NEW RESULTS ON A CERTAIN CLASS OF ANALYTIC FUNCTIONS

Folashade Mistura Jimoh ${ }^{1}$ and Mohammed Umar Faruq ${ }^{2}$
${ }^{1}$ Department of Physical Sciences, Al-Hikmah University, Ilorin, Kwara State, Nigeria
${ }^{2}$ Department of Computer Science, Kwara State College of Arabic and Islamic Studies, Ilorin, Kwara State, Nigeria

Abstract
The class ${ }_{J_{n}}{ }^{(\beta)}$ is a generalized class of analytic functions that was first studied in [1]. In that paper, it was proved that analytic functions belonging to $J_{n}^{\alpha}(\beta)$ are univalent for $n \geq 1$. Results on sufficient inclusion criteria for functions to be in $J_{n}^{\alpha}(\beta)$ were also establised. In this article, we provide more characterizations for the class $J_{n}^{\alpha}(\beta)$ of analytic functions. Specifically, using the well-known Jack's Lemma and some properties of functions with positive real part, we obtain another sufficient inclusion result for functions to be in $J_{n}^{\alpha}(\beta)$, angular estimates and sufficient conditions for analytic functions $f(z)$ to be strongly starlike of order β and strongly convex functions of order β in the open unit disk are also derived.

Keywords: Analytic functions, univalent functions, angular estimates, strongly starlike and strongly convex functions.

1. Introduction

Let E be the open unit disk $\{z \in C:|z|<1\}$ and A the class of analytic functions in E, which have the form $f(z)=z+a_{2} z^{2}+\ldots$
A function $f \in A$ is called starlike of order β if and only if it satisfies the inequality
$R e \frac{z f^{\prime}(z)}{f(z)}>\beta, 0 \leq \beta<1, z \in E$.
This class is often denoted by $S^{*}(\beta)$.
If $f \in A$ satisfies
$\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\pi}{2} \beta, \quad z \in E$,
then f is said to be stongly starlike. The class of strongly starlike functions f is denoted by $\bar{S}^{*}(\beta)$.
Furthermore, a function $f \in A$ is convex of order β denoted by $C(\beta)$ if and only if it satisfies the condition
$\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\beta, 0 \leq \beta<1, z \in E$.
The Class $\bar{C}(\beta)$ is the class of strongly convex function and consists of analytic functions satisfying the inequality
$\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right|<\frac{\pi}{2} \beta, z \in E$.
In [1], the class $J_{n}^{\alpha}(\beta)$ of analytic functions satisfying the condition
$\operatorname{Re}\left(\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}\right)>\beta$
Correspondence Author: Folashade M.J., Email: Folashittu @ yahoo.com, Tel: +2348033607932
Transactions of the Nigerian Association of Mathematical Physics Volume 14, (January -March., 2021), 15 -20
where D^{n} is the Salagean derivative and β is a real number such that $0 \leq \beta<1$ was investigated and shown to consist of univalent functions for $n \geq 1$.
In this work, we obtain an inclusion result for functions to be in the class $J_{n}^{\alpha}(\beta)$. This was achieved by considering a subclass of $J_{n}^{\alpha}(\beta)$ of analytic function $f(z)$ satisfying
$\left|\frac{D^{n} f(z)^{n}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right|<1-\beta$.
Clearly, if $f(z)$ satisfies (2) then
$\beta<\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}<2-\beta$
which in turn implies that $f(z)$ satisfies (1). An angular estimate for functions in the class $J_{n}^{\alpha}(\beta)$ was also obtained.

