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Abstract 

 

We study the generalized eigenvalue problem in max algebra 𝑨 ⊗ 𝒙 = 𝝀 ⊗ 𝑩 ⊗
𝒙, where 𝑨, 𝑩 ∈ ℝ̅𝒎×𝒏. We prove that if 𝑨 𝒂𝒏𝒅 𝑩 are binary, then 𝝀 is finitely 

generated in a closed set. We give the general solution for the 𝟐 × 𝟐 case for binary 

entries. 
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1.0 INTRODUCTION 

Max-Algebra can be define as a Semi-ring (𝑅,⊕,⊗) as follows:  

Let 𝐺 be a set, define two operations on 𝐺 as ⊗ and the linear order ≤, thus 

𝐺 = (𝐺,⊗, ≤) is a linearly ordered commutative group. Denote  �̅�  =  𝐺 ∪  {𝜖 }  where 𝜖 is an adjoined element such 

that 𝜖 <  𝑎    ∀ 𝑎 ∈  𝐺. 

Define 𝑎 ⊕  𝑏 = max{𝑎, 𝑏} ∀ 𝑎, 𝑏 ∈  �̅� and extend  ⊗   �̅� by setting 𝑎 ⊗ 𝜖 = 𝜖 = 𝜖 ⊗  𝑎. Thus it is clear that (�̅�,⊕,⊗ ) 

is and idempotent commutative semi-ring. Max-algebra is defined here when 𝐺 is an additive group of real numbers i.e 

(𝑅,⊕,⊗). In max-algebra we define the operation 𝑎 ⊗  𝑏 =  𝑎 + 𝑏 𝑎𝑛𝑑 𝑎 ⊕  𝑏 =  𝑚𝑎𝑥{𝑎, 𝑏} 

We denote −∞ by 𝜖 (the neutral element with respect to ⊕), and for convenience we also denote by the same symbol any 

vector with all components 

−∞; and a matrix with all entries −∞. 0 is denoted by 𝑒  (the neutral element with respect to (⊗). If 𝑎 ∈ ℝ; then the 

symbol 𝑎−1  stands for −𝑎. 

Recall that in max-algebra, we define the operation 𝑎 ⊗  𝑏 =  𝑎 +  𝑏  and 𝑎 ⊕  𝑏 =  𝑚𝑎𝑥(𝑎, 𝑏) 

Max-plus algebra is derived from the analog of linear algebra developed for the pair of operations  (⊕ ,⊗)  , and it is 

extended to matrices and vectors as in conventional algebra. It has many applications areas such as machine scheduling, 

optimization, combinatorics, mathematical physics and algebraic geometry. Nowadays it solves many problems of Parallel 

processing systems, telecommunication networks, discrete events processes and control theory. For the proofs and more 

information about max-algebra, the reader is referred to [1, 3, 4 and 12]. 

 

2.0 PREREQUISITES  

In this section we give the definitions of terms that will be used in the formulation of our results. 

A binary operation ∗ is called idempotent on a set ℝ if ∀ 𝑥 ∈ ℝ, 𝑥 ×  𝑥 =  𝑥 

A monoid is a closed set under an associative binary operation which has multiplicative identity. 

A semi-ring is a commutative monoid which has no additive identity. 

Two important aspects of max-algebra are that it does not have additive inverses and it is idempotent. This is why max-

algebra is considered a semi-ring and not a ring. 

An 𝑛 ×  𝑛 matrix is called diagonal, notation 𝑑𝑖𝑎𝑔(𝑑1, . . . , 𝑑𝑛), or just 𝑑𝑖𝑎𝑔(𝑑), if its diagonal entries are 𝑑1, . . . , 𝑑𝑛 ∈ ℝ  

and off-diagonal entries are 𝜖. 

A digraph is an ordered pair 𝐺 =  (𝑉 , 𝐸) where 𝑉 is a nonempty finite set (of nodes) and 𝐸 ⊂  𝑉 ×  𝑉 (the set of arcs). 

