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Abstract 

 

The class )(


n
J  is a generalized class of analytic functions that was first studied in 

[1]. In that paper, it was proved that analytic functions belonging to )(


n
J  are 

univalent for 1n . Results on sufficient inclusion criteria for functions to be in 

)(


n
J  were also establised. In this article, we provide more characterizations for the 

class )(


n
J  of analytic functions. Specifically, using the well-known Jack’s Lemma 

and some properties of functions with positive real part, we obtain another sufficient 

inclusion result for functions to be in )(


n
J , angular estimates and sufficient 

conditions for analytic functions )( zf  to be strongly starlike of order   and 

strongly convex functions of order   in the open unit disk are also derived. 
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1. Introduction 

Let E  be the open unit disk 1}|<:|{ zz C  and A  the class of analytic functions in E , which have the form 

...=)(
2

2
 zazzf  

A function Af   is called starlike of order   if and only if it satisfies the inequality  
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This class is often denoted by )(
*
S .  

 If Af   satisfies  
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zfz
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then f  is said to be stongly starlike. The class of strongly starlike functions f  is denoted by )(
*
S .  

Furthermore, a function Af   is convex of order   denoted by )(C  if and only if it satisfies the condition  
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 The Class )(C  is the class of strongly convex function and consists of analytic functions satisfying the inequality  
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 In [1], the class )(


n
J  of analytic functions satisfying the condition  

   

 

𝑅𝑒 (
𝐷𝑛𝑓(𝑧)𝛼

𝛼𝑛𝑧𝛼

𝐷𝑛+1𝑓(𝑧)

𝐷𝑛𝑓(𝑧)
) > 𝛽                                                             (1) 
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where 
n

D  is the Salagean derivative and   is a real number such that 1<0   was investigated and shown to consist of 

univalent functions for 1.n  

In this work, we obtain an inclusion result for functions to be in the class )(


n
J . This was achieved by considering a 

subclass of )(


n
J  of analytic function )( zf  satisfying  

|
𝐷𝑛𝑓(𝑧)𝑛

𝛼𝑛𝑧𝛼

𝐷𝑛+1𝑓(𝑧)

𝐷𝑛𝑓(𝑧)
− 1| < 1 − 𝛽.                                                (2) 

Clearly, if )( zf  satisfies (2)  then  
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which in turn implies that )( zf  satisfies .(1)  An angular estimate for functions in the class )(


n
J  was also obtained.  

 

2. Preliminary Lemmas 

Lemma 1.  [2] [Jack’s Lemma] Let the function )( zw  be analytic in the open unit disk E  with 0=(0)w  and 

)(|1<)(| Ezzw  . Then if |)(| zw  attains its maximum on the circle 1<|=| rz  at a point Ez 
0

, we have  

)(=)(
000

zkwzwz   

 where 1k  is a real number. 

Lemma 2. [3] Let Azf )( , and 0>  be real. If 
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 takes a value which is independent of n , then  
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Lemma 3.  [4] Let the function )( zp  be analytic in E  with 1=(0)p  and 0)( zp  )( Ez  . If there exists a point 

Ez 
0

 such that  

||<||for
2

|<)(|
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and  
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with <0 , then we have  
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3. Main Results 

Theorem 1.  If Azf )(  satisfies  

|
𝐷𝑛+1𝑓(𝑧)𝛼

𝐷𝑛𝑓(𝑧)𝛼
+

𝐷𝑛+2𝑓(𝑧)

𝐷𝑛+1𝑓(𝑧)
−

𝐷𝑛+1𝑓(𝑧)

𝐷𝑛𝑓(𝑧)
| <

(𝛼 + 1)(1 − 𝛽)

2 − 𝛽
,                      (3) 

then ).()( 


n
Jzf   
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Proof.  Let  

 
𝐷𝑛𝑓(𝑧)𝛼

𝛼𝑛𝑧𝛼

𝐷𝑛+1𝑓(𝑧)

𝐷𝑛𝑓(𝑧)
= 1 + (1 − 𝛽)𝑤(𝑧),   (𝑤(𝑧) ≠ 1)                             (4) 

Then )( zw  is analytic in the unit disk E  and 0=(0)w . Differentiating (4)  logarithmically we obtain  
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so that  
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Suppose there exists 
0

z  in E  such that  
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then by Lemma 1 , we have ),(=)(
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This contradicts the assumption of the theorem as given in (3) . Therefore, there is no Ez 
0

 such that 1|=)(| zw and so 

we have that 1|<)(| zw . That is  

,1<1
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so that 
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 and )()( 


n
Jzf   as required.  

Theorem 2.  If Azf )(  satisfies  
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 for 1<<0   and 0> , where 







12
=


 tan .  

Proof. Define  

 𝑝(𝑧) =
𝐷𝑛𝑓(𝑧)𝛼

𝛼𝑛𝑧𝛼
.                                                                 (5) 

  

Then )( zp  is analytic in E  with 1=(0)p  and 0)( zp . Differentiating both sides of (5)  logarithmically gives  

 
𝑧𝑝′(𝑧)

 𝑝(𝑧)
+ 𝛼 =

𝐷𝑛+1𝑓(𝑧)𝛼

𝐷𝑛𝑓(𝑧)𝛼
.                                                        (6) 

Since the left hand side of (6)  is independent of n , we use Lemma 2  to obtain  

𝑧𝑝′(𝑧)

𝛼𝑝(𝑧)
+ 1 =

𝐷𝑛+1𝑓(𝑧)

𝐷𝑛𝑓(𝑧)
.                                                        (7) 

Subsequently, it follows from (5)  and (7)  that  
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Suppose there exists a point Ez 
0

 such that 
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That is
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Inequalities (8)  and (9)  contradict the assumption of the theorem, therefore  
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Theorem 3.  Let )( zp  be analytic in E  such that 1=(0)p  and 0(0) p  in ,E also suppose that  
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Using the last two equations with Lemma 3  when 


2
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0
zparg , 1k , in equation (10)  we obtain 
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That is 

𝑎𝑟𝑔𝑝(𝑧0) + 𝑎𝑟𝑔 (1 + 𝑖𝑘𝛽
𝐷𝑛𝑓(𝑧0)𝛼

𝛼𝑛𝑧0
𝛼

𝐷𝑛+1𝑓(𝑧0)

𝐷𝑛𝑓(𝑧0)
) ≤ − (

𝜋

2
𝛽 + tan−1 (

𝛽𝑅𝑒 𝜌(𝑧0)

1 + 𝛽|𝑖𝑚 𝜌(𝑧0)
))   (12) 

The inequalities (11)  and (12)  contradict the assumption of the theorem therefore 
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Corollary 2.  If Af   satisfies  
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That is )( zf  is strongly convex of order  .  

Corollary 3.  If Af   satisfies  
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That is )( zf  is strongly starlike of order  .  

Corollary 4.  If Af   satisfies  
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That is )( zf  is strongly convex of order  .  

 

4.  Summary and Conclusion 

In this paper, more properties of the class )(


n
J  of analytic functions were investigated. Particularly, we establish a 

condition for analytic functions to be in the class )(


n
J . Angular estimates for functions in )(



n
J  were also obtained 

and interesting result on the condition for an analytic function to be strongly starlike and strongly convex of order   in the 

open unit disk were obtained. 
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