CONVOLUTION PROPERTIES AND COEFFICIENT INEQUALITIES OF λ-PSEUDO ANALYTIC UNIVALENT FUNCTIONS

Gbolagade A.M. and Salaudeen K.A.

DEPARTMENT OF MATHEMATICS, EMMANUEL ALAYANDE COLLEGE OF EDUCATION P.M.B. 1010, OYO, OYO STATE, NIGERIA

Abstract

In this paper, we isolate some new and interesting classes of λ-pseudo starlike $G_{\lambda}^{*}(\omega, \alpha)$ and λ-pseudo analytic $G_{\lambda}^{* *}(\omega, \alpha)$ univalent functions in the unit disk $U=\{z:|z|<1\}$. Properties such as coefficient inequalities, extremal functions and their convolution to each of the new subclass were derived using techniques based on Holder's inequalities.

Keywords: Analytic functions, univalent functions, convolution, starlike functions, convex functions.

1. Introduction

Let A denote the class of the functions
$f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$
which are analytic in the unit disk ${ }_{U=\{z:|z|<1\}}$ and by S the subclass of A which consist of univalent functions only. Furthermore, let $R(\beta)$ and $S^{*}(\beta)$ be the well known subclasses of S consisting of functions which are respectively of bounded turning and starlike of order $\beta, 0 \leq \beta<1$ in U. That is, functions satisfying respectively $\operatorname{Re} f^{1}(z)>\beta$ and $\operatorname{Re} f^{1}(z) / f(z)>\beta$ in U. Singh in [1] studied a subclass of S denoted by $B_{1}(\alpha)$ consisting of functions which are a special case of Bazilevic functions which consists only univalent functions. The functions in $B_{1}(\alpha)$ satisfy the geometric condition
$\operatorname{Re}\left(\frac{f(z)^{\alpha-1} f^{\prime}(z)}{z^{\alpha-1}}\right)>0, \quad z \in U$
for $\alpha>0$ is real and this class of functions are called or known as Bazilevic functions of type α. This class of functions include the starlike and bounded turning functions as the case $\alpha=0$ and $\alpha=1$ shows.
In 1999, Kanas and Ronning [2] introduced a new concept of analytic functions which they define as $A(\omega) \subset A$ denote the class of function of the form
$f(z)=(z-\omega)+\sum_{k=2}^{\infty} a_{k}(z-\omega)^{k}$
which are analytic in the unit disk $U=\{z:|z|<1\}$ and normalized with $f(\omega)=f^{\prime}(\omega)-1=0$ where ω is an arbitrary fixed point in U and also $S(\omega) \subset S$. By using (3), they studied the classes of
$S(\omega)=\{f \in A(\omega): f$ is univalent in $U\}$
and
$S^{*}(\omega)=\left\{f \in S(\omega): \operatorname{Re} \frac{(z-\omega) f^{\prime}(z)}{f(z)}>0\right\}$
which are respectively the classes of univalent and ω-starlike functions and ω is an arbitrary fixed point in U.
Acu and Owa in [3] also considered the class Re $f^{\prime}(z)>0$. Also, several authors [4-8] have dealt so much with these classes of functions and they obtained valuable results. Therefore, for the purpose of this work, we say that $f \in A(\omega)$ is a Bazilevic function of type α and order β if and only if
$\operatorname{Re} \frac{f\left(z\left(z^{\alpha-1} f^{\prime}(z)\right.\right.}{f(z-\omega)^{\alpha-1}}>\beta, z \in U$
For f is of form (3), and we denote the class of such functions by $B_{1}(\omega, \alpha, \beta)$
Definition 1.1 [9]: Let $f \in A(\omega), 0 \leq \alpha<1$ and $\lambda \geq 1$ is real. Then $f(z)$ belongs to the class $G_{\lambda}^{*}(\omega, \alpha)$ of $\omega-\lambda$ - pseudo starlike functions of order α in the unit disk U if and only if
$\operatorname{Re}\left\{\frac{(z-\omega)\left(f^{\prime}(z)\right)^{2}}{f(z)}\right\}>\alpha, \quad z \in U$
and all powers mean principal determinations only
Definition 1.2: Let $f \in A(\omega), 0 \leq \alpha<1$ and $0 \leq \lambda \leq 1$. Then $f(z)$ belongs to the class $G_{\lambda}^{* *}(\omega, \alpha)$ of $\lambda-$ pseudo analytic functions of order α in the unit disk U if and only if
$\operatorname{Re}\left\{\frac{\left\{(-\omega)\left(f^{\prime}(z)\right)^{2}\right.}{f(z)}\left(1+\frac{\lambda(z-\omega) f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{(z-\omega) f^{\prime}(z)}{f(z)}\right)\right\}>\alpha, z \in U$
And all powers mean principal determinations only
Also, for functions $f_{i}(z) \in A(\omega)(i=1,2, \ldots, m)$ given by
$f_{i}(z)=(z-\omega)+\sum_{k=p}^{\infty} \alpha_{k, i}(z-\omega)^{k}, \quad(i=1,2, \ldots, m)$
Where ω is a fixed point in U and the Hadamard product (or convolution) is defined by
$\left(f_{1} * \ldots * f_{m}\right)(z)=(z-\omega)+\sum_{k=p}^{\infty}\left(\prod_{i=1}^{m} \alpha_{k, i}\right)(z-\omega)^{k}$
Finally, we define the function $\left(f^{\prime}(z)\right)^{\lambda}$ as
$z\left(f^{\prime}(z)\right)^{2}=z\left(1+\sum_{j=1}^{\infty} \lambda_{j}\left(2 a_{2} z+3 a_{3} z^{2}+\ldots\right)^{j}\right)$
Where $\lambda_{j}=\left(\frac{\lambda}{j}\right), j=1,2, \ldots$
Our intention in this present work is to extend studies on the classes of functions introduced in $[3,6]$ by deriving some coefficient inequalities, extremal functions and convolution properties for the classes of functions $G_{\lambda}^{*}(\omega, \alpha)$ and $G_{\lambda}^{* *}(\omega, \alpha)$.

