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Abstract 

 
The Nikiforov-Uvarov (NU) method is employed to calculate the approximate 

analytical solutions of the Klein-Gordon equation with a newly proposed potential 

known as the Coulomb-Eckart potential. The new potential is a combination of the 

Coulomb potential and the Eckart potential. The energy equation, eigenvalues and 

energy spectra of HCl, LiH and CH diatomic molecules were obtained. Also, the ro-

vibrational energy for different energy states were computed. By varying some 

potential parameters, energy equations of some other potentials like the Hellmann 

potential and the Yukawa potential were obtained. 

 

1. Introduction 

The continuous interest in the study of the relativistic and non-relativistic wave equations in quantum mechanics had 

increased over the years because of its importance in physics today. The non-relativistic regime is described using the 

Schrödinger equation while the Klein-Gordon and the Dirac equation are used to describe the relativistic effect for spin 0 

and spin-1/2 particles respectively when considering the relativistic effect. The solution of these waves can either be exact 

or approximate depending of the potential under consideration. Over the years, several traditional techniques have been 

developed to obtain these solutions. Examples include the Nikiforov-Uvarov (NU) method [1-3], the supersymmetric 

quantum mechanics and shape invariance method [4-9], asymptotic iteration method (AIM) [10-15], the variational method 

[16] and others. Most of these techniques can be used effectively for approximate solution i.e. when  𝑙 ≠ 0, for different 

physical potential models. However, for 𝑙 = 0, the solution of these equations can be obtain with only few potentials such 

as Manning-Rosen potential [4,17,18], Hulthén potential [19, 20], Kratzer potential [21], Wood-Saxon potential [22, 23] 

and the Pöschl-Teller potential [24]. Thus, a lot of works have focus on the approximate solutions with some of these 

potential models. Some of the reported works are Yahya and Oyewumi [25], who solved the Klein-Gordon equation with 

the Pöschl-Teller-type potential. In their study, they obtained the thermodynamic properties for the Pöschl-Teller-type 

potential in the classical limit. Jia and Cao [26] obtained the molecular energy of spinless Morse potential under the Klein-

Gordon equation. They also studied the vibrational transition frequencies using the methodology of supersymmetric and 

shape invariance approach. Recently, Ebomwonyi et al. [27], studied arbitrary 𝑙 solutions of the Schrӧdinger equation in the 

presence of a new potential formed from a combination of Hellmann potential and Deng-Fan potential model. In the present 

work, we desire to study the approximate solution of the Klein-Gordon for a case when 𝑉(𝑟) = 𝑆(𝑟) and the Schrӧdinger 

equations with a combined potential called the Coulomb-Eckart potential model. These potentials were individually studied 

under different in the past [28, 29]. However, a combination of these potential will give more applications and interesting 

results; and to the best of our knowledge, this combination is novel in the literature. The Coulomb-Eckart potential is of the 

form 
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where r is internuclear separation, α is the screening parameter related to the range of the potential, A, B and C are the 

potential strengths. 

2. Parametric Nikiforov-Uvarov method 

The Nikiforov-Uvarov (NU) method is based upon reducing the second-order linear differential equation to a 

hypergeometric type equation [30]. By introducing an appropriate transformation  s s x , we can then write an equation 

of the form 

 
 

 
 

 

 
 

2
0,

n n n

s s
s s s

s s

 
  

 
   

       (2)    

where  s and  s  are polynomials of at most second degree two and  s  is a polynomial of degree one at most. It 

is discovered that the conventional NU method has tedious and logical calculations. In order to simplify these calculations, 

Tezcan and Sever [31] in their study, derived the following equation from the conventional NU method [30-32] 
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which they called parametric Nikiforov-Uvarov method. From the parametric NU method, the bound state energy condition 

is obtained as [31] 

       2 5 9 3 8 3 7 3 8 8 9
2 1 2 1 1 2 2 0,n n n n n                    

 (4) 

with the wave function as 
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where the parameters in Eq. (4) and Eq. (5) are given as follows 
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3. Bound state solution 