 A subdigraph of 𝐺 is any digraph 𝐺′  =  (𝑉′ , 𝐸′) such that 𝑉′ ⊂  𝑉 and  𝐸′ ⊂  𝐸. If 𝑒 =  (𝑢, 𝑣) ∈  𝐸 for some 𝑢, 𝑣 ∈  𝑉 

then we say that 𝑒 is leaving 𝑢 and entering 𝑣. Any arc of the form (𝑢, 𝑢) is called a loop. 

Let 𝐺 =  (𝑉 , 𝐸) be a given digraph. A sequence  𝜋 =  (𝑣1, . . . , 𝑣𝑝) of nodes in 𝐺 

is called a path (in 𝐺) if 𝑝 =  1 or 𝑝 >  1 and (𝑣𝑖 , 𝑣𝑖+1) ∈  𝐸 for all 𝑖 =  1, . . . , 𝑝 −  1. The node 𝑣1 is called the starting 

node and 𝑣𝑝 the endnode of 𝜋, respectively.  
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The number 𝑝 −  1 is called the length of 𝜋 and will be denoted by 𝑙(𝜋). If 𝑢 is the starting node and 𝑣 is the endnode of 𝜋 

then we say that 𝜋 is a 𝑢 −  𝑣 path.  

If there is a 𝑢 −  𝑣 path in 𝐺 then 𝑣 is said to be reachable from 𝑢, notation 𝑢 →  𝑣. Thus 𝑢 →  𝑢 for any ∈  𝑉 . 

A path (𝑣1, . . . , 𝑣𝑝) is called a cycle if 𝑣1  =  𝑣𝑝 and 𝑝 >  1 and it is called an 

elementary cycle if, moreover, 𝑣𝑖 ≠  𝑣𝑗  for 𝑖, 𝑗 =  1, . . . , 𝑝 −  1, 𝑖 ≠  𝑗. If there is no cycle in 𝐺 then 𝐺 is called acyclic. 

The weight of a path from vertex 𝑖 to 𝑗 of length 𝑘 is given by ||𝑝||
𝑤

=  𝑎𝑖2𝑖1
⊕ . . .⊕  𝑎𝑖𝑘+1𝑖𝑘

 𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝑖1, 𝑗 = 𝑖𝑘+1. 

The average weight of a cycle is given by 

||𝑝||
𝑤

||𝑝||
𝑙

= max
𝑎𝑖2𝑖1

+ . . . +𝑎𝑖𝑘 +1𝑖𝑘

𝑘
  

A path \𝑝𝑖 is called positive if 𝑤(𝜋)  >  0. In contrast, a cycle 𝛿 =  (𝑢1, . . . , 𝑢𝑝) is called a zero cycle if 𝑤(𝑢𝑘, 𝑢𝑘+1)  =  0 

for all 𝑘 =  1, . . . , 𝑝 − 1. Since 𝑤 stands for "weight" rather than "length", we will use the word "heaviest path/cycle" 

instead of "longest path/cycle". 

 

A digraph G is called strongly connected if 𝑢 →  𝑣 for all nodes 𝑢, 𝑣 ∈  𝐺. A subdigraph 𝐺′ of 𝐺 is called a strongly 

connected component of 𝐺 if it is a maximal strongly connected subdigraph of 𝐺, that is, 𝐺′ is a strongly connected 

subdigraph of 𝐺 and if 𝐺′ is a subdigraph of a strongly connected subdigraph 𝐺′′ of 𝐺 then 𝐺′  =  𝐺′′. Note that a digraph 

consisting of one node and no arc is strongly connected and acyclic; however, if a strongly connected digraph has at least 

two nodes then it obviously cannot be acyclic. Because of this singularity we will have to assume in some statements that 

|𝑉 |  >  1. 

If 𝐴 =  (𝑎𝑖𝑗  ) ∈ ℝ𝑛× 𝑛  then the symbol 𝐹𝐴(𝑍𝐴) will denote the digraph with the node set 𝑁 and arc set 𝐸 =  {(𝑖, 𝑗 );  𝑎𝑖𝑗  >

𝜖} (𝐸 =  {(𝑖, 𝑗 );  𝑎𝑖𝑗  =  0}).  𝑍_𝐴 will be called the zero digraph of the matrix 𝐴. If 𝐹𝐴  is strongly connected then 𝐴 is 

called irreducible otherwise reducible. 

