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Abstract 
 

Pneumonia is one of the leading causes of death worldwide, especially among 

children below 5 years, the elderly above 65 years and people with weaker immune 

system. It is usually referred to as the “captain of the men of death" because of the 

great toll it exacted on humanity. In this work, we examined the dynamics of the 

pneumonia disease from a mathematical perspective via a deterministic SEIR model. 

This consists of investigating the equilibria, basic reproduction number, stability 

analysis, and bifurcation analysis. The bifurcation analysis via the centre manifold 

theory revealed the presence of forward bifurcation. 
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Introduction 

Pneumonia is a condition of the lungs that affects the alveoli; and dry cough, chest pain, fever, and trouble breathing are 

common symptoms of pneumonia. Viruses or bacteria usually cause Pneumonia [1]. In this condition of the lungs, the lungs 

are filled with fluid and this makes breathing difficult. Pneumonia disproportionately affects the young, the elderly, as well 

as vulnerable individuals whose immune system have been compromised. It preys on weakness and vulnerability [2]. 

Pneumonia was described 2,500 years ago by Hippocrates, the father of medicine. Dr. William Osler, the founder of 

modern medicine, who studied pneumonia throughout his career, called pneumonia the “captain of the men of death” 

because of the great toll it exacted on humanity [3]. Pneumonia is associated with the following risk factors: pulmonary 

disease, cystic fibrosis, asthma, diabetes, heart failure, poor ability to cough such as following a stroke, and a weak immune 

system. The disease may be classified by where it was acquired with community, hospital, or health care associated [4]. For 

children under five years, the typical signs and symptoms of pneumonia include fever, cough, fast or difficult breathing, 

ongoing vomiting, unwillingness to drink, convulsions, extremes of temperature, and a decreased level of consciousness 

[5]. The introduction of vaccines and antibiotics in the 20th century improved the chance of survival of pneumonia patients, 

but among the very young, the very old, the chronically ill, and in developing countries, pneumonia remains a leading cause 

of death [6]. Pneumonia often shortens suffering among those already close to death and has thus been called "the old man's 

friend" [1].Pneumonia, can be classified as one of the air-borne diseases. It accounts for the death of millions of people 

through inhalation of pathogenic organism, mainly streptococcus pneumonia [9]. Human beings of all ages can be affected 

by the pneumonia disease, from children to the elderly. This is even worsened when the immune system is lowered [7].  

In order to understand the dynamics of infectious diseases, a lot of scholars proposed mathematical models for the disease 

dynamics. Several scholars proposed different models to describe the dynamics of infectious diseases in the community and 

these models are used for making quantitative predictions of different intervention strategies and their effectiveness [8]. 

Several scholars also proposed a model on pneumonia dynamics [8-11]. [12] studied a mathematical model of treatment 

and vaccination interventions of pneumococcal pneumonia infection dynamics using SCIR and SCIRV models. The latter is 

the pneumonia model under treatment and vaccination interventions. [12] emphasized that in order to make the endemic 

equilibrium unstable so that it switches to disease-free equilibrium, intervention strategies like high efficacy treatment and 

vaccination programs are necessary. [13] described the dynamics of the pneumonia disease using the theory of ordinary 

differential equations via SICR model, where some mathematical analysis were performed on the model and the bifurcation 

analysis showed a  possibility of forward bifurcation. The Modeling of co-dynamics of pneumonia and meningitis diseases 
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was presented in [14] via SIR model. It was revealed that decreasing the contact rate of either pneumonia or meningitis has 

a great influence on controlling co-infection of pneumonia and meningitis in the population. All the above studies and so 

many others, have developed mathematical models on the pneumonia disease by considering different aspects. In this 

research work, we considered and analyzed a deterministic SEIR model for the pneumonia disease. 

 

Basic Model Formulation  

In this section, we construct a deterministic SEIR mathematical model describing the transmission dynamics of pneumonia. 