3.1 Solution to the Klein-Gordon equation 

The Klein-Gordon equation with scalar potential 𝑆(𝑟) and vector potential 𝑉(𝑟) of a particle of mass 𝑀  with relativistic 

energy 𝐸 is given as  
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Eq. (7) has a potential 2V in the nonrelativistic limit. Substituting Eq. (1) into Eq. (7), we have 
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Due to the centrifugal term  
2

1l l

r

 in Eq. (8), we need to apply a suitable approximation scheme to deal with the centrifugal 

term. For a short potential range, we apply the following Greene-Aldrich [33] approximate type 
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Where we have taken 2           

Substituting Eq. (9) into Eq. (8), we have 
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In order to use the parametric Nikiforov-Uvarov method, it is important we define a variable of the form 
2 r

s e


 and 

substitute it into Eq. (10) to have 
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where 
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Comparing Eq. (11) with Eq. (3), we obtain the following parametric constants 
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Using these parametric constants in Eq. (13) in Eq. (4), the energy equation is obtained as 
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3.2 Solution to the Schrödinger equation 

In order to obtain the solution of the Schrödinger-like equation in the nonrelativistic limit with the Coulomb-Eckart 

potential in Eq. (1), we write the radial Schrödinger equation of the form [29] 
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where  1L l l  ,  is the reduced particle mass, E is the non-relativistic energy and  V r is the interacting potential. 

Now substituting the Eq. (1) and Eq. (9) into Eq. (15), we have 
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Using the same transformation as in the Klein-Gordon equation and substitute it into Eq. (16) we, have 
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On comparing Eq. (17) with Eq. (3), we obtain 
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Now substituting the appropriate parametric constants in Eq. (21) into Eq. (4), the nonrelativistic energy equation for the 

Coulomb-Eckart potential is obtained as 
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Table 1: Eigenvalues for S V for different values of , ,A B C  

state 𝜶 A=3,B=2,C=1 B=3,C=2,A=1 C=3,A=2,B=1 

2p 

 

 

3p 

 

 

3d 

 

 

4p 

 

 

4d 

 

 

4f 

0.20 

0.25 

0.30 

0.20 

0.25 

0.30 

0.20 

0.25 

0.30 

0.20 

0.25 

0.30 

0.20 

0.25 

0.30 

0.20 

0.25 

0.30 

-0.121573037 

-0.246720366 

-0.363398574 

 0.213878422 

 0.169641448 

 0.128749939 

 0.025865441 

-0.021735002 

-0.043422302 

 0.593179477 

 0.651121652 

 0.711457496 

 0.343592799 

 0.362751334 

 0.396922423 

 0.270800284 

 0.376177899 

 0.571857003 

1.596974043 

1.624127558 

1.657963870 

2.082085681 

2.224864947 

2.370101913 

1.741322672 

1.850123256 

1.985866087 

2.612922085 

2.894666417 

3.179277529 

2.213527357 

2.426451131 

2.656923872 

1.968924914 

2.216949678 

2.538014138 

4.984537368 

4.978625478 

4.975411249 

5.636945503 

5.781081216 

5.922107193 

5.072496125 

5.115069275 

5.171178676 

6.329231686 

6.645895549 

6.958763198 

5.720139919 

5.908640340 

6.103087016 

5.208860058 

5.330623926 

5.487800922 

 

Table 2: Energy spectra for HCl, LiH and CH for 2p to 4f states; ℏ𝑐 = 1973.29𝑒𝑉𝐴̇,             𝜇𝐻𝐶𝑙 =
0.9801045𝑎𝑚𝑢,,   𝜇𝐿𝑖𝐻 = 0.8801221𝑎𝑚𝑢,,   𝜇𝐶𝐻 = 0.929931𝑎𝑚𝑢, ,   2𝐵 = 𝐴 = 2 = −2𝐶. 

state 𝜶 𝑯𝑪𝒍 𝑳𝒊𝑯 𝑪𝑯 

     

