑𝑡
= 𝜃𝑀2𝐼ℎ2 − 𝜇𝑀𝑀2,

𝑑𝑈2
𝑑𝑡

= 𝛬𝑠2 − 𝜆𝑠2𝑈2 − 𝜇𝑠𝑈2,

𝑑𝐿2
𝑑𝑡

= 𝜆𝑠2𝑈2 − (𝜅𝑠2 + 𝜇𝑠)𝐿2,

𝑑𝐼𝑠2
𝑑𝑡

= 𝜅𝑠2𝐿2 − (𝛿𝑠2 + 𝜇𝑠)𝐼𝑠2 ,

𝑑𝐶2
𝑑𝑡

= 𝜃𝐶2𝐼𝑠2 − 𝜇𝐶𝐶2.

 

with 𝜆ℎ𝑖 = 𝛽ℎ𝑖
(𝐼−𝜙𝜉𝑖)𝐶𝑖

𝐶0+𝜀𝐶𝑖
 and 𝜆𝑠𝑖 = 𝛽𝑠𝑖

(𝐼−𝜋𝜈𝑖)𝑀𝑖

𝑀0+𝜀𝑀𝑖
 being the forces of infection for human and snail subpopulations. 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 14, (January -March., 2021), 53 –68 



66 
 

Theoretical Study of…                Olowu, Ako and Akhaze                      Trans. Of NAMP 

 

 

Let 

ℰ1 = (𝑆ℎ1
∗∗ , 𝑆ℎ2

∗∗ , 𝐸ℎ1
∗∗ , 𝐸ℎ2

∗∗ , 𝐼ℎ1
∗∗ , 𝐼ℎ2

∗∗ , 𝑀1
∗∗, 𝑀2

∗∗, 𝑈1
∗∗, 𝑈2

∗∗, 𝐿1
∗∗, 𝐿2

∗∗, 𝐼𝑠1
∗∗, 𝐼𝑠2

∗∗, 𝐶1
∗∗, 𝐶2

∗∗. 

The state variables in the system are solved for, as functions of the forces of infection for patch i (where i =1, 2), i.e., 𝜆ℎ𝑖
∗∗ =

𝛽ℎ𝑖
(𝐼−𝜙𝜉𝑖)𝐶𝑖

∗∗

𝐶0+𝜀𝐶𝑖
∗∗  and 𝜆𝑠𝑖

∗∗ = 𝛽𝑠𝑖
(𝐼−𝜋𝜈𝑖)𝑀𝑖

∗∗

𝑀0+𝜀𝑀𝑖
∗∗  at the endemic steady state, by equating the right-hand side of the equations in system 

to zero. This yields 

𝑆ℎ1
∗∗ =

𝛬ℎ1(𝜆𝐶2
∗∗ + 𝑃6) + 𝜂21𝛬ℎ2

(𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝑃6𝜆𝐶1
∗∗ + 𝑃1𝜆𝐶2

∗∗ + 𝐺1)
,

𝑆ℎ2
∗∗ =

𝛬ℎ2(𝜆𝐶1
∗∗ + 𝑃1) + 𝜂12𝛬ℎ1

∗∗

(𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝑃6𝜆𝐶1
∗∗ + 𝑃1𝜆𝐶2

∗∗ + 𝐺1)
,

𝐸ℎ1
∗∗ =

𝐺3𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝐺4𝜆𝐶1
∗∗ + 𝐺5𝜆𝐶2

∗∗

𝐺2(𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝑃6𝜆𝐶1
∗∗ + 𝑃1𝜆𝐶2

∗∗ + 𝐺1)
,

𝐸ℎ2
∗∗ =

𝐺6𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝐺7𝜆𝐶1)∗∗ + 𝐺8𝜆𝐶2
∗∗

𝐺2(𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝑃6𝜆𝐶1
∗∗ + 𝑃1𝜆𝐶2

∗∗ + 𝐺1)
,

𝐼ℎ1
∗∗ =

𝐺10𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝐺11𝜆𝐶1
∗∗ + 𝐺12𝜆𝐶2

∗∗

𝐺2𝐺9(𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝑃6𝜆𝐶1
∗∗ + 𝑃1𝜆𝐶2

∗∗ + 𝐺1)
,

𝐼ℎ2
∗∗ =

𝐺13𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝐺14𝜆𝐶1
∗∗ + 𝐺15𝜆𝐶2

∗∗

𝐺2𝐺9(𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝑃6𝜆𝐶1
∗∗ + 𝑃1𝜆𝐶2

∗∗ + 𝐺1)
.