 

3.0  MAX-ALGEBRAIC EIGENVALUE PROBLEM 

Given 𝐴 ∈  ℝ̅𝑛× 𝑛 find the vectors ∈  ℝ̅𝑛× 𝑛  (𝑥 ≠ 𝜖 ) (Eigenvectors) and scalars 𝜆 ∈ ℝ̅ (Eigenvalues)  such that: 

  𝐴 ⊗  𝑥 = 𝜆 ⊗  𝑥                                                                                               (1) 
 is called the (max-algebraic) eigenproblem. 

The theory of max-algebraic eigenproblem is well known [9, 10, 15]. In this section we will give an overview of some 

results which will be useful in the forthcoming sections. 

 The set of all eigenvalues will be called the spectrum of the pair (𝐴, 𝐵). 

 Given 𝐴 ∈  ℝ̅𝑛× 𝑛, 𝜆(𝐴) is the maximum cycle mean of 𝐴, that  

𝜆(𝐴) =  𝑚𝑎𝑥 𝜇 (𝜎 , 𝐴)                                                                          (2) 

Where the maximization is taken over all elementary cycles in 𝐺𝐴, and  

𝜇 (𝜎 , 𝐴) =  
(𝜎 ,𝐴)

𝑙(𝜎)
                                                                                            (3)   

Denotes the mean of a cycle 𝜎. Clearly, 𝜆(𝐴) always exists since the number of 

Elementary cycles is finite. It follows from this definition that 𝐺𝐴 is acyclic if and 

only if 𝜆(𝐴) = 𝜖. 

LEMMA 1 [27] 

𝜆(𝐴) remains unchanged if the maximization is taken over all cycles.  

THEOREM 2 [12] 

If 𝐴 ∈  ℝ̅𝑛× 𝑛 then: 

a) 𝜆(𝐴) is the greatest eigenvalue of 𝐴, that is 

𝜆(𝐴)  =  max {𝜆 ∈ ℝ̅: 𝐴 ⊗  𝑥 = 𝜆 ⊗  𝑥, 𝑥 ∈  ℝ̅;  𝑥 ≠ 𝜖} 

and dually  b) We have 

 𝜆(𝐴)  =  inf {𝜆 ∈  ℝ̅: 𝐴 ⊗  𝑥 ≤ 𝜆 ⊗  𝑥, 𝑥 ∈ ℝ̅𝑛 

 

LEMMA 3 [12, 21] 

Let 𝐴 =  (𝑎𝑖𝑗  ) ∈  ℝ̅𝑛× 𝑛  have columns 𝐴1, 𝐴2, . . . , 𝐴𝑛. If 𝜆(𝐴)  = 𝜖  then Λ(𝐴)  = 𝜖,at least one column of 𝐴 is  𝜖 and the 

eigenvectors of 𝐴 are exactly the vectors (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ ℝ̅𝑛, 𝑥 ≠ 𝜖  such that 𝑥𝑗  = 𝜖  whenever 𝐴𝑗 ≠ 𝜖 (𝑗 ∈  𝑁). Hence 

𝑉(𝐴, 𝜖) = {𝐺 ⊗  𝑧: 𝑧 ∈ ℝ̅𝑛}, where G \in \rbarsq has columns g_1,g_2, . . . and for all 𝑗 ∈  𝑁 
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𝑔𝑗 = {
𝑒𝑗,         𝑖𝑓  𝐴𝑗 = 𝜖

𝜖,            𝑖𝑓   𝐴𝑗 ≠ 𝜖
 

The maximum cycle mean of a matrix is of fundamental importance in max-algebra because for any square matrix 𝐴, it is 

the greatest eigenvalue of 𝐴, and every eigenvalue of 𝐴 is the maximum cycle mean of some principal submatrix of 𝐴. 
 