According to the disease status of individuals, the total human population N(t) is subdivided into four mutually-exclusive 

time-dependent compartments comprising of the susceptible compartment S(t), exposed compartment E(t), infectious 

compartment I(t) and recovered compartment R(t), in the sense that N(t) = S(t) + E(t) + I(t) + R(t). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow diagram of the disease 

 

While the susceptible class consists of all individuals who can contract pneumonia, the exposed compartment consists of 

those individuals who have contracted the disease but are not infectious. The infectious compartment includes all 

individuals who have contracted the disease and can also infect others, whereas the recovered class includes all individuals 

who have recovered from pneumonia. We assume that individuals within the population have equal likelihood of catching 

pneumonia. Not all individuals who come in contact with infectious individuals immediately become infectious. 

Furthermore, recovered and exposed individuals do not play a part in transmitting pneumonia to the susceptible individuals.  

Disease induced death only occur in the infectious compartment. In view of the above assumptions as well as the schematic 

diagram in Fig. 1, the transmission dynamics of the pneumonia infection is governed by the following nonlinear system of 

ordinary differential equations: 

{
 
 
 
 

 
 
 
 
dS(t)

dt
= Λ+ δR − (μ+ϖ)S,                               

dE(t)

dt
= ϖS − (μ + γ+ ψ)E,                              

dI(t)

dt
= γE − (μ + β + η)I,                                 

dR(t)

dt
= ψE + βI − (μ + δ)R.                           

                                                                                            (1) 

Associated with the system of equations (1) are the following initial conditions:  

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0. 
The parameter Λ denotes the recruitment rate of susceptible individuals. Susceptible individuals enter the exposed 

compartment with a force of infection  ϖ =
χI

N
, where χ = kτ,  with k being the contact rate and τ the probability that a 

contact is effective enough to cause infection. As the disease progresses in the absence of treatment, exposed individuals 

join the infectious compartment at the rate  γ, while recovery rate of the exposed individuals is  ψ. Infectious individuals 

recover from pneumonia at rate  β, while recovered individuals who have lost their immunity become susceptible at rate  δ. 
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 The diseased induced death rate for the infectious compartment is  η, while natural mortality for all individuals is at rate  μ.  

 

Table 1: Description of the model variables and parameters 

Parameters Description 

Λ Recruitment rate of susceptible humans. 

ϖ Force of infection of the susceptible class. 

χ Rate of transmission. 

k Contact rate of susceptible individuals with the infectious individuals. 

τ The probability that a contact is effective to cause infection. 

β Per capita recovery rate of the infectious. 

ψ Per capita recovery rate of the exposed. 

η Per capita disease induced mortality rate. 

γ Rate at which exposed becomes infectious. 

μ Per capita natural mortality rate of individuals. 

δ Rate at which treated individuals become susceptible. 

 

Basic Model Analysis 

Positivity of solutions: For model (1) to be epidemiologically meaningful and mathematically well posed, it is necessary to 

establish that all solutions of system with positive initial data will remain positive for all times  t > 0. This will be 

established in the following theorem. 

Theorem 1: Let {(𝑆, 𝐸, 𝐼, 𝑅) ∈ ℝ+
4 : 𝑆(0) > 0, 𝐸(0) > 0, 𝐼(0) > 0, 𝑅(0) > 0}. Then the solution set 

(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of system (1) is positive for all  𝑡 ≥ 0. 

Proof: From the first equation of system (1), we have 
dS(t)

dt
≥ −(μ +ϖ)S. 

This implies S(t) ≥  S0e
−(μ+ϖ)t ≥ 0   for all   t ≥ 0. 

In the same manner, we also have E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0   for all   t ≥ 0.          ∎ 

 

Invariant Region: Apart from the positivity of the state variables, it is also important to determine the region in which the 

solution of model (1) is bounded. In this direction, we have that the dynamics of the total human population satisfies 
dN(t)

dt
≤ Λ − μN(t).                                                                                                                                    (2) 

This implies  N(t) ≤ [1 − e−μt]
Λ

μ
+ N(0)e−μt. As t ⟶ ∞, we get N(t) ⟶

Λ

μ
. Therefore, the feasible solution set of the 

system (1) given by 

Ω = {(S, E, I, R) ∈ ℝ+
4 : 0 ≤ S + E + I + R = N

≤
Λ

μ
},                                                                                                                             (3) 

 

is positively invariant, inside which the model is considered to be epidemiologically meaningful and mathematically well-

posed. 
 

