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Abstract 
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1.1 Introduction 

In probability theory, Conditional Expectation plays a very vital role. Conditional expectation is a map which takes values 

from an algebra onto its sub- algebra. This implies that the domain of conditional expectation is not equal to the algebra in 

which it is acting upon. The study of conditional expectations for O*- algebras was first carried out by [1]. Let 𝑀 be an O*-

algebra on a dense subspace 𝐷 of a complex separable Hilbert space  𝐻 with  cyclic and separating vector 𝛺0 and 𝑁 an O*-

subalgebra of 𝑀. In their study, [1] defined conditional expectation as a map 𝐴 → 𝑃𝑁 𝐴𝛺0 of 𝑀 into the closed subspace 

𝐻𝑁 of 𝐻, where 𝑃𝑁 is the orthogonal projection of 𝐻 onto 𝐻𝑁 . We call this the vector conditional expectation given by 

(𝑁, 𝛺0). It is important to check the existence of a Conditional expectation. In fact, [2] has shown that conditional 

expectation does not necessarily exist for a general von Neumann algebra. But for semi finite von Neumann algebras, here 

conditional expectation exists if and only if ∆𝛺0
𝑖𝑡  𝑁∆𝛺0

−𝑖𝑡= 𝑁 where ∆ is the modular automorphism group. 

[3, 4] have studied Unbounded Conditional Expectations for operator algebras and O*-algebras.  [5] studied Unbounded 

Conditional Expectations for Partial O*-algebras where he defined it as a positive linear map 𝐸 of a Partial O*-algebra 𝑀 

onto its Partial O*-subalgebra 𝑁; thereby generalizing conditional expectations in Operator algebras and O*-algebras for 

Partial O*-algebras. In this paper we shall define Conditional Expectations on Partial Generalized von Neumann Algebra 𝑀 

onto its Partial Generalized von Neumann subalgebra 𝑁 and compare two classes of Conditional Expectations; Weak 

Conditional Expectations and Unbounded Conditional Expectations. Hence the work of [5] has been extended. 
 

2.1 Preliminaries 

In order to make the paper self contained, we reproduce the definitions of partial *- algebras, partial O*-algebras and Partial 

Generalized von Neumann Algebra. For more details on the subject we refer the reader to [6]. 

*-algebra: A *-algebra is an algebra 𝔄, together with an involution which enjoys  the following properties; 

(i)  (𝑥 + 𝑦)∗ = 𝑦∗ + 𝑥∗, (ii) (𝑥. 𝑦)∗ = 𝑦∗. 𝑥∗, (iii) 𝑥∗∗ = 𝑥, (iv) (𝛼𝑥)∗ = �̅�𝑥∗, for all 𝑥, 𝑦 ∈ 𝔄, 𝛼 ∈ 𝐶. 

Partial *-algebra: A partial *-algebra is a complex vector space 𝔄 with an involution 𝑥 → 𝑥∗ (that is a bijection 𝑥∗∗ = 𝑥)  

and a subset Г ⊂ 𝔄 ×  𝔄 (a binary relation) such that 

(i) (𝑥, 𝑦) ∈  Г implies (𝑦∗, 𝑥∗)  ∈  Г 

(ii) (𝑥, 𝑦1), (𝑥, 𝑦2) ∈  Г implies (𝑥, 𝛼𝑦1 + 𝛽𝑦2)  ∈  Г, for all 𝛼, 𝛽 ∈  𝑪; 

(iii) whenever (𝑥, 𝑦) ∈  Г,  there exists a product 𝑥. 𝑦 ∈  𝔄 with the usual properties of the multiplication: 𝑥. (𝑦 +
𝛼𝑧) = 𝑥. 𝑦 + 𝛼(𝑥. 𝑧) and (𝑥. 𝑦)∗ = 𝑦∗. 𝑥∗ for (𝑥, 𝑦), (𝑥, 𝑧) ∈  Г and 𝛼 ∈ 

The element 𝑒 of 𝔄 is called a unit if 𝑒∗ = 𝑒, (𝑒, 𝑥) ∈  Г for all 𝑥 ∈  𝔄 and 𝑒. 𝑥 = 𝑥. 𝑒 = 𝑥, for all 𝑥 ∈  𝔄. Notice thathe 

partial multiplication is not required to be associative. Whenever (𝑥, 𝑦) ∈  Г, 𝑥 is called the left multiplier of 𝑦 and 𝑦 is 

called the right multiplier of 𝑥 and we write 𝑥 ∈ 𝐿(𝑦) and 𝑦 ∈ 𝑅(𝑥). For a subset 𝔑 ⊂  𝔄, we write 

𝐿(𝔑) =  ⋂ L(𝑥)𝑥∈𝔑  , 𝑅(𝔑 ) =  ⋂ 𝑅(𝑥).𝑥∈𝔑                            
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 Note that if 𝔄 has no unit, it may always be embedded into a larger partial *-algebra with unit in the standard fashion. 