4.0 GENERALIZED EIGENVALUE PROBLEM 
The two-sided eigenvalue problem in max-algebra is described as follows:-  

For two matrices 𝐴, 𝐵 ∈ ℝ̅𝑛× 𝑚   find scalars 𝜆 ∈ ℝ called eigenvalues and vectors 𝑥 ∈ ℝ𝑛 called eigenvectors with atleast 

one component not equals − ∞ such that  

𝐴 ⊗   𝑥 = 𝜆 ⊗  𝐵 ⊗  𝑥                                                                                         (4) 

 In conventional notation this reads 
𝑛

𝑚𝑎𝑥
𝑖 = 1

(𝑎𝑖𝑗 + 𝑥𝑗) = 𝜆 + 
𝑛

𝑚𝑎𝑥
𝑖 = 1

(𝑏𝑖𝑗 + 𝑥𝑗) 𝑓𝑜𝑟  𝑗 = 1,2,3 . . . , 𝑚 

 

Let 𝐴 and 𝐵 be finite matrices, such that 𝐴 =  𝑎𝑖𝑗;  𝐵 =  𝑏𝑖𝑗 ∈  ℝ̅𝑛× 𝑚     are given 

matrices and we denote 𝑀 = {1, . . . , 𝑚} and, 𝑁 = {1, . . . , 𝑛} .  

Let 

𝐶 =  (𝑐𝑖𝑗) = (𝑎𝑖𝑗 ⊗  𝑏𝑖𝑗
−1) 

and 
𝐷 = (𝑑𝑖𝑗)  =  (𝑏𝑖𝑗 ⊗  𝑎𝑖𝑗

−1)  
 
Define the set of all real numbers 𝜆 such that  𝐴 ⊗ 𝑥 = 𝜆 ⊗ 𝐵 ⊗ 𝑥 is satisfied 
𝑉(𝐴, 𝐵, 𝜆) = {𝑥 ∈  ℝ̅𝑛 ∶  𝐴 ⊗  𝑥 = 𝜆 ⊗  𝐵 ⊗  𝑥, 𝑥 ≠ 𝜖} 
Λ(𝐴, 𝐵) = {𝜆 ∈ ℝ ∶ 𝑉(𝐴, 𝐵, 𝜆) ≠ ∅} 
 The set Λ(𝐴, 𝐵) is called the spectrum of the pair (𝐴, 𝐵) 
Define  𝜆 (𝐶)  =  𝑚𝑎𝑥𝑖∈ 𝑀  𝑚𝑖𝑛𝑗∈ 𝑁𝑐𝑖𝑗  𝑎nd 𝜆̅ (𝐶) =  𝑚𝑖𝑛𝑖∈ 𝑀 𝑚𝑎𝑥𝑗∈ 𝑁 
THEOREM 4 [11] If (𝐴, 𝐵) is solvable and 𝜆 ∈ Λ(𝐴, 𝐵) then C satisfies 
 𝑚𝑎𝑥𝑖∈ 𝑀  𝑚𝑖𝑛𝑗∈ 𝑁𝑐𝑖𝑗 ≤ 𝜆 ≤  𝑚𝑖𝑛𝑖∈ 𝑀 𝑚𝑎𝑥𝑗∈ 𝑁𝑐𝑖𝑗                                                   (5) 
COROLLARY 4.1 If (𝐴, 𝐵) is solvable then 𝐶 satisfies 
𝑚𝑎𝑥𝑖∈ 𝑀𝑚𝑖𝑛𝑗∈ 𝑁𝑐𝑖𝑗 ≤  𝑚𝑖𝑛𝑖∈ 𝑀 𝑚𝑎𝑥𝑗∈ 𝑁𝑐𝑖𝑗 
COROLLARY 4.2 If 𝑚 =  𝑛, (𝐴, 𝐵) is solvable and 𝜆 ∈ Λ(𝐴, 𝐵) then C satisfies 𝜆′(𝐶) ≤ 𝜆 ≤ 𝜆(𝐶)  
LEMMA 5 [CANCELLATION RULE] [24] Let 𝑣, 𝑤, 𝑎, 𝑏, ∈ ℝ;  𝑎 <  𝑏: Then for any real 𝑥 we have 𝑣 ⊕  𝑎 ⊗  𝑥 =  𝑤 ⊕
 𝑏 ⊗  𝑥  if and only if 𝑣 =  𝑤 ⊕  𝑏 ⊗  𝑥 