2. Preliminary Lemmas

Lemma 1. [2] [Jack's Lemma] Let the function $w(z)$ be analytic in the open unit disk E with $w(0)=0$ and $|w(z)<1|(z \in E)$. Then if $|w(z)|$ attains its maximum on the circle $|z|=r<1$ at a point $z_{0} \in E$, we have $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$
where $k \geq 1$ is a real number.
Lemma 2. [3] Let $f(z) \in A$, and $\alpha>0$ be real. If $\frac{D^{n+1} f(z)^{\alpha}}{D^{n} f(z)^{\alpha}}$ takes a value which is independent of n, then
$\frac{D^{n+1} f(z)^{\alpha}}{D^{n} f(z)^{\alpha}}=\alpha \frac{D^{n+1} f(z)}{D^{n} f(z)}$.
Lemma 3. [4] Let the function $p(z)$ be analytic in E with $p(0)=1$ and $p(z) \neq 0 \quad(z \in E)$. If there exists a point $z_{0} \in E$ such that
$|\arg p(z)|<\frac{\pi}{2} \beta$ for $|z|<\left|z_{0}\right|$
and
$\left|\arg p\left(z_{0}\right)\right|=\frac{\pi}{2} \beta$
with $0<\beta$, then we have
$\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \beta$
where
$p\left(z_{0}\right)^{\frac{1}{\beta}}= \pm a i$.
and
$k \begin{cases}\geq \frac{1}{2}\left(a+\frac{1}{a}\right) \geq 1, & \text { when } \arg p\left(z_{0}\right)=\frac{\pi}{2} \beta, \\ \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \leq-1, & \text { when } \arg p\left(z_{0}\right)=-\frac{\pi}{2} \beta .\end{cases}$

3. Main Results

Theorem 1. If $f(z) \in A$ satisfies
$\left|\frac{D^{n+1} f(z)^{\alpha}}{D^{n} f(z)^{\alpha}}+\frac{D^{n+2} f(z)}{D^{n+1} f(z)}-\frac{D^{n+1} f(z)}{D^{n} f(z)}\right|<\frac{(\alpha+1)(1-\beta)}{2-\beta}$,
then $f(z) \in J_{n}^{\alpha}(\beta)$.
Transactions of the Nigerian Association of Mathematical Physics Volume 14, (January -March., 2021), 15 -20

Proof. Let
$\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}=1+(1-\beta) w(z), \quad(w(z) \neq 1)$
Then $w(z)$ is analytic in the unit disk E and $w(0)=0$. Differentiating (4) logarithmically we obtain
$\frac{D^{n+1} f(z)^{\alpha}}{z D^{n} f(z)^{\alpha}}+\frac{D^{n+2} f(z)}{z D^{n+1} f(z)}-\frac{D^{n+1} f(z)}{z D^{n} f(z)}-\frac{\alpha}{z}=\frac{(1-\beta) w^{\prime}(z)}{1+(1-\beta) w(z)}$
so that
$\frac{D^{n+1} f(z)^{\alpha}}{D^{n} f(z)^{\alpha}}+\frac{D^{n+2} f(z)}{D^{n+1} f(z)}-\frac{D^{n+1} f(z)}{D^{n} f(z)}=\frac{\alpha+\alpha(1-\beta) w(z)+(1-\beta) z w^{\prime}(z)}{1+(1-\beta) w(z)}$.
Suppose there exists z_{0} in E such that
$\max _{|z|<\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$,
then by Lemma 1 , we have $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$, so that

$$
\begin{aligned}
\left|\frac{D^{n+1} f\left(z_{0}\right)^{\alpha}}{D^{n} f\left(z_{0}\right)^{\alpha}}+\frac{D^{n+2} f\left(z_{0}\right)}{D^{n+1} f\left(z_{0}\right)}-\frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right| & =\left|\frac{\alpha+\alpha(1-\beta) w\left(z_{0}\right)+(1-\beta) k w\left(z_{0}\right)}{1+(1-\beta) w\left(z_{0}\right)}\right| \\
& =\left|\frac{\alpha+(\alpha+k)(1-\beta) w\left(z_{0}\right)}{1+(1-\beta) w\left(z_{0}\right)}\right| \\
& \geq\left|\frac{(\alpha+1)(1-\beta) w\left(z_{0}\right)}{1+(1-\beta) w\left(z_{0}\right)}\right| \\
& \geq\left|\frac{(\alpha+1)(1-\beta)}{2-\beta}\right| .
\end{aligned}
$$