Pneumonia Free Equilibrium Point: This is the point where there is no pneumonia within the population under 

consideration. Here  E = I = R = 0 and the pneumonia free equilibrium 𝔼0 is obtained by setting the right hand side of 

each equation in system (1) to zero. Thus, 

𝔼0 = (S0, E0, I0, R0) = (
Λ

μ
, 0, 0, 0).                                                                                                      (4) 

Basic Reproduction Number: We compute the basic reproduction number R0 for the model (1). This will prove in 

analyzing the stability of the equilibrium points. R0 is a very important dimensionless epidemiological parameter which 

measures the average number of secondary cases generated by a primary case when the infected individual is introduced 

into a population of completely susceptible individuals. We will determine R0 for system (1) by applying the next 

generation matrix approach as laid out in [1]. The first step to calculating R0 is to rewrite the infective classes of the model 

equations in the form: 
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X′(t) = ℱ(t, X(t)) − 𝒱(t, X(t)), 
where 

{
 
 

 
 
X(t) = (E(t), I(t)),                               

ℱ(t, X(t)) = [
χI

N
S

0

],                               

𝒱(t, X(t)) = [
(μ + γ+ ψ)E

−γE + (μ + β + η)I
] .

 

Here the matrices ℱ and 𝒱 denote the new infection terms and the remaining transfer terms, respectively. With the 

notations k1 = μ+ γ + ψ and  k2 =  μ + β + η, we determine the following next generation matrices  

F = [
0 χ

0 0
]      and    V = [

k1 0
−γ k2

], 

as the Jacobian matrices of ℱ(t, X(t)) and  𝒱(t, X(t)), respectively, evaluated at the pneumonia free equilibrium. Next, we 

have 

FV−1 = [

χγ

k1k2

χ

k2
0 0

]. 

Thus, the basic reproduction number R0 is obtained as the spectral radius  FV−1, that is, 

R0 = σ(FV−1) =
χγ

k1k2
.                                                                                                                                                                       (5) 

 

Local stability of the pneumonia free equilibrium: To examine the local stability of the pneumonia free equilibrium, we 

first obtain the following Jacobian matrix  

J𝔼0 = [

−μ

0
0
0

0
−k1

γ

ψ

−χ

χ

−k2
β

δ

0
0

−(μ + δ)

], 

of the system (1) at 𝔼0. Next, we then establish the following stability result. 

Theorem 2: The pneumonia free equilibrium 𝔼0 is locally asymptotically stable if 𝑅0 < 1,otherwise it is unstable. 

Proof: The characteristic polynomial of the matrix J𝔼0 is obtained as 

Det(λI − J𝔼0) = (λ + μ)(λ + μ+ δ)(λ2 + aλ+ b) = 0, 

where 

a = k1 + k2     and     b = k1k2 − χγ = (1 – R0)k1k2.   
The pneumonia free equilibrium 𝔼0 is locally asymptotically stable if and only if all roots of the above characteristic 

polynomial have negative real parts. Obviously, the first two eigenvalues λ1 = −μ and λ2 = −(μ + δ) are negative while 

the remaining two eigenvalues can be obtained as roots of the characteristics equation  λ
2 + aλ+ b = 0. According to the 

Routh-Hurwitz criteria [1,15], the equation λ
2 + aλ + b = 0 have strictly negative real roots if a > 0 and b > 0. Clearly, 

we observe that a > 0 because it is the sum of positive parameters. Also and b = (1 – R0)k1k2 > 0 whenever R0 < 1. 