PROPOSITION 6 If 𝑎𝑖𝑗 < 𝑏𝑖𝑗 and 𝜆 <  𝜆  then Λ(𝐴, 𝐵) = {𝛾} where 𝛾 is a projection onto define as: 

𝛾 = {

𝜆 𝑖𝑓 𝛾 ≤ 𝜆

       𝛾 𝑖𝑓 𝛾 ∈ (𝜆, 𝜆)

𝜆 𝑖𝑓 𝛾 ≥  𝜆

 

proof  
The proof to this theorem for an arbitrary value of  𝑎𝑖𝑗 , 𝑏𝑖𝑗 can be found in [19].  
Here we consider a special case where ∀  𝑎𝑖𝑗 , 𝑏𝑖𝑗 ∈ {0, 1}, such that 𝜆  =  0 and  

𝜆 =  1.   

Let 𝑆 = [𝜆, 𝜆]  ∩ 𝛬(𝐴, 𝐵), thenit is sufficient to prove the following statements  
i.   𝑆 ≠ ∅ ⇒ {𝛾} 

ii.  𝛾 ∈  (𝜆, 𝜆) ⇒ 𝛾 ∈  𝑆  
iii. 𝛾  ∈  (𝜆, 𝜆) ⇒ 𝜆, 𝜆 ∉ Λ(𝐴, 𝐵)  
iv. 𝛾 ≤   𝜆 ⇒ Λ(𝐴, 𝐵) = {𝜆} 

v. 𝛾 ≥  𝜆 ⇒ Λ(𝐴, 𝐵) = {𝜆} 
In order to prove (𝑖) suppose 𝜆 ∈  𝑆 hence we have  
𝑎𝑖𝑖   < 𝜆 ⊗  𝑏𝑖𝑖 ,   𝑎𝑛𝑑  𝑎𝑖𝑗  > 𝜆 ⊗  𝑏𝑖𝑗   
Using cancellation rule of Lemma 4.2 in this case we have:  
𝑎𝑖𝑗 ⊗  𝑥𝑗  = 𝜆 ⊗  𝑏𝑖𝑖  
𝑎𝑖𝑗  = 𝜆 ⊗  𝑏𝑖𝑖 ⊗  𝑥𝑗   
So that 𝑥2  = 𝜆 ⊗  𝑏𝑖𝑖  ⊗  𝑎𝑖𝑗

−1 and 𝑥2  = 𝜆−1 ⊗  𝑎𝑗𝑖 ⊗  𝑏𝑖𝑖
−1  from which  

 𝜆 = 𝛾 follows. 
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(𝑖𝑖) Suppose 𝛾 ∈  (𝜆, 𝜆) and put 𝜆 = 𝛾.  
by taking  𝑥2  = 𝜆 ⊗  𝑏𝑖𝑖 ⊗  𝑎𝑖𝑗

−1  = 𝜆−1 ⊗  𝑎𝑗𝑖 ⊗  𝑏𝑖𝑖
−1 we see that 𝜆 ∈ Λ(𝐴, 𝐵)  

 (𝑖𝑖𝑖) Suppose that 𝛾 ∈  (𝜆, 𝜆) and 𝜆 = 𝜆 ∈ Λ(𝐴, 𝐵) if 𝑎𝑖𝑗  <  𝑏𝑖𝑗  then 
𝑎𝑖𝑗 ⊗  𝑥𝑗  = 𝜆 ⊗  𝑏𝑖𝑖  
𝑎𝑖𝑗 ⊕ 𝜆 ⊗  𝑏𝑗𝑗 ⊗  𝑥𝑗  = 𝜆 ⊗  𝑏𝑖𝑖 ⊗  𝑥𝑗   
which indicate 𝜆2 ≥ 𝛾2 a contradiction. A contradiction in similar way is obtained when 𝑎𝑖𝑖  >  𝑏𝑗𝑗 

(𝑖𝑣) Suppose 𝛾 ≤  𝜆 due to (𝑖) it is sufficient to show that 𝜆 ∈ Λ(𝐴, 𝐵) and 𝜆 ∉ Λ(𝐴, 𝐵). Let 𝜆 =  𝜆. It is easily verified that  

