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Abstract 
 

We present the theory of non-commutative stopping time were the von Neumann 

algebra is semi-finite that is the von Neumann algebra has a faithful, normal and 

semi-finite trace. We define a representation mapping and analyze the representation 

mapping into the existing properties of stopping times and time projection. We also 

prove the optional stopping theorem. 
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1. INTRODUCTION 

The theory of quantum probability plays a vital role in the study of operator algebras such as C*-algebra, W*-algebra 

(also known as von Neumann algebra). An operator 𝑇 ∈ 𝐵(𝐻) (the space of bounded linear operator (B(H)) acting on 

a Hilbert space(H)) is a map 𝐵: 𝐻 → 𝐻 which is bounded and linear. A von Neumann algebra is a unital sub-algebra of 

𝐵(𝐻) which is closed with respect to the weak operator topology.  

The theory of von Neumann algebras was initiated and developed by J. von Neumann and F. J. Murray in their series 

of papers [1-4]. Their theories were extensively studied by many authors such as [5] and [6]. Non-commutative 

stopping time could trace back to the work of [7] where he formulated the concept of stopping time to a non-

commutative setting as a projection valued measure. 

The “Stopping non-commutative processes” was investigated by [8] where they indicated that the ’formalism’ of 

stopping times carries over to a non-commutative context exist and prove an Optional Stopping Theorem. Following 

the ideas of [7], a composition operation in the space of stop time to make it a semigroup was introduced by [9], stop 

time integrals are also introduced and their properties constitute the basic tools for the subject. They imply the strong 

Markov property of quantum Brownian motion in the boson as well as fermion sense and the Dynkin-Hunt property 

that the classical Brownian motion begins afresh at each stop time. The stopped Weyl and fermion processes were 

defined and their properties were studied. Time Projections in a von Neumann algebra was studied by [10]. In their 

work they characterized some stopped processes in the theory of stopping times and stopping integration within the 

context of the Clifford Filtration. The work of [8] was further extended by [11] where they proved an analogue of 

Doob’s optional stopping theorem and in the special case of the quasi-free representation of the Canonical Anti-

Commutation Relations (CAR) and also proved the random stopping theorem where the underlying von Neumann 

algebra possesses only a faithful normal state. Random times and their associated time projections within the context of 

quantum probability theory were discussed by [12]. A stochastic integral representation for time projections was 

obtained, and their order structure was investigated. Random times, predictable processes and stochastic integration in 

finite von Neumann algebra were discussed by [13] where they offered a viewpoint for the theory of non-commutative 

stochastic processes. In support of this view, they considered random times and random stopping as a departure point 

and constructed a class of predictable processes using random times. They defined various stochastic integrals of these 

predictable processes and prove some elementary result on a finite von Neumann algebra. Quantum stopping times, 

quantum stochastic interval, stopping quantum L1-process by quantum stopping times and the relationship between 

stopping and Doob-Meyer decomposition of the squares of quantum martingales were discussed by [14]. 
 

2. Preliminaries  

In this section, we present preliminary results, definitions and fundamentals of von Neumann algebra. 

Definition 2.1 Let H be a separable Hilbert space over the complex field ℂ. The identity operator on H is denoted by 

𝐼𝐻 , or 𝐼 simply if no confusion arises. We introduce the following locally convex topologies in B(H): 

1. uniform (operator) topology: It is the topology generated by the operator norm ‖. ‖.  
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2. weak (operator) topology: If a net  𝑎𝑖 →  0, then 

〈𝑎𝑖ξ, η〉 →  0 ∀  ξ,η ∈ H; 

3. strong (operator) topology: If a net 𝑎𝑖 →  0, then 
‖𝑎𝑖ξ‖→ 0 ∀  ξ ∈ H; 

4. σ-weak (operator) topology: If a net  𝑎𝑖 →  0, then 

   ∑ 〈𝑎𝑖ξ𝑛, η𝑛〉𝑛  → 0, ∀  ∑ (‖ξ𝑛‖2 + ‖η𝑛‖2)𝑛 < ∞; 

5. σ-strong (operator) topology: If a net 𝑎𝑖 →  0, then 

∑ ‖𝑎𝑖ξ𝑛‖2
𝑛  → 0 ∀  ∑ ‖ξ𝑛‖2

𝑛  < ∞. 