2. Coefficient Inequalities

Theorem 2.1: A function $f(z) \in A(\omega)$ is in the class $G_{\lambda}^{*}(\omega, \alpha)$ if and only if
$\sum_{k=2}^{\infty}\left(\lambda_{j} k+\alpha-2\right)(r+d)^{k-1} a_{k} \leq 1-\alpha$ where $|z|=r<1$ and $|\omega|=d$
Proof: Assuming the inequality holds true, then

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (January -March., 2021), 7 -14
$\left|\frac{(z-\omega)\left(f^{\prime}(z)\right)^{2}}{f(z)}-1\right|=\left|\frac{\sum_{k-2}^{\infty}\left(\lambda_{k} k-1\right) a_{k}(z-\omega)^{k-1}}{1+\sum_{k-2}^{\infty} a_{k}(z-\omega)^{k-1}}\right| \leq \frac{\sum_{k-2}^{\infty}\left(\lambda_{k} k-1\right) a_{k}(r+d)^{k-1}}{1+\sum_{k-2}^{\infty} a_{k}(r+d)^{k-1}} \leq 1-\alpha$
Clearly, we can see that $\frac{(z-\omega)\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}$ lies in the circle centre ω where ω is a fixed point in U whose radius is $1-\alpha$. Therefore, $f(z)$ is in the class $G_{\lambda}^{*}(\omega, \alpha)$.
To prove the converse, assume that $f(z)$ is in the $G_{\lambda}^{*}(\omega, \alpha)$, then
$\operatorname{Re}\left(\frac{(z-\omega)\left(f^{\prime}(z)\right)^{2}}{f(z)}\right)=\operatorname{Re}\left(\frac{1+\sum_{k=2}^{\infty} \lambda_{j} k a_{k}(z-\omega)^{k-1}}{1+\sum_{k=2}^{\infty} a_{k}(z-\omega)^{k-1}}\right)>\alpha$
For ω is a fixed point in U. Choosing values of z on the real axis so that $\frac{(z-\omega)\left(f^{\prime}(z)\right)^{2}}{f(z)}$ is real. Clearing the denominator from equation (13) and let $z \rightarrow 1$, we have

$$
\begin{equation*}
\alpha\left(1+\sum_{k=2}^{\infty}(r+d)^{k-1} a k\right) \leq 1+\sum_{k=2}^{\infty} \lambda_{k} k a_{k}(r+d)^{k-1} \tag{14}
\end{equation*}
$$

Finally, we note that the theorem is sharp with the extremal function

$$
\begin{equation*}
f(z)=(z-\omega)+\frac{1-\alpha}{\left(\lambda_{j} k+\alpha-2\right)(r+d)^{k-1}},(z-\omega)^{k}, \quad k \geq 2 \tag{15}
\end{equation*}
$$

Corollary 2.1: Let $f(z) \in A(\omega)$ be in the class $G_{\lambda}^{*}(\omega, \alpha)$, then we have

