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Abstract 

 

In this paper, we isolate some new and interesting classes of  -pseudo starlike 

),( 



G  and  -pseudo analytic ),( 




G  univalent functions in the unit disk 

 1:  zzU .  Properties such as coefficient inequalities, extremal functions and 

their convolution to each of  the new subclass were derived using techniques based on 

Holder’s inequalities. 
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1. Introduction 
Let A denote the class of the functions  

  ...
3

3

2

2
 zazazzf       (1) 

which are analytic in the unit disk  1:  zzU  and by S the subclass of A which consist of univalent 

functions only. Furthermore, let  R  and  


S  be the well known subclasses of S consisting of 

functions which are respectively of bounded turning and starlike of order  10,    in U. That is, 

functions satisfying respectively   zf
1

Re  and     zfzzf /Re
1  in U. Singh in [1] studied a 

subclass of S denoted by  
1

B  consisting of functions which are a special case of Bazilevic functions 

which consists only univalent functions. The functions in  
1

B  satisfy the geometric condition 

    
Uz

z

zfzf














 





,0Re
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      (2) 

for 0  is real and this class of functions are called or known as Bazilevic functions of type  . This 

class of functions include the starlike and bounded turning functions as the case 0 and 1  

shows. 

In 1999, Kanas and Ronning [2] introduced a new concept of analytic functions which they define as 

  AA   denote the class of function of the form 

      






2k

k

k
zazzf       (3) 

which are analytic in the unit disk  1:  zzU   and normalized with     01   ff  where   

is an arbitrary fixed point in U and also   SS  . By using (3), they studied the classes of 
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     UinunivalentisfAfS :      (4) 

and 
    

   

  













0Re:
zf

zfz
SfS




    (5) 

which are respectively the classes of univalent and  -starlike functions and   is an arbitrary fixed 

point in U. 

Acu and Owa in [3] also considered the class   0Re  zf .  Also, several authors [4-8] have dealt so 

much with these classes of functions and they obtained valuable results. Therefore, for the purpose of 

this work, we say that  Af   is a Bazilevic function of type   and order   if and only if 
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For f  is of form (3), and we denote the class of such functions by   ,,
1

B  

Definition 1.1 [9]:  Let   10,  Af  and 1  is real. Then  zf  belongs to the class  


,


G  

of    pseudo starlike functions of order   in the unit disk U if and only if 

     

 
Uz

zf

zfz








 

,Re 


      (7) 

and all powers mean principal determinations only 

Definition 1.2: Let   10,  Af  and 10   . Then  zf  belongs to the class  


,


G  of 

pseudo analytic functions of order   in the unit disk U  if and only if 
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And all powers mean principal determinations only 

Also, for functions     miAzf
i

....,,2,1   given by 

        mizzzf

pk

k

iki
....,,2,1,

,
 






                  (9) 

Where   is a fixed point in U and the Hadamard product (or convolution) is defined by 
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ikm
zzzff 
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...

    (10) 

Finally, we define the function   


zf   as 
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32
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j

j

j
zazazzfz 

     (11) 

Where   ,2,1,  j
jj

 … 

Our intention in this present work is to extend studies on the classes of functions introduced in [3,6] by 

deriving some coefficient inequalities, extremal functions and convolution properties for the classes of 

functions ),( 



G and ),( 




G . 

2.  Coefficient Inequalities 

Theorem 2.1: A function    Azf   is in the class  


,


G  if and only if 

   dandrzwhereadrk

k

k

k

j







 112

2

1  

Proof: Assuming the inequality holds true, then 
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Clearly, we can see that      

 zf

zfz


  lies in the circle centre   where   is a fixed point in U whose 

radius is 1 . Therefore,  zf  is in the class  


,


G . 