Definition 2.2 A von Neumann algebra M is a unital self-adjoint sub-algebra of B(H) which is closed in the weak 

operator topology. That is, I ∈ M, a = a∗ and the net 𝑎𝑖 →  𝑎 in the weak operator topology if 〈𝑎𝑖ξ, η〉 →  〈𝑎ξ, η〉 ∀ ξ,η 

∈ H. Alternatively, a * sub-algebra M of B(H) is called a von Neumann algebra, if  𝑀 = 𝑀′′, 

where 𝑀′′ = {b ∈ B(H) : ba = ab, ∀a ∈ M}is the commutant of 𝑀, and 𝑀′′ = (𝑀′)′ is the double commutant of 𝑀. 

Note that 𝑀′ is also a von Neumann algebra. 

Definition2.3 Let H be a Hilbert space. A bounded operator P: H → H is called a projection if 

𝑃∗ = 𝑃2 = 𝑃. 

Definition 2.4 Let M be a von Neumann algebra and let w: M → k be a linear functional on M. Then w is said to be 

i. positive, if w(𝑎) ≥ 0 for any 𝑎 ∈ 𝑀+ (where 𝑀+ = {𝑎 ∈ 𝑀 | ≥ 0} the set of all positive elements of 𝑀), and is denoted 

by w ≥ 0,. Moreover, for two linear functionals w, ψ on 𝑀, the relation ψ ≤ w means that (w − ψ) ≥ 0. A positive linear 

functional w is said to be: 

ii. faithful, if w(𝑎) = 0 for some 𝑎 ∈ 𝑀+, then we have 𝑎 = 0. 

iii. normal, if for any bounded increasing net {𝑎𝑖}⊂ 𝑀+, we have supi w(a) = w(supi a). 

iv. state, if w(I) = 1. 

v. trace, if w(𝑎∗𝑎) = w(𝑎𝑎∗) ∀𝑎 ∈ 𝑀+.  

vi. weight, if w(λ𝑎 + b) = λw(𝑎) + w(b), ∀λ ≥ 0, 𝑎,b ∈ 𝑀+ 

Consider the set 𝑀+w = {x ∈ 𝑀+ | w(x) < ∞}, We say that a linear functional ω is semi-finite if 𝑀+w is weakly dense 

in 𝑀+. In addition, a linear functional ω on 𝑀 is called a normal state (on 𝑀), if it is positive, normal and state. 

Definition 2.5 A von Neumann algebra M is said to be: 

i. σ-finite, if M has a faithful, normal and state. 

ii. semi-finite, if M has a faithful, normal and semi-finite trace. 

iii. finite, if M has a faithful, normal and tracial state. 

Definition 2.6 Let 𝑀 be a von Neumann algebra on a Hilbert space H. A vector Ω ∈ H is cyclic for 𝑀 if the set {𝑎Ω : 

𝑎 ∈ M} is dense in H and Ω ∈ H is separating for 𝑀 if for all a ∈ 𝑀, aΩ = 0 for all Ω ∈ H implies 𝑎 = 0. 

Definition 2.7 Let M be a von Neumann algebra and π be a map from M to B(H), then (π, H) is called a *-

representation of M if: 

i. π(λa + µb) = λπ(a) + µπ(b), ∀ a, b ∈ M, λ,µ ∈C 

ii. π(ab) = π(a)π(b), ∀a, b ∈ M  

iii. π(a∗) = π(a)∗, ∀a ∈ M 

For any positive linear functional 𝑤 on M, we get a *-representation (π𝑤, H𝑤) of M and this representation admits a 

cyclic vector Ω𝑤 that is π𝑤(𝑀)Ω𝑤 = H𝑤  such that ω(𝑎) =< π𝑤(𝑎)Ω𝑤 , Ω𝑤 >  ∀a ∈ M. This is called the GNS 

construction. 

Definition 2.8 Let N be a von Neumann sub-algebra of M. P is called a projection of norm one from M onto N, if P is 

linear, PM = N, Pb = b, ∀b ∈ N, and ║Pa║ ≤ ║a║, ∀a ∈ M. 

That is, by a projection of norm one we mean a projection mapping from a Banach space onto its subspace whose norm 

is one. 

Definition 2.9 Let N be a von Neumann sub-algebra of M. A conditional expectation mapping E from M to N is 

positive contraction E: M → N such that E(b) = b and such that E(bx) = bE(x) and E(xb) = E(x)b  ∀ x ∈ M, b ∈ N (E is 

N-linear). 