This contradicts the assumption of the theorem as given in (3). Therefore, there is no $z_{0} \in E$ such that $|w(z)|=1$ and so we have that $|w(z)|<1$. That is
$\left|\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right|<1-\beta$,
so that $\operatorname{Re}\left(\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}\right)>\beta$ and $f(z) \in J_{n}^{\alpha}(\beta)$ as required.
Theorem 2. If $f(z) \in A$ satisfies
$\left|\arg \left(\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}\right)\right|<\frac{\pi}{2} \delta$,
then
$\left|\arg \frac{D^{n} f(z)}{\alpha^{n} z^{\alpha}}\right|<\frac{\pi}{2} \beta$
for $0<\beta<1$ and $\alpha>0$, where $\delta=\beta+\frac{2}{\pi} \tan ^{-1} \frac{\beta}{\alpha}$.
Proof. Define
$p(z)=\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} Z^{\alpha}}$.
Then $p(z)$ is analytic in E with $p(0)=1$ and $p(z) \neq 0$. Differentiating both sides of (5) logarithmically gives $\frac{z p^{\prime}(z)}{p(z)}+\alpha=\frac{D^{n+1} f(z)^{\alpha}}{D^{n} f(z)^{\alpha}}$.
Since the left hand side of (6) is independent of n, we use Lemma 2 to obtain
$\frac{z p^{\prime}(z)}{\alpha p(z)}+1=\frac{D^{n+1} f(z)}{D^{n} f(z)}$.
Subsequently, it follows from (5) and (7) that
Transactions of the Nigerian Association of Mathematical Physics Volume 14, (January -March., 2021), 15 -20
$\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}=p(z)\left(1+\frac{z p^{\prime}(z)}{\alpha p(z)}\right)$.
Suppose there exists a point $z_{0} \in E$ such that $|\arg p(z)| \leq \frac{\pi}{2} \beta$ for $|z|<\left|z_{0}\right|$ and $\left|\arg p\left(z_{0}\right)\right|=\frac{\pi}{2} \beta$, then by Lemma 3 we have $\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \beta$.
If $\arg p\left(z_{0}\right)=\frac{\pi}{2} \beta$, then

$$
\begin{aligned}
\arg \left(\frac{D^{n} f\left(z_{0}\right)^{\alpha}}{\alpha^{n} z_{0}^{\alpha}} \frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right) & =\arg p\left(z_{0}\right)\left(1+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{\alpha p\left(z_{0}\right)}\right) \\
& =\arg p\left(z_{0}\right)+\arg \left(1+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{\alpha p\left(z_{0}\right)}\right) \\
& =\frac{\pi}{2} \beta+\arg \left(1+\frac{i k \beta}{\alpha}\right) \\
& \geq \frac{\pi}{2} \beta+\tan ^{-1}\left(\frac{\beta}{\alpha}\right) . \\
& =\frac{\pi}{2}\left(\beta+\frac{2}{\pi} \tan ^{-1}\left(\frac{\beta}{\alpha}\right)\right) .
\end{aligned}
$$