Partial 𝑶*-Algebra: A partial 𝑂*-algebra is a *-subalgebra 𝑀 of 𝐿𝑤 
† (𝐷, 𝐻), with identity satisfying the following 

properties: 

(𝑖)  𝑋1 + 𝑋2, 𝑋1, 𝑋2 ∈ 𝑀, (ii)  𝛼𝑋, 𝛼 ∈ 𝑪, 𝑋 ∈ 𝑀. (iii) 𝑋 → 𝑋† = 𝑋∗ ↾ 𝐷, (iv) 𝑋1□𝑋2 = 𝑋1
†∗𝑋2, defined whenever 𝑋1 ∈

𝐿𝑤(𝑋2) or 𝑋2 ∈ 𝑅
𝑤(𝑋1), that is if and only if 𝑋2𝐷 ⊂ 𝐷(𝑋1

†∗ ) and 𝑋1
∗𝐷 ⊂ 𝐷(𝑋2

∗), for all 𝑋† ∈ 𝑀, 𝑋1, 𝑋2 ∈ 𝑀 

 

*-Representation: A *- representation of a partial *- algebra 𝔄  is a *- homomorphism of 𝔄 into 𝐿†(𝐷, 𝐻), satisfying 

𝜋(𝑒) = 𝐼, whenever 𝑒 ∈ 𝔄, that is, 

(i)  𝜋 is linear; 

(ii)  𝑥 ∈ 𝐿𝑤(𝑦) in 𝔄 implies 𝜋(𝑥) ∈  𝐿𝑤(𝜋(𝑦)) and 𝜋(𝑥)□𝜋(𝑦) = 𝜋(𝑥𝑦); 
(iii) 𝜋(𝑥∗) = 𝜋(𝑥)† for every 𝑥 ∈ 𝔄 
 

2.2 Properties of Conditional Expectations on von Neumann Algebra 

Here we state the properties of Conditional Expectations on von Neumann Algebra. For the properties of the classical 

Conditional Expectations, [8] has done it extensively. 

Let 𝑀 be a von Neumann Algebra on a separable Hilbert space 𝐻 with a faithful normal state ω and a cyclic vector 𝛺0 in 𝐻; 

let 𝑁 be a von Neumann subalgebra of 𝔐. Then a map 𝐸 of  𝑀 onto 𝑁 is said to be a Conditional Expectation of  𝑀 onto 𝑁 

if it satisfies the following properties: 

1. 𝐸 is linear, 

2.  𝐸(𝐴)* = 𝐸(𝐴*)  for all 𝐴 ∈ 𝑀 

3. 𝐸(𝑋) = 𝑋, for all 𝑋 ∈ 𝑁, 

4. 𝐸(𝐴* 𝐴) ≥ 0, for all 𝐴 ∈ 𝑀 

5. 𝐸(𝐴* 𝐴) ≤ 𝐸(𝐴*) 𝐸(𝐴), for all 𝐴 ∈ 𝑀. 

6. 𝐸(𝑋𝐴𝑌) = 𝑋𝐸(𝐴)𝑌, for all 𝐴 ∈ 𝑀, 𝑋, 𝑌 ∈ 𝑁 

7. 𝐸(𝐸(𝐴)𝑋) = 𝐸((𝐴)𝐸(𝑋)) = 𝐸(𝐴)𝐸(𝑋), for all 𝐴 ∈ 𝑀, 𝑋 ∈ 𝑁 or 𝑋 ∈ 𝑀, 𝐴 ∈ 𝑁. 

8. 𝜔𝛺0(𝐸(𝐴)) =  𝜔𝛺0(𝐴), for all 𝐴 ∈ 𝑀. 

Remark: [7] has proved that every projection of norm one of a 𝐶∗-algebra onto its 𝐶∗-subalgebra enjoys properties 4-6. 
 

2.3 Existence of Conditional Expectation in von=--‘] 

Neumann Algebra 

Let 𝑀 be a von Neumann Algebra on a separable Hilbert space 𝐻 with a faithful normal weight  𝜔 on 𝑀+let 𝑁 be a von 

Neumann subalgebra of 𝑀 in which 𝜔 is semifinite. Then the following two statements are equivalent. 

i. 𝑁 is invariant under the modular automorphism group 𝜎𝑡 associated with 𝜔, 

ii. There exists a 𝜎 -weakly continuous faithful projection 𝐸 of norm one from 𝑀 onto 𝑁 such that 

𝜔(𝑋) = 𝜔 ∘ 𝐸(𝑋), for every 𝑀𝜔. 
 