Therefore, a conditional expectation is a self-adjoint idempotent map from M to M (a projection onto N) of norm one. 

The conditional expectation does not always exists, [15] presents a condition for the existence of a conditional 

expectations as follows 

Theorem 2.10 (Takesaki (1972), Theorem 1) Let M be a von Neumann algebra and ω is faithful, semi-finite, normal 

weight on M+. Let N be a von Neumann sub-algebra of M on which ω is semifinite. Then the following two statements 

are equivalent: 
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i. N is invariant under the modular automorphism group σt associated with ω; 

ii. There exists a σ-weakly continuous faithful projection E of norm one from M onto N such that 

w(x) = w ◦ E(x)  ∀x ∈ M 

The projection E of norm one of M onto N is called the conditional expectations of M onto N with respect to ω. 

Definition 2.11 For each non-negative t, let {𝑀𝑡Ω̅̅ ̅̅ ̅̅ ‖.‖ = 𝐻𝑡} be the family of Hilbert subspaces of 𝑀Ω̅̅ ̅̅ ̅‖.‖ = 𝐻 such that 

i. if t, s ∈ ℝ̅+ with s ≤ t then 𝐻𝑠 ⊆ 𝐻𝑡  

ii.  (∪𝑡≥0 𝐻𝑡)𝐼𝐼 = 𝐻  

iii. iii.  ∩t > s 𝐻𝑡  = 𝐻𝑠  

From the definition above, the family {𝐻𝑡}t ∈ ℝ̅+  is called a filtered Hilbert space. 

 

3. Main Result 

In this section, we present an analysis of a representation mapping and thereby introduce the representation mapping to 

stopping times and time projections. 

Let H be a separable Hilbert space and let B(H) be the space of bounded linear operators on H, and let 𝑀 ⊆ B(H) a von 

Neumann algebra with a faithful normal state ω and with cyclic and separating vector Ω in H such that ω(x) = <
xΩ, Ω >, ∀x ∈ 𝑀. For each non-negative t, let {𝑀𝑡 : t ∈ℝ̅+} be the family of von Neumann sub-algebra of 𝑀 such that 

i. if t, s ∈𝑅+̅̅ ̅̅  with s ≤ t then 𝑀𝑠 ⊆ 𝑀𝑡  

ii. the von Neumann algebra 𝑀 is generated by ⋃ 𝑀𝑡t≥0   that is ⋃ 𝑀𝑡t≥0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ‖.‖

= 𝑀 

iii. ⋂ 𝑀𝑡  =  𝑀𝑡  t > s   

Finally, suppose there exists the family of faithful normal conditional expectations {𝐸𝑡: t ∈ℝ̅+} from 𝑀 onto 𝑀𝑡 such 

that 

iv.  ω ◦ 𝐸𝑡 = ω  ∀ t ∈ ℝ̅+ 

v.   𝐸𝑡 (𝑎xb) = 𝑎𝐸𝑡(x)b   ∀ 𝑎, b ∈ 𝑀𝑡, x ∈𝑀 

vi.  𝐸𝑡 (I) = I 

Now we can define an inner product on 𝑀 by 

< 𝑎, b > = ω(b* 𝑎)  ∀ 𝑎, b ∈ 𝑀 with       √< 𝑥, 𝑥 > = ‖𝑥‖2,  x ∈ 𝑀 

(𝑀, < ., . >) is a pre-Hilbert space and we denotes its closure with respect to ‖. ‖2 by 𝐿2(𝑀) = 𝑀Ω̅̅ ̅̅ ̅‖.‖2 = 𝐻. In a 

similar way, we can construct  𝐿2(𝑀𝑡) and so 𝐿2(𝑀𝑡) ⊆ 𝐿2(𝑀). 