𝑥2 = {

𝜆 ⊗ 𝑏𝑖𝑖 ⊗ 𝑎𝑖𝑗
=1    𝑖𝑓 𝑎𝑖𝑗 < 𝑏𝑖𝑗

𝜆−1 ⊗ 𝑎𝑖𝑗 ⊗ 𝑏𝑖𝑖
−1 𝑖𝑓 𝑎𝑖𝑗 > 𝑏𝑖𝑗

𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 [𝑎𝑖𝑖 ⊗ 𝑏𝑗𝑗 , 𝑎𝑖𝑗 ⊗ 𝑏𝑖𝑗
−1] 𝑖𝑓 𝑎𝑖𝑗 = 𝑏𝑖𝑗

 

 
(𝑣)  The proof of this part is similar to that of (𝑖𝑣) and it is omitted here. 

PROPOSITION 7  Λ(𝐴, 𝐵) ⊆  [𝜆, 𝜆]  holds for every ℝ𝑚× 𝑛 The interval [𝜆, 𝜆] will be called the feasibility interval for the 
generalized eigen-problem. 
 
5.0 GENERALIZED EIGENVALUE PROBLEM FOR BINARY ENTRIES 
Suppose that the entries of the matrices 𝐴 and 𝐵 of the generalized eigenvalue problem (GEP) 𝐴 ⊗ 𝑥 = 𝜆 ⊗ 𝐵 ⊗ 𝑥,are in 
the set {0, 1} 

(

𝑎11 𝑎12
⋯ 𝑎1𝑛

𝑎21 𝑎22
… 𝑎2𝑛

⋮   ⋮     ⋯ ⋮
𝑎𝑚1 𝑎𝑚2

⋯ 𝑎𝑚𝑛

) ⊗ (

𝑥1

𝑥2

⋮
𝑥𝑛

) = (

𝑏11 𝑏12 ⋯ 𝑏1𝑛

𝑏21 𝑏22 … 𝑏2𝑛

⋮   ⋮     ⋯ ⋮
𝑏𝑚1 𝑏𝑚2 ⋯ 𝑏𝑚𝑛

) ⊗ (

𝑥1

𝑥2

⋮
𝑥𝑛

) 

Thus we have: 
𝑎11 ⊗  𝑥1 ⊕   . . .⊕  𝑎1𝑛 ⊗  𝑥𝑛 = 𝜆 ⊗  (𝑏11 ⊗  𝑥1 ⊕   . . .⊕  𝑏1𝑛 ⊗  𝑥𝑛 ) 
𝑎21 ⊗  𝑥1 ⊕ . . .⊕  𝑎𝑛1 ⊗  𝑥𝑛 = 𝜆 ⊗  ( 𝑏21 ⊗  𝑥1 ⊕     . . .⊕  𝑏2𝑛 ⊗  𝑥𝑛 ) 
        
𝑎𝑚1 ⊗  𝑥1 ⊕  . . .⊕  𝑎𝑚𝑛 ⊗  𝑥𝑛  = 𝜆 ⊗  ( 𝑏𝑚1 ⊗  𝑥1 ⊕  . . .⊕ ⊗  𝑏𝑚𝑛 ⊗  𝑥𝑛)  
And therefore  

𝑚
⨂

𝑖 = 1
𝑗 = 1

𝑛
⨁

  𝑖 = 1
  𝑗 = 1

𝑎𝑖𝑗𝑥𝑗 =

𝑚
⨂

𝑖 = 1
𝑗 = 1

𝑛
⨁

  𝑖 = 1
  𝑗 = 1

𝜆𝑏𝑖𝑗𝑥𝑗   

THEOREM 8 If 𝐴 =  𝑎𝑖𝑗 , 𝐵 = 𝑏𝑖𝑗 ∈ ℝ𝑚 × 𝑛  are given matrices of the generalized eigenvalue problem in which the 
respective value of each 𝑎𝑖𝑗   and 𝑏𝑖𝑗  are binary, then 