2.4 Construction of Partial Generalized von Neumann Algebra 

In order to construct a Partial Generalized von Neumann Algebra, we equip the †-invariat vector space 𝐿†(𝐷, 𝐻) with the 

partial multiplication denoted by □ as follows; 𝑋 is a left multiplier of 𝑌 or 𝑋 ∈ 𝐿𝑤(𝑌) if and only if 𝑌𝐷 ⊂ 𝐷(𝑋†⋆) and 

𝑋†𝐷 ⊂ 𝐷(𝑌⋆) and then 𝑋□𝑌 = 𝑋†⋆𝑌. Also 𝑋 ∈ 𝐿𝑤(𝑌) if and only if 𝑌† ∈ 𝐿𝑤(𝑋†) and then (𝑋□Y)† = 𝑌†□X†. If  𝑋 ∈
𝐿𝑤(𝑌) ∩ 𝐿𝑤(𝑍), then 𝑋 ∈ 𝐿𝑤(𝛼𝑌 + 𝛽𝑍) for all 𝛼, 𝛽 ∈ 𝐶, and 𝑋□(𝛼𝑌 + 𝛽𝑍) = 𝛼(𝑋□Y) + 𝛽(𝑋□Z). A †-invariat subspace 

of 𝐿†(𝐷, 𝐻) is called a partial 𝑂⋆-algebra on 𝐷 if 𝑋□Y ∈ 𝑀, whenever 𝑋, 𝑌 ∈ 𝑀 with 𝑋 ∈ 𝐿𝑤(𝑌). 
 

Definition 2.4.1 Let 𝑀0 be a von Neuman Algebra on 𝐻 such that 𝑀0
′𝐷 ⊂ 𝐷. A partial 𝑂⋆-algebra 𝑀 on 𝐷 is called a 

Partial Generalized von Neuman Algebra on 𝐷 over 𝑀0
′  if 𝐷 =∩𝑋∈𝑀 𝐷(𝑋)̅̅ ̅, and 𝑀 = [𝑀0 ↾ 𝐷]

𝑠∗. Supposed that 𝑀 is a 

Partial Generalized von Neuman Algebra on 𝐷 over 𝑀0
′ . Then it follows that; 

𝑀𝑤𝜎
′′ = {𝑋 ∈ 𝐿†(𝐷, 𝐻) : < 𝐶𝑋𝜉, 𝜂 > = < 𝐶𝜉, X†𝜂 >, for each 𝐶 ∈ 𝑀𝑐

′ , 𝜉, 𝜂 ∈ 𝑀} ≡ {𝑋 ∈ 𝐿†(𝐷, 𝐻): �̅�𝜂𝑀0}. 
 

2.5 Conditional Expectations in Partial Generalized von Neumann Algebra 

In this section, let 𝑀 be a Partial Generalized von Neumann Algebra on 𝐷 over 𝑀0(where 𝑀0 is a von Neumann Algebra on 

𝐻) with a strongly cyclic and separating vector 𝛺0 ∈  𝐷 and let 𝑁 be a Partial Generalized von Neumann subalgebra of 𝑀 

over 𝑁0 (where 𝑁0 is a von Neumann subalgebra over 𝑀0). 
 

2.5.1 Weak Conditional Expectation 

Let 𝑁 ⊆ 𝑀 be a Partial Generalized von Neumann Algebra on 𝐷 with a strongly cyclic and separating vector 𝛺0 ∈  𝐷 such 

that (𝑁 ∩ 𝑅𝑤(𝑀)) 𝛺0 is dense in 𝐻𝑁 ≡ 𝑁𝛺0̅̅ ̅̅ ̅̅ . Then the following lemma is immediate: 
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Lemma 2.5.1 Put 

𝜋𝑁: (𝑁 ∩ 𝑅
𝑤(𝑀)) 𝛺0⟶ 𝐿†(𝐷, 𝐻) 

𝑋𝑌𝛺0⟼ (𝑋□𝑌) 𝛺0 

𝐷(𝜋𝑁) = (𝑁 ∩ 𝑅
𝑤(𝑀)) 𝛺0, 

𝜋𝑁(𝑋)𝑌𝛺0 = (𝑋□𝑌) 𝛺0, ∀𝑋 ∈ 𝑁, ∀𝑌 ∈  𝑁 ∩ 𝑅𝑤(𝑀). 