The map π: M → B(𝐿2(𝑀)) defined by  π(𝑎).b = 𝑎 b for a ∈ M b ∈ 𝐿2(𝑀)    and 

π(𝑎)b = lim
𝑛→∞

𝑎𝑏𝑛 ∈ 𝐿2(𝑀), for 𝑏𝑛 → 𝑏 ∈ 𝐿2(𝑀) is a well defined homomorphism since 

π(𝑎 + b).c = (𝑎 + b)c 

= 𝑎 c + 𝑎 b 

= π(𝑎).c + π(b).c 

⇒ π(𝑎 + b) = π(𝑎) + π(b) 

and 

π(𝑎b).c = (𝑎b).c 

= 𝑎(bc) 

= π(𝑎)(bc) 

= π(𝑎)π(b).c 

⇒ π(𝑎b) = π(𝑎)π(b) 

Furthermore, π is normal positive map, suppose 𝑎𝑖 → 𝑎, then by definition of π, we have 

π(𝑎𝑖).b = 𝑎𝑖b → 𝑎b = π(𝑎)b       (1) 

and so (1) imply that we have π(𝑎) = π(sup
𝑖

𝑎𝑖) = sup (π
𝑖

(𝑎𝑖)) 

making π normal. Finally π is injective since   π(𝑎) = 0  ⇒ π(𝑎).I = 0 ⇒ 𝑎 = 0 

From the above properties, we also observe that π(𝑀) is a von Neumann algebra using the fact that the unit ball of 

π(𝑀) is ultra-weakly compact. So π(𝑀) becomes an isometric copy of 𝑀. Furthermore, I is a cyclic and separating 

vector for π(𝑀) since {π(𝑎).I : 𝑎 ∈ 𝑀 } = 𝑀 is dense in 𝐿2(𝑀), and π(𝑎)I = 0 ⇒ 𝑎 = 0 ⇒ π(𝑎) = 0 

Remark 3.1  Let {𝐸𝑡 , t ∈ ℝ̅+} be a family conditional expectation from 𝑀 onto 𝑀𝑡. Then a map 𝑃𝑡 defined on 𝐿2(𝑀) 

by 𝑃𝑡(𝑎Ω) = 𝐸𝑡(𝑎)Ω, For each t ∈ ℝ̅+is a projection from 𝐿2(𝑀) onto 𝐿2(𝑀𝑡) = 𝑀𝑡Ω̅̅ ̅̅ ̅̅ ‖.‖ and ∀ 𝑎 ∈ 𝑀 and 𝑃𝑡 lies in the 

commutant of π(𝑀).  

To see this, we need to show that  𝑃𝑡
2 = 𝑃𝑡  and  𝑃𝑡

∗ = 𝑃𝑡. 

Now 
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 𝑃𝑡
2(𝑎Ω) = 𝑃𝑡(𝑃𝑡 (𝑎Ω)) 

  = 𝑃𝑡(𝐸𝑡(𝑎)Ω) 

Since 𝐸𝑡(𝑎)Ω = a𝑎Ω ∈ 𝐿2(𝑀𝑡) = 𝑀𝑡Ω̅̅ ̅̅ ̅̅ ‖.‖. We have 

𝑃𝑡(𝐸𝑡(𝑎)Ω) = 𝑃𝑡(𝑎Ω) ⇒ 𝑃𝑡
2(𝑎Ω) = 𝑃𝑡(𝑎Ω) 

and so 𝑃𝑡 is an idempotent. 

Also for a,b ∈ M we have 

〈𝑃𝑡(aΩ), bΩ〉 = 〈𝑃𝑡(aΩ), 𝑃𝑡(bΩ)  +  (1 − 𝑃𝑡)(bΩ)〉  
   = 〈𝑃𝑡(aΩ), 𝑃𝑡(bΩ)〉 + 〈𝑃𝑡(aΩ), (1 − 𝑃𝑡)(bΩ)〉 
Since 𝑃𝑡 (aΩ) ∈ 𝐿2(𝑀𝑡) then  (1 − 𝑃𝑡)(bΩ) ∈ 𝐿2(𝑀𝑡)⊥ ⇒〈𝑃𝑡(aΩ), (1 − 𝑃𝑡)(bΩ)〉 = 0 and so we have 〈𝑃𝑡(aΩ), bΩ〉 = 
〈𝑃𝑡(aΩ), 𝑃𝑡(bΩ)〉      (2) 

again 

〈aΩ, 𝑃𝑡(bΩ)〉 = 〈𝑃𝑡(aΩ)  +  (1 − 𝑃𝑡)(aΩ), 𝑃𝑡(bΩ)〉 
   = 〈𝑃𝑡(aΩ), 𝑃𝑡(bΩ)〉 + 〈(1 − 𝑃𝑡)(aΩ), 𝑃𝑡(bΩ)〉 
also 〈(1 − 𝑃𝑡)(aΩ), 𝑃𝑡(bΩ)〉 = 0 
〈aΩ, 𝑃𝑡(bΩ)〉 = 〈𝑃𝑡(aΩ), 𝑃𝑡(bΩ)〉       (3) 

and so from 2 and 3 we have that  〈𝑃𝑡(aΩ), bΩ〉 = 〈aΩ, 𝑃𝑡(bΩ)〉 
and since 〈𝑃𝑡(aΩ), bΩ〉 = 〈aΩ, 𝑃𝑡