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{\left(\lambda_{j} k+\alpha-2\right)(r+d)^{k-1}}, k \geq 2 \tag{16}
\end{equation*}
$$

where $d=|\omega|$
Theorem 2.2: A function $f(z) \in A(\omega)$ is in the class $G_{\lambda}^{* *}(\omega, \alpha)$ if and only if
$\sum_{j=1}^{\infty} k\left(\lambda_{j} k+\alpha-2\right)(r+d)^{k-1} a_{k} \leq 1-\alpha$
Proof: \quad The proof follows the same technique as in theorem (2.1) but the extremal function in this case is

$$
\begin{equation*}
f(z)=(z-\omega)+\frac{1-\alpha}{k\left(\lambda_{j} k+\alpha-2\right)(r+d)^{k-1}}(z-\omega)^{k}, \quad k \geq 2 \tag{17}
\end{equation*}
$$

Corollary 2.2: Let $f \in A(\omega)$ be in the class $G_{\lambda}^{* *}(\omega, \alpha)$, then

$$
\begin{gather*}
a_{k} \leq \frac{1-\alpha}{k\left(\lambda_{j} k+\alpha-2\right)(r+d)^{k-1}} \tag{18}\\
\text { where } d=|\omega|
\end{gather*}
$$

3. Convolution Properties for Functions in the Class $G_{\lambda}^{*}(\omega, \alpha)$

We first prove the Hadamard product (or convolution) defined by (10)
Theorem 3.1: If $f_{i}(z) \in G_{\lambda}^{*}\left(\omega, \alpha_{i}\right)(i=1,2, \ldots ., m)$ then $\left(f_{i} * \ldots f_{m}\right)(z) \in G_{\lambda}^{*}(\omega, \beta)$ where

$$
\beta=1-\frac{\left(\lambda_{j} p-1\right) \prod_{i-1}^{m}\left(1-\alpha_{i}\right)}{(1-d)^{k-1} \prod_{i-1}^{m}\left(\lambda_{j} p+\alpha_{i}-2\right)+\prod_{i-1}^{m}\left(1-\alpha_{i}\right)}
$$

The result is very sharp for the functions $f_{i}(z)(i=1,2, \ldots ., m)$ given by

$$
\begin{equation*}
f_{i}(z)=(z-\omega)+\frac{1-\alpha_{i}}{\left(\lambda_{j} p+\alpha_{i}-2\right)(r+d)^{k-1}}(z-\omega)^{p} \tag{19}
\end{equation*}
$$

Proof: Principle of mathematical induction will be used to prove theorem (3.1)
Let $f_{1}(z) \in G_{\lambda}^{*}\left(\omega, \alpha_{1}\right)$ and $f_{2}(z) \in G_{\lambda}^{*}\left(\omega, \alpha_{2}\right)$, then the inequality
Transactions of the Nigerian Association of Mathematical Physics Volume 1, (January -March., 2021), 7-14
$\sum_{k=p}^{\infty}\left(\lambda_{j} k+\alpha_{i}-2\right)(r+d)^{k-1} a_{k, i} \leq 1-\alpha_{i}$
implies that

$$
\begin{equation*}
\sum_{k=p}^{\infty} \sqrt{\frac{\left(\lambda_{j} k+\alpha_{i}-2\right)(r+d)^{k-1}}{1-\alpha_{i}}} a_{k, i} \leq 1 \tag{20}
\end{equation*}
$$

Thus, by applying the Cauchy-Schwarz inequality, we have

$$
\begin{align*}
& \left|\sum_{k=p}^{\infty} \sqrt{\frac{\left(\lambda_{j} k+\alpha_{1}-2\right)\left(\lambda_{j} k+\alpha_{2}-2\right)(r+d)^{k-1}}{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}}\left(a_{k, 1}\right)\left(a_{k, 2}\right)\right|^{2} \tag{21}\\
& \leq(r+d)^{k-1}\left(\sum_{k=p}^{\infty} \frac{\left(\lambda_{j} k+\alpha_{1}-2\right)}{1-\alpha_{1}} a_{k, 1}\right)\left(\sum_{k=p}^{\infty} \frac{\left(\lambda_{j} k+\alpha_{2}-2\right)}{1-\alpha_{2}} a_{k, 2}\right) \leq 1 \tag{22}
\end{align*}
$$

hence, i
$\sum_{k=p}^{\infty} \frac{\left(\lambda_{j} k+\delta-2\right)}{1-\delta}\left(a_{k, 1}\right)\left(a_{k, 2}\right) \leq \sum_{k=p}^{\infty} \sqrt{\frac{\left(\lambda_{j} k+\alpha_{1}-2\right)\left(\lambda_{j} k+\alpha_{2}-2\right)(r+d)^{k-1}}{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}\left(a_{k, 1}\right)\left(a_{k, 2}\right)}$
that is