Then 𝜋𝑁 is a *-representation of 𝑁 in the Hilbert space 𝐻𝑁 ≡ 𝐷(𝜋𝑁)̅̅ ̅̅ ̅̅ ̅̅  . We denote by 𝑃𝑁 the projection of 𝐿2(𝑀) ≡  𝐻𝑀  

onto 𝐿2(𝑁) ≡ 𝐻𝑁. 

This projection plays a vital roll in this Research. 

Lemma 2.5.2 If  𝑃𝑁 and 𝜋𝑁 are defined as 

𝑃𝑁: 𝐿
2(𝑀)  ⟶ 𝐿2(𝑁)

𝜋𝑁
→ 𝐿2(𝑁) 

𝑋𝛺0⟼ 𝑃𝑁𝑋𝛺0 = 𝑋𝑃𝑁𝛺0. 

Then it holds that 

𝑃𝑁𝐷 ⊂ 𝐷
∗(𝜋𝑁) 

And 

𝜋𝑁
⋆ (𝑋) 𝑃𝑁𝛺0 = 𝑃𝑁𝑋𝛺0,∀ 𝑋 ∈ 𝑁, 𝛺0 ∈ 𝐷. 

 

Proof. 

⟨(𝑋□𝑌) 𝛺0|𝑃𝑁Ω⟩ = ⟨ 𝑋
†𝑌𝛺0|Ω⟩ = ⟨ 𝑌𝛺0|𝑋Ω⟩ = ⟨ 𝑌𝛺0|𝑃𝑁𝑋Ω⟩ 

And so 

𝑃𝑁𝐷 ⊂ 𝐷
∗(𝜋𝑁) 

And 

𝜋𝑁
∗ (𝑋) 𝑃𝑁𝛺0 = 𝑃𝑁𝑋𝛺0,∀ 𝑋 ∈ 𝑁, 𝛺0 ∈ 𝐷. 

 

Definition 2.5.1 A map 𝐸𝑁 of 𝑀 into 𝐿†(𝐷(𝜋𝑁), 𝐻𝑁) is said to be a weak Conditional Expectations of (𝑀, 𝛺0) with respect 

to 𝑁 if it satisfies 

⟨𝐸𝑁(𝐴𝑋𝛺0)|𝑌𝛺0⟩ = ⟨𝑃𝑁(𝐴𝑋)𝛺0)|𝑌𝛺0⟩, ∀𝐴 ∈ 𝑀, ∀𝑋, 𝑌 ∈  𝑁 ∩ 𝑅
𝑤(𝑀). 

For weak Conditional Expectations, we have the following theorem; 

Theorem 2.5.2 There exists a unique weak Conditional Expectation 𝐸𝑁 of (𝑀, 𝛺0) with respect to 𝑁 and 𝐸𝑁(𝐴) = 𝑃𝑁𝐴 ↾

 𝐷(𝜋𝑁), ∀𝐴 ∈ 𝑀. 

The weak Conditional Expectation 𝐸𝑁 of (𝑀, 𝛺0) with respect to 𝑁 has the following properties 

1. 𝐸𝑁 is linear, 

2. 𝐸𝑁 is a projection, that is  𝐸𝑁(𝐴)
† = 𝐸𝑁(𝐴

†), ∀𝐴 ∈ 𝑀, 

3. 𝐸𝑁(𝑋) = 𝑋, ∀ 𝑋 ∈ 𝑁, 

4. 𝐸𝑁(𝐴
†□𝐴) ≥ 0, ∀𝐴 ∈ 𝑀 such that 𝐴†□𝐴 is well-defined, 

5. 𝐸𝑁(𝐴
†□𝐴) = 𝐸𝑁(𝐴

†)□𝐸𝑁(𝐴), ∀𝐴 ∈ 𝑀 such that 𝐴†□𝐴 and 𝐸𝑁(𝐴
†)□𝐸𝑁(𝐴), are well-defined, 

6. 𝐸𝑁(𝐴□𝑋) = 𝐸𝑁(𝐴)□𝑋, for any 𝐴 ∈ 𝑀, 𝑋 ∈  𝑁 ∩ 𝑅𝑤(𝑀) and 𝐸𝑁(𝐴)□𝑋 is well-defined, 

7. 𝐸𝑁(𝑋□𝐴) = 𝑋□𝐸𝑁(𝐴), for any 𝐴 ∈  𝑀 ∩ 𝑅𝑤(𝑁), 𝑋 ∈ 𝑁, 

8. 𝜔𝛺0(𝐸𝑁(𝐴)) = 𝜔𝛺0(𝐴), for all 𝐴 ∈  𝑀. 