∗(bΩ)〉 
⇒ 𝑃𝑡

∗ = 𝑃𝑡 and so 𝑃𝑡 is self-adjoint and hence, 𝑃𝑡 an orthogonal projection onto L2(Mt). 

Now we show that 𝑃𝑡 lies in the commutant of π(M). To see this, we have 

𝑃𝑡 (xyΩ) = Et(xy)Ω,  ∀ x ∈ π(M), y ∈ π(M)  

   = Et(x)yΩ 

   = yEt(x)Ω 

   = y𝑃𝑡(xΩ) 

Since MΩ is dense in H, then the result follows.  

Here, we use the representation mapping to define stopping times, time projections and analyse some of their 

properties. 

Definition 3.2 A stopping time, τ, adapted to the filtration of von Neumann algebras (π(𝑀𝑡))t ∈ℝ̅+ is an increasing 

family {π(𝑞𝑡)}t ∈ ℝ̅+ of projections in M such that: 

i.  τ(t) = π(𝑞𝑡) ∈ π(𝑀𝑡)𝑝𝑟𝑜𝑗 

ii.  τ(0) = π(𝑞0) = 0 

iii.  τ(∞) = π(𝑞∞) = I  

Definition 3.3 Let τ = π(𝑞𝑡)t ∈ ℝ̅+ and σ = π(𝑟𝑡)t ∈ ℝ̅+  be stopping times. We can define an order τ ≤ σ ⇔ π(𝑟𝑡) ≤ π(𝑞𝑡). 

We define τ ∧ σ = π(𝑞𝑡) ∨ π(𝑟𝑡) and τ ∨ σ = π(𝑞𝑡) ∧ π(𝑟𝑡).  

Let Θ denote the set of all finite partitions of [0, ∞]. Then for θ ∈ Θ say θ = {𝑡0,..., 𝑡𝑛}, we define an operator Pτ(θ) on 

H as 

Pτ(θ) = ∑ π (𝑞𝑡𝑖
− 𝑞𝑡𝑖−1

)𝑃𝑡𝑖

𝑛
𝑖=1  = ∑ ∆π (𝑞𝑡𝑖

)𝑃𝑡𝑖

𝑛
𝑖=1      (4) 

Theorem 3.4 Let τ(t) = π(𝑞𝑡) be a stopping time. Then 

(i)  Pτ(θ) is an orthogonal projection 

(ii)  if θ1, θ2 ∈ Θ with θ2 ⊇ θ1 then Pτ(θ2) ≤ Pτ(θ1) 

(iii)  if σ = π(𝑟𝑡) is another stopping time with τ ≤ σ then Pτ(θ) ≤ Pσ(θ) 

Proof. 

(i) Let τ = π(𝑞𝑡), ξ ∈ H and θ = {𝑡0, 𝑡1, . . . , 𝑡𝑛} ∈ Θ then 

Pτ(θ) ◦ Pτ(θ) (ξ) = ∑ ∆π (𝑞𝑡𝑗
) 𝑃𝑡𝑗

𝑛
𝑗=1 ( ∑ ∆π (𝑞𝑡𝑖

)𝑃𝑡𝑖

𝑛
𝑖=1 ) (ξ)  (by 4) 

         = ∑ ∑ ∆π (𝑞𝑡𝑗
) 𝑃𝑡𝑗

𝑛
𝑖=1

𝑛
𝑗=1 ∆π (𝑞𝑡𝑖

)𝑃𝑡𝑖
 (ξ) 

         = ∑ ∑ 𝑃𝑗
𝑛
𝑖=1

𝑛
𝑗−1 ∆π (𝑞𝑡𝑗

) ∆π (𝑞𝑡𝑖
)𝑃𝑡𝑖

 ξ 

         = ∑ 𝑃𝑡𝑖

𝑛
𝑖=1 ∆π (𝑞𝑡𝑖

)ξ 

         =  Pτ(θ) (ξ) 

Since ∆π (𝑞𝑡𝑗
) ∆π (𝑞𝑡𝑖

) = 0 for i ≠ j, then we have 

Pτ(θ) ◦ Pτ(θ)  = Pτ(θ) that is 𝑃2
τ(θ) = Pτ(θ). Thus Pτ(θ) is an idempotent. 