𝑀1
∗∗ =

𝜃𝑀1(𝐺10𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝐺11𝜆𝐶1
∗∗ + 𝐺12𝜆𝐶2

∗∗ )

𝜇𝑀𝐺2𝐺9(𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝑃6𝜆𝐶1
∗∗ + 𝑃1𝜆𝐶2

∗∗ + 𝐺1)
,

𝑀2
∗∗ =

𝜃𝑀2(𝐺13𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝐺14𝜆𝐶1
∗∗ + 𝐺15𝜆𝐶2

∗∗ )

𝜇𝑀𝐺2𝐺9(𝜆𝐶1
∗∗𝜆𝐶2

∗∗ + 𝑃6𝜆𝐶1
∗∗ + 𝑃1𝜆𝐶2

∗∗ + 𝐺1)
,

𝑈1
∗∗ =

𝛬𝑠1
𝜆𝑠1
∗∗ + 𝜇𝑠

,

𝑈2
∗∗ =

𝛬𝑠2
𝜆𝑠2
∗∗ + 𝜇𝑠

,

𝐿1
∗∗ =

𝛬𝑠1𝜆𝑠1
∗∗

𝑃4(𝜆𝑠1
∗∗ + 𝜇𝑠)

,

𝐿2
∗∗ =

𝛬𝑠2𝜆𝑠2
∗∗

𝑃9(𝜆𝑠2
∗∗ + 𝜇𝑠)

,

𝐼𝑠1
∗∗ =

𝛬𝑠1𝜆𝑠1
∗∗𝜅𝑠1

𝑃4𝑃5(𝜆𝑠1
∗∗ + 𝜇𝑠)

,

𝐼𝑠2
∗∗ =

𝛬𝑠2𝜆𝑠2
∗∗𝜅𝑠2

𝑃9𝑃10(𝜆𝑠2
∗∗ + 𝜇𝑠2 , )

,

𝐶1
∗∗ =

𝛬𝑠1𝜆𝑠1
∗∗𝜅𝑠1𝜃𝐶1

𝑃4𝑝5𝜇𝑠(𝜆𝑠1
∗∗ + 𝜇𝑠)

,

𝐶2
∗∗ =

𝛬𝑠2𝜆𝑠2
∗∗𝜅𝑠2𝜃𝐶2

𝑃9𝑃10𝜇𝑠(𝜆𝑠2
∗∗ + 𝜇𝑠)

,

𝜆𝐶1
∗∗ =

𝐴1𝛽ℎ1𝛬𝑠1𝜆𝑠1
∗∗𝜅𝑠1𝜃𝐶1

𝐺16𝜆𝑠1
∗∗ + 𝐶0𝜇𝑠𝜇𝐶𝑃4𝑃5

,

𝜆𝐶2
∗∗ =

𝐴2𝛽ℎ2𝛬𝑠2𝜆𝑠2
∗∗𝜅𝑠2𝜃𝐶2

𝐺17𝜆𝑠2
∗∗ + 𝐶0𝜇𝑠2𝜇𝐶𝑃9𝑃10

,

𝜆𝑠1
∗∗ =

𝐴3𝛽𝑠1𝜃𝑀1(𝐺10𝜆𝐶1
∗∗𝜆𝑐2

∗∗ + 𝐺11𝜆𝐶1
∗∗ + 𝐺12𝜆𝐶2

∗∗ )

𝐺18𝜆𝐶1
∗∗𝜆𝑐2

∗∗ + 𝐺19𝜆𝐶1
∗∗ + 𝐺20𝜆𝐶2

∗∗ +𝑀0𝜇𝑀𝐺1𝐺2𝐺9
,

𝜆𝑠2
∗∗ =

𝐴4𝛽𝑠2𝜃𝑀2(𝐺13𝜆𝐶1
∗∗𝜆𝑐2

∗∗ + 𝐺14𝜆𝐶1
∗∗ + 𝐺15𝜆𝐶2

∗∗ )

𝐺21𝜆𝐶1
∗∗𝜆𝑐2

∗∗ + 𝐺22𝜆𝐶1
∗∗ + 𝐺23𝜆𝐶2

∗∗ +𝑀0𝜇𝑀𝐺1𝐺2𝐺9
.