Proof. We know that 𝐸𝑁(𝐴) is a linear map of 𝐷(𝜋𝑁) into 𝐷⋆(𝜋𝑁) for any 𝐴 ∈  𝑀, and furthermore, we have 𝐸𝑁(𝐴)
† =

𝐸𝑁(𝐴
†), for all 𝐴 ∈  𝑀. So 𝐸𝑁 is a map of 𝑀 into 𝐿†(𝐷(𝜋𝑁), 𝐻𝑁). 

Since 

⟨𝐸𝑁(𝐴𝑋𝛺0)|𝑌𝛺0⟩ = ⟨𝑃𝑁(𝐴𝑋)𝛺0)|𝑌𝛺0⟩, ∀𝐴 ∈ 𝑀, ∀𝑋, 𝑌 ∈  𝑁 ∩ 𝑅
𝑤(𝑀). 

𝐸𝑁 is a weak Conditional Expectation of (𝑀, 𝛺0) with respect to 𝑁, 𝐸(𝐴) = 𝐸𝑁(𝐴), for each 𝐴 ∈ 𝑀. Thus we have shown 

the existence and uniqueness of weak Conditional Expectation. The conditions 3-5 follow, since 𝐸𝑁(𝐴) = 𝑃𝑁𝐴 ↾

 𝐷(𝜋𝑁), ∀𝐴 ∈ 𝑀. This completes the proof. 
 

2.6 Unbounded Conditional Expectation in Partial Generalized  von Neumann algebra 

Let 𝑁 ⊆ 𝑀 be a Partial Generalized von Neumann algebra on 𝐷 in 𝐻 with a strongly cyclic and separating vector 𝛺0 ∈  𝐷 

for  𝑀 such that (𝑁 ∩ 𝑅𝑤(𝑀)) 𝛺0 is dense in 𝐻𝑁 . 
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Definition 2.6.1 A map 𝐸:𝐷(𝐸) ⊆ 𝑀 onto 𝑁 is said to be an Unbounded Conditional Expectation of (𝑀, 𝛺0) with respect 

to 𝑁 if 

i. The domain 𝐷(𝐸) of 𝐸 is a †-invariant subspace of  𝑀 containg 𝑁, 

ii. 𝐸 is a projection, that is hermitian 𝐸(𝐴)† = 𝐸(𝐴†), for  𝐴 ∈ 𝐷(𝐸) and 𝐸(𝑋) = 𝑋, ∀𝑋 ∈ 𝑁, 

iii. 𝐸(𝐴□𝑋) = 𝐸(𝐴)□𝑋, for any 𝐴 ∈ 𝐷(𝐸), 𝑋 ∈  𝑁 ∩ 𝑅𝑤(𝑀) 

iv. 𝐸(𝑋□𝐴) = 𝑋□𝐸(𝐴), for any 𝐴 ∈ 𝐷(𝐸) ∩ 𝑅𝑤(𝑁), 𝑋 ∈ 𝑁 

v. 𝜔𝛺0𝐸(𝐴)) = 𝜔𝛺0(𝐴), for all 𝐴 ∈ 𝐷(𝐸), 

Remark 2.6.1 If 𝐷(𝐸) = 𝑀 then 𝐸 is said to be a weak Conditional Expectation of (𝑀, 𝛺0) with respect to 𝑁. 

Note that the Unbounded Conditional Expectation  𝐸 is a subspace of the weak Conditional Expectation  𝐸𝑁 of (𝑀, 𝛺0)  

with respect to 𝑁. That is if 𝐸𝑁:𝑀 ⟶ 𝑁, then 𝐸: 𝐷(𝐸) ⊂ 𝑀 ⟶ 𝑁, also 𝐸𝑁 ↾ 𝐷(𝐸) = 𝐸. 

For Unbounded Conditional Expectation, we have the following lemma 

Lemma 2.6.1  Let 𝐸 be an Unbounded Conditional Expectation of (𝑀, 𝛺0) with respect to 𝑁. Then 

𝐸(𝐴𝑋)𝛺0 = 𝑃𝑁𝐴𝑋𝛺0, ∀ 𝐴 ∈ 𝐷(𝐸), 𝑋 ∈  𝑁 ∩ 𝑅
𝑤(𝑀). 

Proof. 