Also for ξ, η ∈ H, we have 

< Pτ(θ)η, ξ > = < ∑ ∆π (𝑞𝑡𝑖
)𝑃𝑡𝑖

𝑛
𝑖=1 η, ξ > 
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= ∑ < η, 𝑃𝑡𝑖
∆π (𝑞𝑡𝑖

)ξ >𝑛
𝑖=1  

   = ∑ < η, ∆π (𝑞𝑡𝑖
)𝑃𝑡𝑖

ξ >𝑛
𝑖=1  

   = <  η, ∑ 𝑃𝑡𝑖

𝑛
𝑖=1 ∆π (𝑞𝑡𝑖

)ξ >  

         = < η,  Pτ(θ)ξ > 

that is    < Pτ(θ)η, ξ > = < η, Pτ(θ)ξ >      (5) 

but 

< Pτ(θ)η, ξ > = < η, 𝑃∗
τ(θ)ξ >       (6) 

From (5) and (6) we see that    𝑃∗
τ(θ) = Pτ(θ). Hence, Pτ(θ) is a self-adjoint establishing (i). 

 (ii)  Suppose  θ2 =  θ1 ∪{s} where  θ1 = {𝑡0 < . . . 𝑡𝑛} with 𝑡𝑖 < 𝑡𝑖+1 and s ∈ {𝑡𝑟, 𝑡𝑟+1}, r + 1 < n . Then for ξ ∈ H, 

Pτ(θ1) ◦ Pτ(θ2)(ξ)  = ∑ ∆π (𝑞𝑡𝑗
) 𝑃𝑡𝑗

𝑛
𝑗=1 ( ∑ ∆π (𝑞𝑡𝑖

)𝑃𝑡𝑖
(ξ) 𝑟

𝑖=1 ) 

   + ∑ ∆π (𝑞𝑡𝑗
) 𝑃𝑡𝑗

𝑛
𝑗=1  π (𝑞𝑡𝑠

− 𝑞𝑡𝑟
)𝑃𝑡𝑠

(ξ)  

   + ∑ ∆π (𝑞𝑡𝑗
) 𝑃𝑡𝑗

𝑛
𝑗=1  π (𝑞𝑡𝑟+1

− 𝑞𝑡𝑠
)𝑃𝑡𝑟+1

(ξ)  

   + ∑ ∆π (𝑞𝑡𝑗
) 𝑃𝑡𝑗

(∑ ∆π (𝑞𝑡𝑗
) 𝑃𝑡𝑗

(ξ)𝑛
𝑗=1 )𝑛

𝑗=1  

Using the fact that 𝑃𝑡 lies in the commutant of π(M) and the orthogonality of ∆π(𝑞𝑡𝑗
) and ∆π(𝑞𝑡𝑖

) and for  θ1 ⊆  θ2 we have 

Pτ(θ1) ◦ Pτ(θ2)(ξ)   = ∑ ∆π (𝑞𝑡𝑗
) 𝑃𝑡𝑗

(ξ)𝑛
𝑗=1 +  π (𝑞𝑡𝑠

− 𝑞𝑡𝑟
)𝑃𝑡𝑠

(ξ) 

 + π (𝑞𝑡𝑟+1
− 𝑞𝑡𝑠

)𝑃𝑡𝑟+1
(ξ) + ∑ ∆π (𝑞𝑡𝑗

) 𝑃𝑡𝑗

𝑛
𝑗=1 (ξ) 

    = Pτ(θ2)(ξ)  ⇒ Pτ(θ1) ◦ Pτ(θ2) = Pτ(θ2) 

and so  Pτ(θ2) ≤  Pτ(θ1) 

⇒ (Pτ(θ)) θ ∈ Θ is a decreasing net of orthogonal projections and so, the infimum exists and let 𝑃τ = infθ ∈ Θ Pτ(θ).  