$$
\begin{equation*}
\sqrt{\left(a_{k, 1}\right)\left(a_{k, 2}\right)} \leq \frac{1-\delta}{\lambda_{j} k+\delta-2} \sqrt{\frac{\left(\lambda_{j} k+\alpha_{1}-2\right)\left(\lambda_{j} k+\alpha_{2}-2\right)(r+d)^{k-1}}{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}} \tag{24}
\end{equation*}
$$

then $\left(f_{1} * f_{2}\right)(z) \in G_{\lambda}^{*}\left(\omega, \delta_{i}\right)$
we note that the inequality (20) gives

$$
\begin{equation*}
\sqrt{a_{k, i}} \leq \sqrt{\frac{1-\alpha_{i}}{\left(\lambda_{j} k+\alpha_{i}-2\right)(r+d)^{k-1}}},(i=1,2 ; k=p, p+1, p+2, \ldots) \tag{25}
\end{equation*}
$$

Consequently, if
$\sqrt{\frac{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{\left(\lambda_{j} k+\alpha_{1}-2\right)\left(\lambda_{j} k+\alpha_{2}-2\right)(r+d)^{k-1}}} \leq \frac{1-\delta}{\lambda_{j} k+\delta-2} \sqrt{\frac{\left(\lambda_{j} k+\alpha_{1}-2\right)\left(\lambda_{j} k+\alpha_{2}-2\right)(r+d)^{k-1}}{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}}$
that is
$\frac{\lambda_{j} k+\delta-2}{1-\delta} \leq \frac{\left(\lambda_{j} k+\alpha_{1}-2\right)\left(\lambda_{j} k+\alpha_{2}-2\right)(r+d)^{k-1}}{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}(k=p, p+1, p+2, \ldots)$
then we have $\left(f_{1} * f_{2}\right)(z) \in S^{*}(\omega, \delta)$. From (27), we have

$$
\begin{equation*}
\delta \leq 1-\frac{\left(\lambda_{j} k-1\right)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{(r+d)^{k-1}\left(\lambda_{j} k+\alpha_{1}-2\right)\left(\lambda_{j} k+\alpha_{2}-2\right)+\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}=\Gamma(k),(k=p, p+1, p+2, \ldots) \tag{28}
\end{equation*}
$$

since $\Gamma(k)$ is increasing for $k \geq p$ we have

$$
\begin{equation*}
\delta \leq 1-\frac{\left(\lambda_{j} k-1\right)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{(r+d)^{k-1}\left(\lambda_{j} k+\alpha_{1}-2\right)\left(\lambda_{j} k+\alpha_{2}-2\right)+\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)} \tag{29}
\end{equation*}
$$

which shows that $\left(f_{1} * f_{2}\right)(z) \in G_{\lambda}^{*}(\omega, \delta)$, where

$$
\begin{equation*}
\delta=1-\frac{\left(\lambda_{j} p-1\right)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{(r+d)^{k-1}\left(\lambda_{j} p+\alpha_{1}-2\right)\left(\lambda_{j} p+\alpha_{2}-2\right)+\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)} \tag{30}
\end{equation*}
$$