⟨𝐸 (𝐴𝑋)𝛺0|𝑌𝛺0⟩ = ⟨ 𝐸(𝐴□𝑋)𝛺0|𝑌𝛺0⟩ = ⟨ 𝐸(𝑌
†□𝐴□𝑋)𝛺0|𝛺0⟩ = ⟨ (𝑌

†□𝐴□𝑋)𝛺0|𝛺0⟩ = ⟨ (𝐴□𝑋)𝛺0|𝑌𝛺0⟩

= ⟨ (𝐴𝑋)𝛺0|𝑌𝛺0⟩ = ⟨ (𝐴𝑋)𝛺0|𝑃𝑁𝑌𝛺0⟩ = ⟨ 𝑃𝑁𝐴𝑋𝛺0|𝑌𝛺0⟩ 

Hence, 

𝐸 (𝐴𝑋)𝛺0 = 𝑃𝑁𝐴𝑋𝛺0, ∀𝐴 ∈ 𝐷(𝐸), 𝑋 ∈  𝑁 ∩ 𝑅
𝑤(𝑀).                                  □ 

Let 𝕵 be the set of all Unbounded Conditional Expectation of  (𝑀, 𝛺0) with respect to 𝑁. Then 𝕵 is an ordered set with the 

following order ⊂: 

𝐸1 ⊂ 𝐸2 if and only if  𝐷(𝐸1) ⊂ 𝐷(𝐸2),  𝐸1(𝐴) = 𝐸2(𝐴), ∀𝐴 ∈ 𝐷( 𝐸1). 

Theorem 2.6.1 There exists a maximal Conditional Expectation of (𝑀, 𝛺0) with respect to 𝑁, and it is denoted by ℰ𝓃. 

Proof. 

We put 

𝐷(ℰ0) ≡ {𝐴 ∈ 𝑀: 𝐴 ↾(𝑁∩𝑅𝑤(𝑀))𝛺0∈ 𝑁 ↾(𝑁∩𝑅𝑤(𝑀))𝛺0}. 

Then for any 𝐴 ∈ 𝐷(ℰ0), there exists a unique map ℰ0 such that 

ℰ0 (𝐴𝑋)𝛺0 = 𝑃𝑁𝐴𝑋𝛺0 = 𝐸(𝐴𝑋)𝛺0, ∀𝑋 ∈  𝑁 ∩ 𝑅
𝑤(𝑀). 

It is easily shown that ℰ0 is an Unbounded Conditional Expectation of (𝑀, 𝛺0) with respect to 𝑁. Moreover,  ℰ0 is maximal 

in 𝕵.  Indeed, let 𝐸 ∈ 𝕵. Take an arbitrary  𝐴 ∈ 𝐷(𝐸).      Then by lemma 2.6.1 we see that 

𝐸 (𝐴𝑋)𝛺0 = 𝑃𝑁𝐴𝑋𝛺0 = 𝐸𝑁(𝐴𝑋)𝛺0, ∀𝑋 ∈  𝑁 ∩ 𝑅
𝑤(𝑀). 

Which implies that  𝐸(𝐴𝑋) ↾(𝑁∩𝑅𝑤(𝑀))𝛺0 . Hence 𝐸 ⊂ ℰ0 and ℰ0 is maximal in 𝕵.                 □ 

Thus we remark for the weak and for the Unbounded Conditional Expectations 𝐸𝑁 and 𝐸 that 𝐸𝑁 = 𝑁, 𝐸(𝐷(𝐸)) ≠ 𝑁 and 

𝐸(𝐷(𝐸))  ⊂ 𝑁. 
 

2.7 Existence of Conditional Expectations on Partial Generalized von Neumann Algebra 

For the existence of Conditional Expectations in von Neumann Algebra, Takesaki has obtained the following: 

Theorem 2.7.1 Let 𝑀 be a von Neumann Algebra on a Hilbert space 𝐻 with a separating and cyclic vector 𝛺0 and 𝑁 a von 

Neumann subalgebra of 𝑀. Then 𝐸𝑁 is a Conditional Expectation of  𝑀 onto 𝑁 with respect to 𝛺0 if and only 

if ∆𝛺0
𝑖𝑡 (𝑁) ∆𝛺0

−𝑖𝑡= 𝑁, ∀𝑡 ∈ 𝑅, where ∆𝛺0 is the modula operator for the left Hilbert Algebra 𝑀𝛺0. 