  2p  0.10 

 0.15 

 0.20 

3.306050903 

5.387403793 

8.578879671 

3.507385413 

5.880970851 

9.478067148 

3.402421902 

5.624331604 

9.010895426 

  3p  0.10 

 0.15 

 0.20 

1.483263394 

3.090964529 

5.618459629 

1.632546315 

3.480121112 

6.328062076 

1.554374747 

3.277708186 

5.959465221 

 3d  0.10 

 0.15 

 0.20 

8.456705783 

16.75546869 

28.61378177 

9.221052317 

18.50518821 

31.74110263 

8.823892712 

17.59646044 

30.11719323 

 4p  0.10 

 0.15 

 0.20 

1.243370524 

3.456891290 

6.685976721 

1.450429206 

3.948961455 

7.556229436 

1.342467664 

3.693484310 

7.104608190 

 4d  0.10 

 0.15 

 0.20 

5.388504535 

11.39664223 

20.02753155 

5.939705114 

12.67160740 

22.30707360 

5.653093141 

12.00941455 

21.12342071 

  4f  0.10 

 0.15 

 0.20 

16.56907552 

34.94067213 

60.90013035 

18.23954454 

38.72825884 

67.64852340 

17.37194455 

36.76153418 

64.14467373 
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Table 3: Comparison of ro-vibrational Hellmann energy  n
E  for 2s, 2p, 3s, 3p and 3d with 2 1  , B   and 2A  . 

state 
  Present Hamzavi et al.[34] Onate et al.[35] 

2s 
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3p 

 

 

3d 

 

 

 

0.001 

0.005 

0.010 

0.001 

0.005 

0.010 

0.001 

0.005 

0.010 

0.001 

0.005 

0.010 

0.001 

0.005 

0.010 

 

0.064001  

0.070025  

0.077600 

0.063750 

 0.068756 

 0.075025 

0.029280  

0.035334  

0.043003  

0.029168 

0.034756   

 0.041803 

 0.028945 

 0.033617 

0.039469   

 

0.063243 

0.067106 

0.071689 

0.063495 

0.067377 

0.072020     

0.028283 

0.031993     

0.036142 

0.028765     

0.032480 

0.036645     

0.028767 

0.032526     

0.036814     

0.064250 

0.071256 

0.080025 

0.063999 

0.069975 

0.077400 

0.029611 

0.036951 

0.046136 

0.029499 

0.036356 

0.044869 

0.029274 

0.035184 

0.042403 

 

Discussion 

Table 1 shows the energy eigenvalues for different values of the potential strengths, A, B and C. It can be seen that as the 

screening parameter increases across the states, the energy eigenvalue decreases for 2p, 3p and 3d. However, the reverse is 

the case in 4p, 4d and 4f. It is also observed in Table 1 that energy increases linearly with the potential strength C. In Table 

2, we present the energy spectrum for three diatomic molecules. It is also observed that as the screeening parameter 

increases, the energy also increases.  

In Table 3, the ro-vibrational energies for 2p, 3s, 3p and 3d states were computed and it can be observed that our results 

compare favourably with the works of Hamzavi et al, 2013 and Onate et al., 2017.  

One very important and interesting feature of our proposed potential is that, the results of other potentials can be deduced 

from it. For instance, when we put 𝐴 = 0, the potential reduced to Eckart potential 
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and the energy equation becomes 
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Similarly, when we put 𝐶 = 0, the potential turns to Hellmann potential 
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with energy equation as 
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Putting 𝐵 = 𝐶 = 0, the potential becomes Coulomb like potential 
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with energy equation as 
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Putting 𝐴 = 𝐶 = 0, the potential turns to a Yukawa like potential 
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and the energy equation becomes 
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Conclusion 

The solutions of the Coulomb-Eckart potential (a combination of the Coulomb potential and the Eckart potential) for the 

Klein-Gordon equation have been obtained via the Nikiforov-Uvarov method. The energy equation and the eigenvalues for 

different values of the potential strengths were obtained. The energy spectra of HCl, LiH and CH diatomic molecules for 2p 

to 4f states were also obtained. Also, the ro-vibrational energies for different states that we computed compare favourably 

and are in agreement with other works in literature. The Hellmann potential and the Yukawa potential were recovered from 

the energy equation by adjusting the potential parameters. 
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