Next, if $\left(f_{1} * \ldots * f_{m}\right)(z) \in G_{\lambda}^{*}(\omega, \beta)$, where
$\beta=1-\frac{\left(\lambda_{j} p-1\right) \prod_{i-1}^{m}\left(1-\alpha_{i}\right)}{(1-d)^{k-1} \prod_{i-1}^{m}\left(\lambda_{j} p+\alpha_{i}-2\right)+\prod_{i-1}^{m}\left(1-\alpha_{i}\right)}$
then, by the same process above, we can show that $\left(f_{1} * \ldots * f_{m+1}\right)(z) \in G_{\lambda}^{*}(\omega, \alpha)$, where
$\alpha=1-\frac{\left(\lambda_{j} p-1\right)(1-\beta)\left(1-\beta_{m+1}\right)}{(r+d)^{k-1}\left(\lambda_{j} p+\beta-2\right)\left(\lambda_{j} p+\alpha_{m+1}-2\right)+(1-\beta)\left(1-\alpha_{m+1}\right)}$
Since
$(1-\beta)\left(1-\alpha_{m+1}\right)=1-\frac{\left(\lambda_{j} p-1\right) \prod_{i-1}^{m}\left(1-\alpha_{i}\right)}{(1-d)^{k-1} \prod_{i-1}^{m}\left(\lambda_{j} p+\alpha_{i}-2\right)+\prod_{i-1}^{m}\left(1-\alpha_{i}\right)}$
and
$\left(\lambda_{j} p+\beta-2\right)\left(\lambda_{j} p+\alpha_{m+1}-2\right)=1-\frac{\left(\lambda_{j} p-1\right) \prod_{i-1}^{m+1}\left(\lambda_{j} p+\alpha_{i}-2\right)}{(1-d)^{k-1} \prod_{i-1}^{m}\left(\lambda_{j} p+\alpha_{i}-2\right)+\prod_{i-1}^{m}\left(1-\alpha_{i}\right)}$
Equation (32) shows that
$\alpha=1-\frac{\left(\lambda_{j} p-1\right) \prod_{i-1}^{m+1}\left(1-\alpha_{i}\right)}{(1+d)^{k-1} \prod_{i-1}^{m+1}\left(\lambda_{j} p+\alpha_{i}-2\right)+\prod_{i-1}^{m+1}\left(1-\alpha_{i}\right)}$
Finally, for functions $f_{i}(z)(i=1,2, \ldots, m)$ given by (19), we have

$$
\begin{equation*}
\left(f_{1} * \cdots * f_{m}\right)(z)=(z-\omega)+\left(\prod_{i-1}^{m}\left(\frac{1-\alpha_{i}}{\left(\lambda_{j} p+\alpha_{i}-2\right)(r+d)^{k-1}}\right)\right)(z-\omega)^{p}=(z-\omega)+A_{p}(z-\omega)^{p} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{p}=\prod_{i-1}^{m}\left(\frac{1-\alpha_{i}}{\left(\lambda_{j} p+\alpha_{i}-2\right)(r+d)^{k-1}}\right) \tag{37}
\end{equation*}
$$

It follows that
$\sum_{k-p}^{\infty} \frac{\left(\lambda_{j} k+\alpha-2\right)(r+d)^{k-1}}{1-\alpha_{i}} A_{k}=1$
and this completes the proof.
Corollary 3.1: If $f_{i}(z) \in G_{\lambda}^{*}(\omega, \beta)(i=1,2, \ldots, m)$ then $\left(f_{1} * \ldots * f_{m+1}\right)(z) \in G_{\lambda}^{*}(\omega, \alpha)$, where

$$
\begin{equation*}
\alpha=1-\frac{\left(\lambda_{j} p-1\right)(1-\beta)^{m}}{(r+d)^{m(k-1)}\left(\lambda_{j} p+\beta-2\right)^{m}+(1-\beta)^{m}} \tag{39}
\end{equation*}
$$

The result is sharp for the functions $f_{i}(z)(i=1,2, \ldots, m)$ given by
$f_{1}(z)=(z-\omega)+\left(\frac{1-\beta}{(r+d)^{k-1}\left(\lambda_{j} p+\beta-2\right)}\right)(z-\omega)^{p}, \quad(i=1,2, \ldots, m)$
and ω is a fixed point in U.

4. Convolution Properties for Functions in the Class $G_{\lambda}^{* *}(\omega, \alpha)$

Theorem 4.1: If $f_{i}(z) \in G_{\lambda}^{* *}\left(\omega, \alpha_{i}\right)(i=1,2, \ldots, m)$ then $\left(f_{1} * \ldots * f_{m}\right)(z) \in G_{\lambda}^{* *}(\omega, \beta)$, where

$$
\beta=1-\frac{\left(\lambda_{j} p-1\right) \prod_{i-1}^{m}\left(1-\alpha_{i}\right)}{p^{m-1}(1+d)^{k-1} \prod_{i-1}^{m}\left(\lambda_{j} p+\alpha_{i}-2\right)+\prod_{i-1}^{m}\left(1-\alpha_{i}\right)}
$$

The result is sharp for the functions $f_{i}(z)(i=1,2, \ldots, m)$ given by

$$
\begin{equation*}
f_{1}(z)=(z-\omega)+\left(\frac{1-\alpha}{(r+d)^{k-1} p\left(\lambda_{j} p+\alpha_{i}-2\right)}\right)(z-\omega)^{p},(i=1,2, \ldots, m) \tag{41}
\end{equation*}
$$