Definition 3.5 For a stopping time τ = (π(𝑞𝑡))t ∈ ℝ̅+ we can define the time projection at τ, 𝑃τ, as 

𝑃τ = infθ ∈ Θ ∑ ∆π (𝑞𝑡𝑖
)𝑃𝑡𝑖

(ξ) 𝑛
𝑖=1  = infθ ∈ ΘPτ(θ) 

(iii)  Given σ ≥ τ, let σ = π(𝑟𝑡). So that π(𝑟𝑡) ≤ π(𝑞𝑡) for each t ∈ ℝ̅+. Let θ ∈ Θ be as in (ii) above say, then 

∑ ∆π (𝑞𝑡𝑖
)𝑛

𝑖=1 = ∑ π (𝑞𝑡𝑖
− 𝑞𝑡𝑖−1

)𝑛
𝑖=1    

     = π (𝑞𝑡1
) − π(𝑞𝑡0

) + π (𝑞𝑡2
) − π(𝑞𝑡1

) + π(𝑞𝑡3
) − π(𝑞𝑡2

) + π(𝑞𝑡4
) − π(𝑞𝑡3

) 

     + . . . + π (𝑞𝑡𝑛−3
− π(𝑞𝑡𝑛−2

) + π (𝑞𝑡𝑛−1
) − π(𝑞𝑡𝑛−2

) + π (𝑞𝑡𝑛
) − π(𝑞𝑡𝑛−1

) 

     = π (𝑞𝑡𝑛
) − π(𝑞𝑡0

) 

     = I − 0  where π(𝑞𝑡0
) = 0 and π(𝑞𝑡𝑛

) = I  

     = I 

and so we have 

I = ∑ ∆π (𝑞𝑡𝑖
)𝑛

𝑖=1 = ∑ ∆π (𝑟𝑡𝑖
)𝑛

𝑖=1  

Now Pτ(θ) ◦ Pσ(θ) = ∑ ∆π (𝑞𝑡𝑖
)𝑛

𝑖=1 𝑃𝑡𝑖
(∑ ∆π (𝑟𝑡𝑗

)𝑃𝑡𝑗

𝑛
𝑗=1 ) 

But  ∆π (𝑞𝑡𝑖
)𝑃𝑡𝑖

∑ ∆π (𝑟𝑡𝑗
)𝑃𝑡𝑗

𝑛
𝑗=1 =  ∑ ∆π (𝑞𝑡𝑖

)𝑃𝑡𝑖
∆π (𝑟𝑡𝑗

)𝑛
𝑗=1  

from the fact that 𝑃𝑡 lies in the commutant of π(M) and observing that ∆π(𝑟𝑡𝑗
) ≤ ∆π(𝑞𝑡𝑖

) for j ≤ i − 1, we see that 

  Pτ(θ) ◦ Pσ(θ) = ∑ ∑ ∆π (𝑞𝑡𝑖
)𝑃𝑡𝑖

𝑛
𝑗=1

𝑛
𝑖=1 ∆π (𝑟𝑡𝑗

)𝑃𝑡𝑗
 

          = ∑ (∑ ∆π (𝑞𝑡𝑖
)𝑃𝑡𝑖

𝑛
𝑗=1

𝑛
𝑖=1 ∆π (𝑟𝑡𝑗

) + ∆π (𝑞𝑡𝑖
)𝑃𝑡𝑖

(𝐼 − ∑ ∆π (𝑟𝑡𝑘
)𝑛

𝑘=1 ) 

          =∑ ∆π (𝑞𝑡𝑖
)𝑛

𝑖=1 𝑃𝑡𝑖
 

       = Pτ(θ) 

Hence Pτ(θ) ≤ Pσ(θ)  establishing (iii) 

Theorem 3.6  Let τ = π(𝑞𝑡) and σ = π(𝑟𝑡) be stopping times, and let θ ∈ Θ. Then 

P(σ∨τ)(θ)  = Pσ(θ) ∨ Pτ(θ) and  P(σ∧τ)(θ)  = Pσ(θ) ∧ Pτ(θ) 

Proof. Suppose that θ = {𝑡0, 𝑡1, . . . , 𝑡𝑛} ∈ Θ, then for any ξ ∈ H, we have 

𝑃⊥
σ(θ)ξ = ∑ π (𝑟𝑡𝑖

)𝑛
𝑖=1 ∆𝑃𝑡𝑖

ξ 

 = ∑ π (𝑟𝑡𝑖
)𝑛

𝑖=1 (𝑃𝑡𝑖
− 𝑃𝑡𝑖−1

)ξ 

and hence 

 𝑃⊥
τ(θ) ◦ 𝑃⊥

σ(θ)ξ  = ∑ π (𝑞𝑡𝑗
)𝑛

𝑗=1 ∆𝑃𝑡𝑗
(∑ π (𝑟𝑡𝑖

)𝑛
𝑖=1 ∆𝑃𝑡𝑖

ξ) 