That is
$\arg \left(\frac{D^{n} f\left(z_{0}\right)^{\alpha}}{\alpha^{n} z_{0}{ }^{\alpha}} \frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right) \geq \frac{\pi}{2}\left(\beta+\frac{2}{\pi} \tan ^{-1}\left(\frac{\beta}{\alpha}\right)\right)$.
If $\arg p\left(z_{0}\right)=-\frac{\pi}{2} \beta$, then
$\arg \left(\frac{D^{n} f\left(z_{0}\right)^{\alpha}}{\alpha^{n} z_{0}{ }^{\alpha}} \frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right) \leq-\frac{\pi}{2}\left(\beta+\frac{2}{\pi} \tan ^{-1}\left(\frac{\beta}{\alpha}\right)\right)$.
Inequalities (8) and (9) contradict the assumption of the theorem, therefore
$\left|\arg \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}\right|<\frac{\pi}{2} \beta$.
Theorem 3. Let $p(z)$ be analytic in E such that $p(0)=1$ and $p^{\prime}(0) \neq 0$ in E, also suppose that
$\left|\arg \left(p(z)+z \rho(z) p^{\prime}(z)\right)\right|<\frac{\pi}{2} \beta+\tan ^{-1}\left(\frac{\beta \operatorname{Re} \rho(z)}{1+\beta|\operatorname{im} \rho(z)|}\right)$,
then
$|\arg p(z)| \leq \frac{\pi}{2} \beta$,
where $\beta(0<\beta<1)$ is real and
$\rho(z)=\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}$.
Proof. Suppose there is a point $z_{0} \in E$ such that $|\arg p(z)| \leq \frac{\pi}{2} \beta$ for $|z|<\left|z_{0}\right|$. Consider

$$
\begin{align*}
& \arg \left(p\left(z_{0}\right)+\frac{z_{0} D^{n} f\left(z_{0}\right)^{\alpha}}{\alpha^{n} z_{0}^{\alpha}} \frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)} p^{\prime}\left(z_{0}\right)\right) \\
& =\arg p\left(z_{0}\right)+\arg \left(1+i k \beta \frac{D^{n} f\left(z_{0}\right)^{\alpha}}{\alpha^{n} z_{0}^{\alpha}} \frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right) . \tag{10}
\end{align*}
$$

Now,

$$
\begin{aligned}
i m\left(1+i k \beta \frac{D^{n} f\left(z_{0}\right)^{\alpha}}{\alpha^{n} z_{0}^{\alpha}} \frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right) & =k \beta R e \frac{D^{n} f\left(z_{0}\right)^{\alpha}}{\alpha^{n} z_{0}^{\alpha}} \frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)} \\
& =k \beta \operatorname{Re} \rho\left(z_{0}\right) .
\end{aligned}
$$

and
$\operatorname{Re}\left(1+i k \beta \frac{D^{n} f\left(z_{0}\right)^{\alpha}}{\alpha^{n} z_{0}^{\alpha}} \frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right)=1-k \beta \operatorname{im} \rho\left(z_{0}\right)$.
Using the last two equations with Lemma 3 when $\arg p\left(z_{0}\right)=\frac{\pi}{2} \beta, k \geq 1$, in equation (10) we obtain $\operatorname{argp}\left(z_{0}\right)+\arg \left(1+i k \beta \frac{D^{n} f\left(z_{0}\right)^{\alpha}}{\alpha^{n} z_{0}{ }^{\alpha}} \frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right)$
$\geq \frac{\pi}{2} \beta+\tan ^{-1}\left(\frac{\beta \operatorname{Re} \rho\left(z_{0}\right)}{1+\beta \mid \operatorname{im} \rho\left(z_{0}\right)}\right)$.
Also, when $\arg p\left(z_{0}\right)=-\frac{\pi}{2} \beta, k \leq-1$, then

$$
\begin{aligned}
& \arg p\left(z_{0}\right)+\arg \left(1+i k \beta \frac{D^{n} f\left(z_{0}\right)^{\alpha}}{\alpha^{n} z_{0}^{\alpha}} \frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right) \\
& \leq-\frac{\pi}{2} \beta-\tan ^{-1}\left(\frac{\beta \operatorname{Re} \rho\left(z_{0}\right)}{1+\beta\left|\operatorname{im} \rho\left(z_{0}\right)\right|}\right) \\
& =-\left(\frac{\pi}{2} \beta+\tan ^{-1}\left(\frac{\beta \operatorname{Re} \rho\left(z_{0}\right)}{1+\beta\left|\operatorname{im\rho } \rho\left(z_{0}\right)\right|}\right)\right) .
\end{aligned}
$$