Then our extension is as follows: 

Theorem 2.7.2 Let 𝑀 be a Partial Generalized von Neumann Algebra on 𝐷 in 𝐻 with a strongly cyclic and separating 

vector 𝛺0 ∈ 𝐷, and let 𝑁 be a Partial Generalized von Neumann subalgebra of 𝑀 satisfying  𝑁𝑤
′ �̂�(𝑁) ⊂ �̂�(𝑁), (𝑁 ∩

𝑅𝑤(𝑀)) 𝛺0 is essentially self-adjoint for 𝑁 and 𝐸𝑁(𝐴) = 𝑃𝑁𝐴 ↾ 𝑃𝑁 𝐷, ∀𝐴 ∈  𝑀𝑤𝑐
′′ . Then 

1. 𝐸𝑁 is linear, 

2. 𝐸𝑁 is hermitian, that is 𝐸𝑁(𝐴)
† = 𝐸𝑁(𝐴

†), ∀𝐴 ∈ 𝑀, 

3. 𝐸𝑁(𝑋) = 𝑋, ∀ 𝑋 ∈ 𝑁, 

4. 𝐸𝑁(𝐴
†□𝐴) ≥ 0, ∀𝐴 ∈ 𝑀 such that 𝐴†□𝐴 is well-defined, 

5. 𝐸𝑁(𝐴
†□𝐴) = 𝐸𝑁(𝐴

†)□𝐸𝑁(𝐴), ∀𝐴 ∈ 𝑀 such that 𝐴†□𝐴 and 𝐸𝑁(𝐴
†)□𝐸𝑁(𝐴), are well-defined, 
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6. 𝐸𝑁(𝐴□𝑋) = 𝐸𝑁(𝐴)□𝑋, for any 𝐴 ∈ 𝑀, 𝑋 ∈  𝑁 ∩ 𝑅𝑤(𝑀) and 𝐸𝑁(𝐴)□𝑋 is well-defined, 

7. 𝐸𝑁(𝑋□𝐴) = 𝑋□𝐸𝑁(𝐴), for any 𝐴 ∈  𝑀 ∩ 𝑅𝑤(𝑁), 𝑋 ∈ 𝑁, 

8. 𝜔𝛺0(𝐸𝑁(𝐴)) = 𝜔𝛺0(𝐴), for all 𝐴 ∈  𝑀. 

9.  ∆𝛺0
′′𝑖𝑡(𝑁𝑤

′ )′ ∆𝛺0
′′−𝑖𝑡= (𝑁𝑤

′ )′, ∀𝑡 ∈ 𝑅 where  ∆𝛺0
′′  is the modular operator for the full Hilbert Algebra (𝑀𝑤

′ )′. 

Proof. 

Let 

𝐷(𝐸𝑁) = {𝐴 ∈ 𝑀:𝑃𝑁𝐴𝛺0 ∈ 𝑁𝛺0} 

Then we see that 

𝑃𝑁𝐴𝛺0 = 𝐸𝑁(𝐴) 𝛺0 ∈ 𝑁𝛺0, for each 𝐴 ∈  𝑀. Hence 𝐷(𝐸𝑁) ⊂ 𝑀. 

Since 𝛺0 is strongly cyclic and separating vector for 𝑀. It follows that for any 𝐴 ∈ 𝐷(𝐸𝑁). There exists a unique element 

𝐸𝑁(𝐴) of  𝑁 such that 𝑃𝑁𝐴𝛺0 = 𝐸𝑁(𝐴) 𝛺0. 

Take arbitrary 𝑋 ∈ 𝑁, then �̅� is affiliated with the von Neumann Algebra (𝑁𝑤
′ )′. And so 

𝑁𝑤
′ = 𝑁𝑞𝑤

′ . 

By the self-adjointness of 𝑀 and (𝑁 ∩ 𝑅𝑤(𝑀)) 𝛺0 being dense in 𝐻𝑁 , it follows that 

𝑁(𝑁 ∩ 𝑅𝑤(𝑀)) 𝛺0 ⊂ (𝑁 ∩ 𝑅
𝑤(𝑀)) 𝛺0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑁𝛺0̅̅ ̅̅ ̅̅ , 

where (𝑁 ∩ 𝑅𝑤(𝑀)) 𝛺0 is a reducing subspace for 𝑁. Since (𝑁 ∩ 𝑅𝑤(𝑀)) 𝛺0 is essentially self-adjoint for  𝑁, 𝑃𝑁 ∈

𝑁𝑤
′ , 𝑃𝑁�̂�(𝑁) ⊂ �̂�(𝑁). 

Now since 𝑋𝜂̅̅̅̅ (𝑁𝑤
′ )′, for each 𝑋 ∈ 𝑁, we have 𝑁𝛺0 = (𝑁𝑤

′ )′𝛺0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ that is 𝑃𝑁 = 𝑃((𝑁𝑤
′ )′). 