 

where: 𝐺1 = 𝑃13 = 𝑃1𝑃6 − 𝜂12𝜂21 > 0, 𝐺2 = 𝑃14 = 𝑃2𝑃7 − 𝑎12𝑎21 > 0, 
𝐺3 = 𝛬ℎ1𝑃7 + 𝛬ℎ2𝑎21, 𝐺4 = 𝑃7(𝛬ℎ1𝑃6 + 𝛬ℎ2𝜂21), 

𝐺5 = 𝑎21(𝛬ℎ1𝜂12 + 𝛬ℎ2𝑃1), 𝐺6 = 𝑃2𝛬ℎ2 + 𝑎12𝛬ℎ1, 

𝐺7 = 𝑃6𝛬ℎ1 + 𝛬ℎ2𝜂21, 𝐺8 = 𝑃2(𝛬ℎ1𝜂12 + 𝛬ℎ2𝑃1), 

𝐺9 = 𝑃3𝑃8 − 𝑏12𝑏21 > 0, 𝐺10 = 𝜅ℎ1𝑃8𝐺3 + 𝑏21𝜅ℎ2𝐺6, 

𝐺11 = 𝜅ℎ1𝑃8𝐺4 + 𝑏21𝜅ℎ2𝐺7, 𝐺12 = 𝜅ℎ1𝑃8𝐺5 + 𝑏21𝜅ℎ2𝐺8, 

𝐺13 = 𝑃3𝜅ℎ2𝐺6 + 𝑏12𝜅ℎ1𝐺3, 𝐺14 = 𝑃3𝜅ℎ2𝐺7 + 𝑏12𝜅ℎ1𝐺4, 
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𝐺15 = 𝑃3𝜅ℎ2𝐺8 + 𝑏12𝜅ℎ1𝐺5, 𝐺16 = 𝐶0𝜇𝐶𝑃4𝑃5 + 휀𝛬𝑠1𝜅𝑠1𝜃𝐶1 , 

𝐺17 = 𝐶0𝜇𝐶𝑃9𝑃10휀𝛬𝑠2𝜅𝑠2𝜃𝐶2 , 𝐺18 = 𝑀0𝜇𝑀𝐺2𝐺9 + 휀𝜃𝑀1𝐺10, 

𝐺19 = 𝑀0𝜇𝑀𝐺2𝐺9𝑃6 + 휀𝜃𝑀1𝐺11, 𝐺20 = 𝑀0𝜇𝑀𝐺2𝐺9𝑃1 + 휀𝜃𝑀1𝐺12, 

𝐺21 = 𝑀0𝜇𝑀𝐺2𝐺9 + 휀𝜃𝑀2𝐺13, 𝐺22 = 𝑀0𝜇𝑀𝐺2𝐺9𝑃6 + 휀𝜃𝑀2𝐺14, 

𝐺23 = 𝑀0𝜇𝑀𝐺2𝐺9𝑃1 + 휀𝜃𝑀2𝐺15. 

 

CONCLUSION 

In this paper, we formulated a novel deterministic mathematical model which investigated the impact of metapopulation on 

the transmission dynamics of Schistosomiasis in a population. The sixteen (16) state variables of the model were shown to 

be non-negative and bounded for all time, 𝑡 and that the trajectories generated by the metapopulation Schistosomiasis 

model with non-negative starting conditions will always be non-negative for all time,  𝑡 > 0. We also showed that the 

trajectories generated by the model are non-negatively invariant for all time, 𝑡. The DFE of the formulated metapopulation 

Schistosomiasis model was derived and was shown to be LAS whenever the corresponding reproduction number is below 

one (ℛ0
2 < 1), which suggested that Schistosomiasis can be eradicated from the entire population in a two patch model if 

the initial sizes of the sub-populations of the model lie in the basin of attraction of the DFE and that a little influx of 

infected humans with Schistosomiasis into a two patch population where control measures are available would not generate 

large outbreaks, and unstable and if ℛ0
2 > 1, which implied that Schistosomiasis will become endemic in the two patch 

population. The Endemic Equilibrium Point (EEP) was derived. 
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