Hence, the pneumonia free equilibrium is locally asymptotically stable if  R0 < 1.          ∎ 

Remark: Theorem 2 implies that pneumonia can be eradicated from the population (when  R0 < 1) if the initial sizes of the 

sub-populations of the model (1) are in the basin of attraction of the pneumonia free equilibrium. To ensure that eradication 

of the pneumonia bacteria does not depend on the initial sizes of the sub-populations, it is important to establish that the 

pneumonia free equilibrium globally asymptotically stable 

 

Global stability of the pneumonia free equilibrium: A very common approach to investigate the global asymptotic 

stability of the disease free equilibrium of epidemiological models is by constructing an appropriate Lyapunov function [16, 

17]. However, we will employ a simpler method introduced by Castillo-Chavez and Song [16]. The method requires that 

we rewrite our proposed model (1) in the following form: 

{

dX

dt
= L(X, Z),                                

dZ

dt
= M(X, Z),    M(X, 0) = 0,   

                                                                                                                               (6) 
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where X = (S, R) ∈ ℝ2 denotes (its components) the uninfected individuals and Z = (E, I) ∈ ℝ2denotes (its components) 

the infected individuals. Here, the pneumonia free equilibrium is represented by  𝔼0 = (X∗, 0) where X∗ = (
Λ

μ
, 0).   𝔼0 is a 

globally asymptotically stable equilibrium if the following two conditions are satisfied: 

 (C1): For
dX

dt
= L(X ,0),  X∗is globally asymptotically stabile, 

(C2): 
dZ

dt
= DZG(X

∗ ,0)Z − M̂(X, Z) where , M̂(X, Z) ≥ 0  for all (X, Z) ∈ Ω. 

In condition (C2) above, DZG(X
∗ ,0) is known as the Metlzer matrix with nonnegative off-diagonal elements and Ω is the 

region where the model makes biological sense. If the system (6) satisfies conditions (C1) and (C2), then the following 

theorem holds. 

Theorem 3: The equilibrium point 𝔼0 = (X
∗, 0)of the system (6) is globally asymptotically stable if  R0 < 1 and conditions 

(C1) and (C2) are satisfied. 

Proof: From the system (1), it is easy to see that 
dX

dt
= L(X, Z) = [

Λ + δR − μS

ψE + βI − (μ + δ)R
],                                                                                                                                            (7) 

and 

dZ

dt
= M(X, Z) = [

χI

N
S − (μ + γ+ ψ)E

γE − (μ + β + η)I
].                                                                                                                                          (8) 

Now, we consider the reduced system 
dX

dt
|
Z=0

= L(X, 0) = [
Λ − μS
0

].                                                                                                                                                         (9) 

Clearly, X∗ = (
Λ

μ
, 0)is a globally asymptotically stable equilibrium point of the system

dX

dt
= L(X ,0). To verify this, it is 

easy to see from (9) that  S(t) ≤
Λ

μ
+ (S(0) −

Λ

μ
) e−μt. This implies the global convergence of (9) in Ω since the solution 

S(t) approaches 
Λ

μ
as t ⟶ ∞. Next, we obtain 

DZG(X
∗ ,0) = [

−(μ + γ+ ψ) χ

γ −(μ + β + η)
]. 

Hence, by (C2) we have 

M̂(X, Z) = [χ (1 −
S

N
)

0

]. 

Since(1 −
S

N
) > 0, then  M̂(X, Z) = AZ − M(X, Z) ≥ 0for all (X, Z) ∈ Ω. Thus, the conditions (C1) and (C2) are satisfied 

and the conclusion that the pneumonia free equilibrium of the model (1) is globally asymptotically stable follows 

immediately.                                ∎ 

 

Pneumonia Endemic Equilibrium: In the presence of pneumonia within the population, that is when Ee ≥ 0, Ie ≥ 0, Re ≥
0, the model (1) admits an equilibrium point known as the pneumonia endemic equilibrium and denoted by  𝔼e =
(Se, Ee, Ie, Re). Basically, this is obtained as a steady solution of (1) when pneumonia persists within the population. Noting 

that at the ϖe =
χIe

Ne
 at 𝔼ewhere  Ne = Se + Ee + Ie + Re, we equate the right hand side of each equation in (1) to zero and 

solve the resulting steady state system of equations to obtain  
 

{
 
 
 
 

 
 