      = ∑ ∑ π (𝑞𝑡𝑗
) ∆𝑃𝑡𝑗

𝑛
𝑖=1 π (𝑟𝑡𝑖

)𝑛
𝑗=1 ∆𝑃𝑡𝑖

ξ 
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       = ∑ ∑ π(𝑞𝑡𝑗
)∆𝐸𝑡𝑗

(𝑛
𝑖=1 π (𝑟𝑡𝑖

))∆𝑃𝑡𝑗

𝑛
𝑗=1 ∆𝑃𝑡𝑖

ξ 

Where ∆𝐸𝑡𝑗
 = 𝐸𝑡𝑗

− 𝐸𝑡𝑗−1
 and the conditional expectation is 𝐸𝑡 = ∑ π(𝑟𝑡𝑗

)π(𝑞𝑡𝑗
)𝑛

𝑗=1 ∆𝑃𝑡𝑗
ξ 

since ∆𝑃𝑡𝑖
∆𝑃𝑡𝑗

 = 0 for i ≠ j It follows that 

(𝑃⊥
τ(θ) ° 𝑃⊥

σ(θ))𝑘ξ = ∑ (π(𝑟𝑡𝑗
)π(𝑞𝑡𝑗

))
𝑘

𝑛
𝑗=1 ∆𝑃𝑡𝑗

ξ 

for any k=1, 2, ... 

Letting k →∞, we obtain 

 𝑃⊥
τ(θ)  ∧  𝑃⊥

σ(θ)ξ = ∑ (π(𝑟𝑡𝑗
) ∧ π(𝑞𝑡𝑗

))𝑛
𝑗=1 ∆𝑃𝑡𝑗

ξ 

= P(τ ∨ σ)(θ)ξ 

Taking the orthogonal complements, we see that 

 Pτ(θ) ∨ Pσ(θ) =  P(τ ∨ σ)(θ). 

For the infimum, we begin with 

 Pσ(θ)ξ = 𝑃0ξ + ∑ π(𝑟𝑡𝑖
⊥)∆𝑃𝑡𝑖

𝑛
𝑖=1 ξ 

As above we see that 

(Pτ(θ) ° Pσ(θ) )𝑘ξ = ∑ (π(𝑞𝑡𝑖
⊥)π(𝑟𝑡𝑖

⊥))
𝑘𝑛

𝑖=1 ∆𝑃𝑡𝑖
ξ 

 

Letting k →∞, we get 

 Pτ(θ) ∧ Pσ(θ) = P(τ ∧ σ)(θ) 

 

Theorem 3.7 (optional stopping) For stopping times τ, σ with τ ≤ σ, we have Pτ≤ Pσ. 

 Proof.  

From theorem 3.4 (iii)  Pτ(θ) ≤  Pσ(θ) ∀θ. The result now follows by taking the limit as θ refines.  

Corollary 3.8 For any stopping times τ, σ we have Pτ ∧ Pσ = P(τ∧σ). 

Proof. we have τ ∧ σ ≤ τ and so P(τ∧σ) ≤ Pτ (by optional stopping theorem).   

Similarly, P(τ∧σ) ≤ Pσ. Hence P(τ∧σ) ≤ Pτ ∧ Pσ. On the other hand, for any θ ∈ Θ, 

Pτ(θ) ∧ Pσ(θ) = P(τ ∧ σ)(θ)  (By theorem 3.5) 

Hence 

Pτ ∧ Pσ ≤ Pτ(θ) ∧ Pσ(θ) = P(τ ∧ σ)(θ)    ∀ θ ∈ Θ 

giving 

Pτ ∧ Pσ ≤ P(τ∧σ) 

 

Conclusion 

In conclusion, we present the theory of non-commutative stopping time and time projection on a filtered Hilbert space where we 

define our representation mapping on the filtered Hilbert space using the general definition of filtration and thereby introduce the 

representation mapping on stopping times and time projection. We also prove the optional stopping theorem.    
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