𝜆 ∈ Λ(𝐴, 𝐵) = {

𝑎𝑖𝑗𝑏𝑖𝑗
−1 𝑖𝑓 𝑎𝑖𝑗 > 𝑏𝑖𝑗

 𝑎𝑖𝑗
−1𝑏𝑖𝑗 𝑖𝑓 𝑎𝑖𝑗 < 𝑏𝑖𝑗

𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 [𝑎𝑖𝑗𝑏𝑖𝑗
−1, 𝑎𝑖𝑗

−1𝑏𝑖𝑗] 𝑖𝑓 𝑎𝑖𝑗 = 𝑏𝑖𝑗  

 

𝜆  is finitely generated from the set   {-1, 0, 1} 
 PROOF 
Now given𝐴 ⊗ 𝑥 = 𝜆 ⊗ 𝐵 ⊗ 𝑥 where 𝑎𝑖𝑗    and  𝑏𝑖𝑗  are binary 𝜆 ∈ ℝ  we have that  

𝑚
⨂

𝑖 = 1
𝑗 = 1

𝑛
⨁

  𝑖 = 1
  𝑗 = 1

𝑎𝑖𝑗𝑥𝑗   =    

𝑚
⨂

𝑖 = 1
𝑗 = 1

𝑛
⨁

  𝑖 = 1
  𝑗 = 1

𝜆𝑏𝑖𝑗𝑥𝑗                       (6) 

From Proposition 7 𝑎𝑖𝑗 , 𝑏𝑖𝑗  satisfy on of the following: 
i. 𝑎𝑖𝑗 > 𝑏𝑖𝑗 ⇒ 𝛾 > 𝜆 

ii. 𝑎𝑖𝑗 = 𝑏𝑖𝑗 ⇒ 𝛾 ∈ (𝜆, 𝜆) 

iii. 𝑎𝑖𝑗 < 𝑏𝑖𝑗 ⇒ 𝛾 < 𝜆 
(i)  If 𝑎𝑖𝑗 > 𝑏𝑖𝑗  

𝑚
⨂

𝑖 = 1
𝑗 = 1

𝑎𝑖𝑗

𝑛
⨁

  𝑖 = 1
  𝑗 = 1

𝑥𝑗   =   𝜆 

𝑚
⨂

𝑖 = 1
𝑗 = 1

𝑏𝑖𝑗

𝑛
⨁

  𝑖 = 1
  𝑗 = 1

𝑥𝑗                        (7) 

And therefore 𝜆 <   𝜆 and by proposition 6 we can obtain the eigenvalue of the system in (7) as: 
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𝑛
⊕

𝑖 = 1
𝑗 = 1

𝑎𝑖𝑗   =   𝜆 

𝑛
⊕

𝑖 = 1
𝑗 = 1

𝑏𝑖𝑗 

Thus  

𝜆 =  

𝑚
⊗

𝑖 = 1
𝑗 = 1

 

𝑛
⊕

𝑖 = 1
𝑗 = 1

𝑎𝑖𝑗  𝑏𝑖𝑗
−1                                                           (8) 

 
(ii) if for all (𝑖, 𝑗) , 𝑎𝑖𝑗  =  𝑏𝑖𝑗  then from proposition 7 and the cancellation property of lemma 5, (6) becomes 

 

𝑛
⊕

𝑖 = 1
𝑗 = 1

𝑥𝑗  =  

𝑚
⊗

𝑖 = 1
𝑗 = 1

  

𝑛
⊕

𝑖 = 1
𝑗 = 1

𝜆𝑥𝑗                                                    (9) 

The system in (9) can only be feasible if 𝜆 =  0. This implies that if 𝑎𝑖𝑗  =  𝑏𝑖𝑗  the system 𝐴 ⊗  𝑥 =  𝜆 ⊗  𝐵 ⊗  𝑥 have a 
trivial solution. 
(iii) By similar argument from (i) if 𝑎𝑖𝑗 < 𝑏𝑖𝑗  we have that 

 𝜆 =  

𝑚
⊗

𝑖 = 1
𝑗 = 1

 

𝑛
⊕

𝑖 = 1
𝑗 = 1

𝑎𝑖𝑗
−1𝑏𝑖𝑗                                                           (10) 

5.1 Generalized Eigenvalue Problem For 2 By 2 Matrices With Binary Entries  
Here we solve the generalized eigenvalue problem for 2 ×  2 matrices with binary entries.  
The system below is considered the GEP for 2 ×  2 matrices. 