Proof: Let $f_{1}(z) \in G_{\lambda}^{* *}\left(\omega, \alpha_{1}\right)$ and $f_{2}(z) \in G_{\lambda}^{* *}\left(\omega, \alpha_{2}\right)$. By similar process in theorem 3.1, the following inequality holds
$\sum_{k=p}^{\infty} \frac{k\left(\lambda_{j} k+\delta-2\right)(r+d)^{k-1}}{1-\sigma}\left(a_{k, 1}\right)\left(a_{k, 2}\right) \leq 1$
which shows that $\left(f_{1} * f_{2}\right)(z) \in G_{\lambda}^{* *}(\omega, \delta)$.
Following the same process in theorem 3.1, we obtain that

$$
\begin{equation*}
\delta \leq 1-\frac{\left(\lambda_{j} k-1\right)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{(r+d)^{k-1} k\left(\lambda_{j} k+\alpha_{1}-2\right)\left(\lambda_{j} k+\alpha_{2}-2\right)+\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}(k=p, p+1, p+2, \ldots) \tag{43}
\end{equation*}
$$

The right hand side of (43) takes its minimum at $\mathrm{k}=\mathrm{p}$ because it is an increasing function of $k \geq p$. This shows that $\left(f_{1} * f_{2}\right)(z) \in G_{\lambda}^{* *}(\omega, \delta)$, where
$\delta=1-\frac{\left(\lambda_{j} p-1\right)\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{(r+d)^{k-1} p\left(\lambda_{j} p+\alpha_{1}-2\right)\left(\lambda_{j} p+\alpha_{2}-2\right)+\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}$
Now, assuming that $\left(f_{1} * \ldots * f_{m}\right)(z) \in G_{\lambda}^{* *}(\omega, \beta)$ where

$$
\begin{equation*}
\beta=1-\frac{\left(\lambda_{j} p-1\right) \prod_{i-1}^{m}\left(1-\alpha_{i}\right)}{p^{m-1}(r+d)^{k-1} \prod_{i-1}^{m}\left(\lambda_{j} p+\alpha_{i}-2\right)+\prod_{i-1}^{m}\left(1-\alpha_{i}\right)} \tag{45}
\end{equation*}
$$

hence, we have $\left(f_{1} * \ldots * f_{m}\right)(z) \in G_{\lambda}^{* *}(\omega, \alpha)$ where
$\alpha=1-\frac{\left(\lambda_{j} p-1\right)(1-\beta)\left(1-\alpha_{m+1}\right)}{(r+d)^{k-1} p\left(\lambda_{j} p+\beta-2\right)\left(\lambda_{j} p+\alpha_{m+1}-2\right)+(1-\beta)\left(1-\alpha_{m+1}\right)}$
$=1-\frac{\left(\lambda_{j} p-1\right) \prod_{i-1}^{m+1}\left(1-\alpha_{i}\right)}{p^{m}(r+d)^{k-1} \prod_{i-1}^{m+1}\left(\lambda_{j} p+\alpha_{i}-2\right)+\prod_{i-1}^{m+1}\left(1-\alpha_{i}\right)}$
By taking the function $f_{1}(z)$ given by (41), we can easily verify that the result is sharp.
By letting $\alpha_{i}=\alpha(i=1,2, \ldots, m)$ in theorem 4.1, we obtain
Corollary 4.1: If $f_{i}(z) \in G_{\lambda}^{* *}(\omega, \alpha)(i=1,2, \ldots, m)$, then $\left(f_{1} * \ldots * f_{m}\right)(z) \in G_{\lambda}^{* *}(\omega, \beta)$, where
$\beta=1-\frac{\left(\lambda_{j} p-1\right)(1-\alpha)^{m}}{(r+d)^{m(k-1)} p^{m-1}\left(\lambda_{j} p+\alpha-2\right)^{m}+(1-\alpha)^{m}}$
The result is sharp for the functions $f_{i}(z)(i=1,2, \ldots, m)$ given by
$f_{1}(z)=(z-\omega)+\left(\frac{1-\alpha}{(r+d)^{k-1} p\left(\lambda_{j} p+\alpha-2\right)}\right)(z-\omega)^{p},(i=1,2, \ldots, m)$
and ω is a fixed point in U.
Lemma 4.1: If $f(z) \in G_{\lambda}^{*}(\omega, \alpha)$ and $g(z) \in G_{\lambda}^{* *}(\omega, \beta)$, then $(f * g) \in G_{\lambda}^{*}(\omega, \gamma)$, where

$$
\begin{equation*}
\gamma=1-\frac{\left(\lambda_{j} p-1\right)(1-\alpha)(1-\beta)}{(r+d)^{k-1} p\left(\lambda_{j} p+\alpha-2\right)\left(\lambda_{j} p+\beta-2\right)+(1-\alpha)(1-\beta)} \tag{50}
\end{equation*}
$$