Let 𝑆𝛺0and 𝑆𝛺0
′′  be the closures of the maps 

𝑆𝛺0𝐴𝛺0 = 𝐴
†Ω, 𝐴 ∈ 𝑀 

 𝑆𝛺0
′′ 𝐵𝛺0 = 𝐵

∗Ω, 𝐵 ∈ (𝑀𝑤
′ )′ 

And so, 𝑆𝛺0 ⊂ 𝑆𝛺0
′′  and 𝑆𝛺0 ≠ 𝑆𝛺0

′′  in general. 

But then 

 ∆𝛺0
′′𝑖𝑡(𝑁𝑤

′ )′ ∆𝛺0
′′−𝑖𝑡= (𝑁𝑤

′ )′, ∀𝑡 ∈ 𝑅 where  ∆𝛺0
′′  is the modular operator for the full Hilbert Algebra (𝑀𝑤

′ )′. 

This implies 

𝑃((𝑁𝑤
′ )′)𝑆𝛺0

′′ ⊂ 𝑆𝛺0
′′ 𝑃((𝑁𝑤

′ )′) 

And there exists a Conditional Expectation 𝐸𝑁
′′ of the Partial Generalized  von Neumann Algebra ((𝑀𝑤

′ )′, 𝛺0) with respect 

to (𝑁𝑤
′ )′. 

And so 

𝐸𝑁
′ (𝐴†)𝛺0 = 𝑃𝑁𝐴

†𝛺0 = 𝑃𝑁𝑆𝛺0𝐴𝛺0 = 𝑃𝑁𝑆𝛺0
′′ 𝐴𝛺0 = 𝑆𝛺0

′′ 𝑃𝑁𝐴𝛺0 = 𝑆𝛺0
′′ 𝐸𝑁(𝐴)𝛺0 = 𝑆𝛺0𝐸𝑁(𝐴)𝛺0 = 𝐸𝑁(𝐴)

†𝛺0, for each 𝐴 ∈

𝑀 which implies by the separateness of Ω that 𝐸𝑁 is hermitian. 

It is clear that 𝐸(𝑋) = 𝑋, ∀𝑋 ∈ 𝑁. 

Now take arbitrary 𝐴 ∈ 𝑀 and 𝑋 ∈  𝑁 ∩ 𝑅𝑤(𝑀). 

Since 𝐸𝑁 is hermitian, it follows that 𝐴□𝑋 ∈  𝑀 and 𝑋 ∈ 𝑁 ∩ 𝑅𝑤(𝑀). 

Obviously, 

𝜔𝛺0(𝐸𝑁(𝐴)) = 𝜔𝛺0(𝐴), for all 𝐴 ∈  𝑀. 

Therefore 𝐸𝑁is a Conditional Expectation of (𝑀, 𝛺0) with respect to 𝑁.                                  □ 

Theorem 2.7.3 Let 𝑀 be a Partial Generalized von Neumann Algebra on 𝐷 in 𝐻 with a strongly cyclic and separating 

vector 𝛺0 ∈ 𝐷, and let 𝑁 be a Partial Generalized von Neumann subalgebra of 𝑀 satisfying the following conditions 

i. 𝑁𝛺0̅̅ ̅̅ ̅̅ = 𝐻𝑁 

ii. 𝑁𝑤
′ �̂�(𝑁) ⊂ �̂�(𝑁) 

iii. 𝑁𝛺0̅̅ ̅̅ ̅̅  is essentially self-adjoint for 𝑁. 

iv.  ∆𝛺0
′′𝑖𝑡(𝑁𝑤

′ )′ ∆𝛺0
′′−𝑖𝑡= (𝑁𝑤

′ )′, ∀𝑡 ∈ 𝑅 where  ∆𝛺0
′′  is the modular operator for the full Hilbert Algebra (𝑀𝑤

′ )′. 

Then there exists a Conditional Expectation of (𝑀, 𝛺0) with respect to 𝑁 if and only if 𝑃𝑁𝑀𝛺0 = 𝑁𝛺0. 

Proof. 

Since 𝑁𝛺0 = 𝑁𝛺0̅̅ ̅̅ ̅̅ 𝑡𝑁 = 𝑃𝑁𝐷. It follows that 𝐸𝑁̅̅̅̅ (𝐴) = 𝐸�̂�(𝐴) , for each 𝐴 ∈  𝑀, and           

𝐸𝑁̅̅̅̅ (𝐴) ⊂ (𝑁𝑃𝑁)𝑤𝑐
′′ .                                                                                                                        □ 
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