To prove the converse, assume that   zf  is in the  


,


G , then 
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For   is a fixed point in U. Choosing values of z on the real axis so that     

 zf

zfz


   is real. Clearing 

the denominator from equation (13) and let 1z , we have  

 
   

1

22

1
11
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k
drkaakdr 

     (14) 

Finally, we note that the theorem is sharp with the extremal function 

    
  

  2,,
2

1

1








kz

drk
zzf

k
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    (15) 

Corollary 2.1: Let    Azf   be in the class  


,


G , then we have 
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1

1
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where d  

Theorem 2.2: A function    Azf   is in the class  


,


G  if and only if 

 


1j

k      


12
1

k

k

j
adrk  

Proof: The proof follows the same technique as in theorem (2.1) but the extremal function in 

this case is 
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    (17) 

Corollary 2.2: Let  Af   be in the class  


,


G , then 
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  where d  

3.  Convolution Properties for Functions in the Class  


,


G   

We first prove the Hadamard product (or convolution) defined by (10) 

Theorem 3.1: If   zf
i

   miG
i

....,,2,1, 





 then    zff
mi

...  


,


G  where 
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The result is very sharp for the functions  zf
i

 mi ....,,2,1  given by 

    
  

 
p

k
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i

i
z

drp
zzf 




 






1
2

1     (19) 

Proof: Principle of mathematical induction will be used to prove theorem (3.1) 

Let    
11

,



 Gzf  and     

22
,




 Gzf , then the inequality 
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implies that 
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Thus, by applying the Cauchy-Schwarz inequality, we have 
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that is 
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then      
i

Gzff 


,
21


  

we note that the inequality (20) gives 
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Consequently, if  
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that is 
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   (27) 

then we have      ,
21


 Szff . From (27), we have 
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1122
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1
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since  k  is increasing for pk  we have 
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(29) 

which shows that      


,
21


 Gzff , where 
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(30) 

Next, if      
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m
, where 
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    (31)  

then, by the same process above, we can show that      


,...
11




 Gzff

m
, where 
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Since 
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and  
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Equation (32) shows that 
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Finally, for functions   mizf
i

...,,2,1  given by (19), we have 
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where 
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It follows that 

   
1

1
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k

pk i

k

j
A

drk



       (38) 

and this completes the proof. 

Corollary 3.1: If      miGzf
i

...,,2,1, 



  then      
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m
, 

where  
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(39) 

The result is sharp for the functions   mizf
i

...,,2,1  given by 
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k
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and   is a fixed point in U. 

 

4.  Convolution Properties for Functions in the Class  
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Theorem 4.1:  If      miGzf
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The result is sharp for the functions   mizf
i

...,,2,1  given by  
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Proof: Let    
11

,



Gzf  and    

22
,




Gzf . By similar process in theorem 3.1, the following 

inequality holds 
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which shows that     


,
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 Gzff . 

Following the same process in theorem 3.1, we obtain that  
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The right hand side of (43) takes its minimum at k=p because it is an increasing function of pk  .  

This shows that     
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hence, we have     


,...
1


 Gzff

m
 where   

      

        
11

1

1

1122

111
1












mmjj

k

mj

pppdr

p






    

(46) 

   

     





















1

1

1

1

1

1

1

12

11
1

m

i i

m

i ij

km

m

i ij

pdrp

p



      (47) 

By taking the function  zf
1  given by (41), we can easily verify that the result is sharp. 

By letting  mi
i

...,,2,1   in theorem 4.1, we obtain 

Corollary 4.1: If       ,...,,2,1, miGzf
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The result is sharp for the functions   mizf
i

...,,2,1  given by 
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and   is a fixed point in U. 

Lemma 4.1:  If     
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The result is sharp for the functions  zf  and  zg  given by 
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where   is a fixed point in U. 

Proof: Let   

      






pk

k

k
zazzf         (53) 

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (January -March., 2021), 7 –14 



13 
 

Convolution Properties and…         Gbolagade and Salaudeen             Trans. Of NAMP 

 
 

and  

      






pk

k

k
zbzzg         (54) 

then, by theorem 2.1, it is sufficient to show that 
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then we show that      
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 Gzgf ,  if   satisfies the inequality 
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The result is sharp for the functions     xizf
i

...,2,1  and    yizg
i

...,2,1  given by 
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for  xi
i

...,2,1   and  yi
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...,2,1  .  Theorem 4.2 yields the next corollary 
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The result is sharp for the functions     xizf
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In conclusion, this work has established the coefficient inequalities, extremal functions and their 

convolution to each of the new subclass derived. 
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