(
𝑎11 𝑎12

𝑎21 𝑎22
) ⊗ (

𝑥1

𝑥2
) =  (

𝑏11 𝑏12

𝑏21 𝑏22
) ⊗ (

𝑥1

𝑥2
) 

Simplified as  
𝑎𝑖1 ⊗ 𝑥1 ⊕ 𝑎𝑖2 ⊗ 𝑥2 = 𝑏𝑖1 ⊗ 𝑥1 ⊕ 𝑏𝑖2 ⊗ 𝑥2                     (11) 
We assume by homogeneity that x2 = 0 thus from (11) we have 
𝑎11 ⊗ 𝑥1 ⊕ 𝑎12 = 𝑏11 ⊗ 𝑥1 ⊕ 𝑏12 
𝑎21 ⊗ 𝑥1 ⊕ 𝑎22 = 𝑏21 ⊗ 𝑥1 ⊕ 𝑏22 
Where al  𝑎𝑖𝑗 , 𝑏𝑖𝑗 ∈ {0, 1} 
If 𝑎𝑖1  =  𝑏𝑖2 for some 𝑖 ∈  𝑀 then by Theorem 4 and Corollary 4.1 this value is the unique candidate for the generalized 
eigenvalue. 
Otherwise if 𝑎𝑖1𝑏𝑖1

−1  <  𝑎𝑖2𝑏𝑖2
−1 (or similarly 𝑎𝑖1𝑏𝑖1

−1  >  𝑎𝑖2𝑏𝑖2
−1 ) then the feasibility interval for the 𝑖 𝑡ℎ equation is 

[𝑎𝑖1𝑏𝑖1
−1 , 𝑎𝑖2𝑏𝑖1

−1]                                                                         (12)  
Thus Equation (11) using cancellation reduces to 
𝑎𝑖1 ⊗ 𝑥1 = 𝜆 ⊗ 𝑏𝑖1                                                                    (13) 
Hence  
; 𝑥1 = 𝜆 ⊗ 𝑏𝑖1 ⊗ 𝑎𝑖1

−1                                                                 (14) 
Example 1: (Numerical Example) 
Let 

𝐴 = (
1 1
1 0

)    𝑎𝑛𝑑  𝐵 =  (
1 0
1 1

) 

The generalized eigenvalue problem is expressed as: 

(
1 1
1 0

) ⊗ (
𝑥1

𝑥2
) = 𝜆 ⊗ (

1 0
1 1

) ⊗ (
𝑥1

𝑥2
) 

Thus, 
1 ⊗ 𝑥1 ⊕ 1 ⊗ 𝑥2 = 𝜆 ⊗ 1 ⊗ 𝑥1 ⊕ 𝜆 ⊗ 𝑥2                          (15) 
1 ⊗ 𝑥1 ⊕ 𝑥2 = 𝜆 ⊗ 1 ⊗ 𝑥1 ⊕ 𝜆 ⊗ 1 ⊗ 𝑥2                          (16) 
From (15) 
𝜆 = 0 𝑜𝑟 𝜆 = 1 
This satisfy the feasibility interval for the 𝑖𝑡ℎ  equation (12) i.e. λ ∈ [0, 1]. From A and B it is clear that    ∀𝑖 ∈
 𝑀, 𝑎𝑖1𝑏𝑖1

−1  <  𝑎𝑖2𝑏𝑖2
−1. Now by homogeneity suppose without loss of generality that 𝑥2   =  0,  

So that  
1 ⊗  𝑥1 ⊕  1 =  𝜆 ⊗  1 ⊗  𝑥1 ⊕  𝜆 ⊗  0                         (17) 
Using cancellation property  
1 ⊗  𝑥1  =  𝜆  
𝑥1  =  𝜆 ⊗  1 −  1 
 𝑥1  =  𝜆  
This satisfy the result of equation (13).  
Now since either  𝜆 =  0 𝑜𝑟 𝜆 = 1 and 𝑥1 cannot be 0 thus 𝑥1  =  1 
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