 
 Se =

((μ + ψ+ δ)k2 + γ(μ + β + δ))Λ

(δ + μ)((R0 − 1)k1k2 + γμ + k2μ) − ((R0 − 1)δ− μ)(βγ + k2ψ)
 ,             

Ee =
k2Λ(δ + μ)(R0 − 1)

(δ + μ)((R0 − 1)k1k2 + γμ + k2μ) − ((R0 − 1)δ − μ)(βγ + k2ψ)
,              

Ie =
Λγ(δ + μ)(R0 − 1)

(δ + μ)((R0 − 1)k1k2 + γμ + k2μ) − ((R0 − 1)δ − μ)(βγ + k2ψ)
,               

Re =
Λ(βγ + k2ψ)(R0 − 1)

(δ + μ)((R0 − 1)k1k2 + γμ + k2μ) − ((R0 − 1)δ − μ)(βγ + k2ψ)
.              

                                (10) 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 13, (October - December, 2020), 141 –150 



146 
 

Analysis of A Mathematical…                  Marcus and Newton                           Trans. Of NAMP 

 

Lemma 4: For  R0 > 1, a unique pneumonia endemic equilibrium 𝔼e exists and there is no other endemic equilibrium 

otherwise. 

Proof: For the disease to persist within the population, it must be that 
dE

dt
=

χI

N
S − (μ + γ+ ψ)E > 0,                                                                                                                          (11) 

and 
dI

dt
= γE − (μ + β+ η)I > 0.                                                                                                                              (12) 

From eq. 11, we obtain 

(μ + γ+ ψ)E <
χI

N
S   ⟹    E <

χSI

N(μ+ γ+ ψ)
.                                                                                            (13) 

Also, from eq. 12, we have 

I <
γE

(μ + β + η)
.                                                                                                                                                  (14) 

Substituting eq. 13 into eq. 14, we have 

I <
γχSI

(μ + γ + ψ)(μ + β + η)N
  ⟹   1 < (

γχ

(μ + γ+ ψ)(μ + β + η)
)
S

N
. 

This implies 

1 <
γχ

(μ + γ + ψ)(μ + β + η)
= R0. 

Therefore, a unique pneumonia endemic equilibrium exists when R0 > 1.               ∎ 

 

Theorem 5 :If  R0 > 1, the pneumonia endemic equilibrium 𝔼e of the system (1) is globally asymptotically stable. 

Proof: To establish the global stability of the endemic equilibrium 𝔼e,we define the following Lyapunov function: 

V(S∗, E∗, I∗, R∗) = (S − S∗ − S∗ ln
S

S∗
) + (E − E∗ − E∗ ln

E

E∗
) + (I − I∗ − I∗ ln

I

I∗
) + (R − R∗ − R∗ ln

R

R∗
) .

 

Calculating the derivative of 𝑉 along the solution of (1), we obtain 
dV

dt
= (1 −

S∗

S
)
dS

dt
+ (1 −

E∗

E
)
dE

dt
+ (1 −

I∗

I
)
dI

dt
+ (1 −

R∗

R
)
dR

dt
. 

This implies 
dL

dt
= A − B. 

where 
A = Λ + δR + (μ+ϖ)S∗ + (μ + γ + ψ)E∗ + (μ + β + η)I∗ + (μ + δ)R∗ +ϖS + (γ + ψ)E + βI,

 

and 

B =
ΛS∗

S
+

δRS∗

S
+ (μ+ϖ)S + (μ + γ + ψ)E + (μ + β + η)I + (μ + δ)R +

ϖSE∗

E
+ (

γI∗

I
+

ψR∗

R
) E +

βIR∗

R
.
 

Observe that 
dV

dt
= 0 if and only if S = S∗, E = E∗, I = I∗, R = R∗ and 

dV

dt
≤ 0 ifA < 𝐵. It follows that the largest compact 

invariant set in {(Se, Ee, Ie, Re) ∈ Γ: 
dV

dt
= 0} is the singleton set 𝔼e which is the endemic equilibrium of the system (1). 

Therefore, by LaSalle’s invariant principle [11], the pneumonia endemic equilibrium 𝔼eis globally asymptotically stable in 

Ω. 