The result is sharp for the functions $f(z)$ and $g(z)$ given by

$$
\begin{equation*}
f(z)=(z-\omega)+\left(\frac{1-\alpha}{(r+d)^{k-1}\left(\lambda_{j} p+\alpha-2\right)}\right)(z-\omega)^{p} \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
g(z)=(z-\omega)+\left(\frac{1-\beta}{(r+d)^{k-1} p\left(\lambda_{j} p+\beta-2\right)}\right)(z-\omega)^{p} \tag{52}
\end{equation*}
$$

where ω is a fixed point in U.
Proof: Let

$$
\begin{equation*}
f(z)=(z-\omega)+\sum_{k=p}^{\infty} a_{k}(z-\omega)^{k} \tag{53}
\end{equation*}
$$

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (January -March., 2021), 7 -14
and
$g(z)=(z-\omega)+\sum_{k=p}^{\infty} b_{k}(z-\omega)^{k}$
then, by theorem 2.1, it is sufficient to show that
$\sum_{k=p}^{\infty} \frac{(r+d)^{k-1}\left(\lambda_{j} k+\gamma-2\right)}{1-\gamma}\left(a_{k}\right)\left(b_{k}\right) \leq 1$
for $(f * g)(z) \in G_{\lambda, p}^{*}(\omega, \gamma)$, since
$\sum_{k=p}^{\infty} \frac{(r+d)^{k-1}\left(\lambda_{j} k+\alpha-2\right)}{1-\alpha}\left(a_{k}\right) \leq 1$
and
$\sum_{k=p}^{\infty} \frac{(r+d)^{k-1} k\left(\lambda_{j} k+\beta-2\right)}{1-\beta}\left(b_{k}\right) \leq 1$
If we assume that
$\sum_{k=p}^{\infty} \frac{(r+d)^{k-1}\left(\lambda_{j} k+\gamma-2\right)}{1-\gamma}\left(a_{k}\right)\left(b_{k}\right) \leq \sum_{k=p}^{\infty} \sqrt{\frac{k\left(\lambda_{j} k+\alpha-2\right)\left(\lambda_{j} k+\beta-2\right)(r+d)^{k-1}}{(1-\alpha)(1-\beta)}}\left(a_{k}\right)\left(b_{k}\right)$
so that
$\sqrt{\left(a_{k}\right)\left(b_{k}\right)} \leq \frac{1-\gamma}{(r+d)^{k-1}\left(\lambda_{j} k+\gamma-2\right)} \sqrt{\frac{k\left(\lambda_{j} k+\alpha-2\right)\left(\lambda_{j} k+\beta-2\right)(r+d)^{k-1}}{(1-\alpha)(1-\beta)}}\left(a_{k}\right)\left(b_{k}\right)$
then we show that $(f * g)(z) \in G_{\lambda}^{*}(\omega, \gamma)$, if γ satisfies the inequality
$\gamma \leq 1-\frac{\left(\lambda_{j} k-1\right)(1-\alpha)(1-\beta)}{k\left(\lambda_{j} k+\alpha-2\right)\left(\lambda_{j} k+\beta-2\right)(r+d)^{k-1}+(1-\alpha)(1-\beta)}$
then $(f * g)(z) \in G_{\lambda, p}^{*}(\omega, \gamma)$. By theorem 2.1, theorem 4.1 and lemma 4.1, we arrive at Theorem 4.2: If $f_{i}(z) \in G_{\lambda}^{*}\left(\omega, \alpha_{i}\right)(i=1,2, \ldots x)$ and $g_{i}(z) \in G_{\lambda}^{* *}\left(\omega, \beta_{i}\right)(i=1,2, \ldots y)$, then $\left(f_{1} * \ldots f_{x} * g_{1} * \ldots * g_{y}\right)(z) \in G_{\lambda}^{*}(\omega, \gamma)$, where
$\gamma=1-\frac{\left(\lambda_{j} p-1\right)(1-\alpha)(1-\beta)}{p\left(\lambda_{j} p+\alpha-2\right)\left(\lambda_{j} p+\beta-2\right)(r+d)^{k-1}+(1-\alpha)(1-\beta)}$
$\alpha=1-\frac{\left(\lambda_{j} p-1\right) \prod_{i-1}^{*}\left(1-\alpha_{i}\right)}{(r+d)^{k-1} \prod_{i=1}^{*}\left(\lambda_{j} p+\alpha_{i}-2\right)+\prod_{i=1}^{*}\left(1-\alpha_{i}\right)}$
and
$\beta=1-\frac{\left(\lambda_{j} p-1\right) \prod_{i-1}^{y}\left(1-\beta_{i}\right)}{p^{p-1}(r+d)^{k-1} \prod_{i=1}^{y}\left(\lambda_{j} p+\beta_{i}-2\right)+\prod_{i=1}^{y}\left(1-\beta_{i}\right)}$
The result is sharp for the functions $f_{i}(z)(i=1,2, \ldots x)$ and $g_{i}(z)(i=1,2, \ldots y)$ given by
$f_{i}(z)=(z-\omega)+\left(\frac{1-\alpha_{i}}{(r+d)^{k-1}\left(\lambda_{j} p+\alpha_{i}-2\right)}\right)(z-\omega)^{p},(i=1,2, \ldots, x)$
and
$g_{i}(z)=(z-\omega)+\left(\frac{1-\beta_{i}}{(r+d)^{k-1} p\left(\lambda_{j} p+\beta_{i}-2\right)}\right)(z-\omega)^{p},(i=1,2, \ldots, y)$
for $\alpha_{i}=\alpha(i=1,2, \ldots x)$ and $\beta_{i}=\beta(i=1,2, \ldots y)$. Theorem 4.2 yields the next corollary
Corollary 4.2: If $f_{i}(z) \in G_{\lambda}^{*}(\omega, \alpha)(i=1,2, \ldots x)$ and $g_{i}(z) \in G_{\lambda}^{* *}(\omega, \beta)(i=1,2, \ldots y)$, then $\left(f_{1} * \ldots * f_{x} * g_{1} * \ldots * g_{y}\right)(z) \in G_{\lambda, p}^{*}(\omega, \gamma)$, where
$\gamma=1-\frac{\left(\lambda_{j} p\right)(1-\alpha)^{x}(1-\beta)^{y}}{p^{y}(r+d)^{k-1}\left(\lambda_{j} p+\alpha-2\right)^{x}\left(\lambda_{j} p+\beta-2\right)^{y}+(1-\alpha)^{x}(1-\beta)^{y}}$
The result is sharp for the functions $f_{i}(z)(i=1,2, \ldots x)$ and $g_{i}(z)(i=1,2, \ldots y)$ given by
$f_{i}(z)=(z-\omega)+\left(\frac{1-\alpha}{(r+d)^{k-1}\left(\lambda_{j} p+\alpha-2\right)}\right)(z-\omega)^{p},(i=1,2, \ldots, x)$
and
$g_{i}(z)=(z-\omega)+\left(\frac{1-\beta}{(r+d)^{k-1} p\left(\lambda_{j} p+\beta-2\right)}\right)(z-\omega)^{p},(i=1,2, \ldots, y)$
In conclusion, this work has established the coefficient inequalities, extremal functions and their convolution to each of the new subclass derived.