That is
$\operatorname{argp}\left(z_{0}\right)+\arg \left(1+i k \beta \frac{D^{n} f\left(z_{0}\right)^{\alpha}}{\alpha^{n} z_{0}{ }^{\alpha}} \frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}\right) \leq-\left(\frac{\pi}{2} \beta+\tan ^{-1}\left(\frac{\beta \operatorname{Re} \rho\left(z_{0}\right)}{1+\beta \operatorname{im} \rho\left(z_{0}\right)}\right)\right)$
The inequalities (11) and (12) contradict the assumption of the theorem therefore $|\arg p(z)| \leq \frac{\pi}{2} \beta$.
Corollary 1. Let $f \in J_{n}^{\alpha}(\beta)$ satisfies

$$
\begin{aligned}
& \left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}+\frac{z D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f(z)}-z\left(\frac{f^{\prime \prime}(z)}{f(z)}\right)^{2}\right)\right)\right| \\
& <\frac{\pi}{2} \beta+\tan ^{-1}\left(\frac{\beta \operatorname{Re} \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}}{1+\beta\left|\operatorname{im} \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}\right|}\right)
\end{aligned}
$$

Then
$\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| \leq \frac{\pi}{2} \beta$.
Corollary 2. If $f \in A$ satisfies

$$
\begin{aligned}
& \left|\arg \left(\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\frac{z D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}\left(\frac{\left(z f^{\prime \prime}(z)\right)^{\prime}}{f^{\prime}(z)}-z\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}\right)\right)\right| \\
& <\frac{\pi}{2} \beta+\tan ^{-1}\left(\left.\frac{\beta R e \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}}{1+\beta \left\lvert\, i m \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}\right.} \right\rvert\,\right)
\end{aligned}
$$

Then
$\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right| \leq \frac{\pi}{2} \beta$.

That is $f(z)$ is strongly convex of order β.
Corollary 3. If $f \in A$ satisfies
$\left|\arg \frac{z f^{\prime}(z)}{f(z)}\left(1+\left(z f^{\prime}(z)\right)^{\prime}-\frac{z f^{\prime}(z)^{2}}{f(z)}\right)\right|<\frac{\pi}{2} \beta+\tan ^{-1}\left[\frac{\beta R e f^{\prime}(z)}{1+\beta\left|i m f^{\prime}(z)\right|}\right]$.
Then
$\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| \leq \frac{\pi}{2} \beta$.
That is $f(z)$ is strongly starlike of order β.
Corollary 4. If $f \in A$ satisfies
$\left|\arg \left(\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+z\left(\left(z f^{\prime \prime}(z)\right)^{\prime}-\frac{z f^{\prime \prime}(z)^{2}}{f^{\prime}(z)}\right)\right)\right|$
$<\frac{\pi}{2} \beta+\tan ^{-1}\left[\frac{\beta R e f^{\prime}(z)}{1+\beta\left|i m f^{\prime}(z)\right|}\right]$.
Then
$\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right| \leq \frac{\pi}{2} \beta$.
That is $f(z)$ is strongly convex of order β.

4. Summary and Conclusion

In this paper, more properties of the class $J_{n}^{\alpha}(\beta)$ of analytic functions were investigated. Particularly, we establish a condition for analytic functions to be in the class $J_{n}^{\alpha}(\beta)$. Angular estimates for functions in $J_{n}^{\alpha}(\beta)$ were also obtained and interesting result on the condition for an analytic function to be strongly starlike and strongly convex of order β in the open unit disk were obtained.

References

[1] F. M. Jimoh \& K. O. Babalola, Functions Defined by Product of Geometric Expressions. Nigerian Journal of Mathematics and Applications 24 (2015) 176-183.
[2] I. S. Jack, Functions starlike and convex of order α. J. London Math. Soc., 3 (1971) 469-474.
[3] K. O. Babalola \& T. O. Opoola, Radius problems for certain classes of analytic functions involving Salagean derivative, Advances in Inequalities for series (2008) 15-21.
[4] M. Nunokawa, On the order of strongly Starlikeness of strongly convex functions. Proc. Japan Acad. 69(A) (1993) 234-237.