References

[1] Singh, R. (1973). On Bazilevic functions. Proc Amer. Math. Soc., 38, 261 - 271.
[2] Kanas, S. \& Ronning, F. (1999). Uniformly starlike and convex functions and other related classes of univalent functions. Ann. Univ. Mariae Curie-skldowska Section A, 53, 95 - 105.
[3] Acu Mugur and Shigeyoshi Owa (2005). On some subclasses of univalent functions. Journal of Inequalities in Pure and Applied Mathematics, 63, 1-14.
[4] Oladipo, A. T. (2009). On certain subclasses of analytic and univalent functions involving convolution operators. Acta Universitatis Apulensis, Math. Inform., 20, 163-174.
[5] Oladipo, A. T. (2009). On subclass of analytic and univalent functions. Advances in Applied Mathematical Analysis, 4(1), 87 - 93.
[6] Oladipo, A. T. (2012). Coefficient inequalities and convolution properties for certain new classes of analytic and univalent functions in the unit disk. Far East Journal of Mathematical Sciences, 62(2), 219-232.
[7] Oladipo, A. T. (2012). Certain subclasses of analytic functions with negative coefficients defined by Aouf derivative operator. Analele Univasitatis Fasc. Mathematical, TOM XIX, Issue 1, 21 31.
[8] Srivastava, H. M. \& Owa, S. (1992). Editors, Current Topics in Analytic Function Theory. New Jersey; Singapore, London and Hong Kong, World Scientific Publishing Company.
[9] Babalola, K. O. (2013). On λ-pseudo-starlike functions. Journal of Classical Analysis, 32, 137 147.