 

Bifurcation Analysis 

A bifurcation is a qualitative change in the nature of the solution trajectories resulting from a parameter change. The point 

at which this change occurs is termed a bifurcation point. At the point of bifurcation, a number of equilibrium points, or 

their stability properties, or both, change. In the present work, we will investigate the nature of the bifurcation of the 

solution trajectories of the model (1) by using the method introduced by Castillo-Chavez and Song [18]. The method is 

based on the use of the center manifold theory in [18]. 

Theorem 6 (Centre manifold theory [19]): Let f: ℝn × ℝ  𝑎𝑛𝑑  f ∈ C2(ℝn × ℝ). Then consider the following general system 

of ODEs with a parameter ϕ. 
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dx

dt
= f(x, ϕ),                                                                                                                                                           (∗) 

where x = 0 is an equilibrium point of the system (∗) (that is, 𝑓(0, 𝜙) ≡ 0 ∀ 𝜙). Assume that: 

A1: A = Dxf(0,0) = (
∂fi

∂xj
(0,0)) is the linearization matrix of matrix of the system (∗) around the equilibrium point 0 with 

ϕ evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A have negative real parts; 

A2: Matrix A has a (non-negative) right eigenvector w and a left vector v (each corresponding to the zero eigenvalue). 

 

Let fk be the kth component of f and  

a = ∑ vkwiwj

n

k,i,j=1

∂2fk
∂xi ∂xj

(0,0),     and     b

= ∑ vkwi

n

k,i=1

∂2fk
∂xi ∂ϕ

(0,0).                                                                                                 (∗∗) 

 

Then the local dynamics of the system (∗) around 0 is totally determined by the signs of aand b: 

i. a > 0, 𝑏 > 0. When ϕ < 0 with|ϕ| ≤ 1, 0 is locally asymptotically stable, and there exists a positive unstable 

equilibrium; when 0 < 𝜙 ≪ 1,0 is unstable and there exists a negative and locally asymptotically stable equilibrium. 

ii. 𝑎 < 0, 𝑏 < 0.𝑊ℎ𝑒𝑛 𝜙 < 0 𝑤𝑖𝑡ℎ |𝜙| ≪ 1, 0 is unstable; when 0 < 𝜙 ≪ 1,0 is locally asymptotically stable, and there 

exists a positive unstable equilibrium. 

iii. 𝑎 > 0, 𝑏 < 0.𝑊ℎ𝑒𝑛 𝜙 < 0 𝑤𝑖𝑡ℎ |𝜙| ≪ 1, 0 is unstable, and there exists a locally asymptotically stable negative 

equilibrium; when 0 < 𝜙 ≪ 1,0 is stable, and a positive unstable equilibrium appears. 

iv. 𝑎 < 0, 𝑏 > 0. When  𝜙  changes from negative to positive, 0 changes its stability from stable to unstable. 

Correspondingly, a negative unstable equilibrium becomes positive and locally asymptotically stable.  

Particularly, if 𝑎 > 0 𝑎𝑛𝑑 𝑏 > 0, then a backward bifurcation occurs at 𝜙 = 0. 
Theorem 7: The model in system (1) exhibits forward bifurcation at  R0. 

Proof: Using the center manifold theory, we make the change of variables: S =  x1, E =  x2, I =  x3, R =  x4in our 

proposed model (1). Moreover, by using the vector notations X = (x1, x2, x3, x4)
⊺ and F = (f1, f2, f3, f4)

⊺so that 
d𝐗

dt
= F(X) 

the proposed pneumonia model (1) can be re-written in the form 

 

{
 
 
 
 

 
 
 
 
dx1
dt

= Λ + δx4 − (μ +
χI

N
) x1,    

dx2
dt

=
χI

N
x1 − (μ+ γ+ ψ)x2,   

dx3
dt

= γx2 − (μ + β + η)x3,     

dx4
dt

= ψx2 + βx3 − (μ + δ)x4.

                                                                                                             (15) 

We take the transmission rate χ as the bifurction parameters so that at  R0 = 1, we have 

χ = χ∗ =
(β + η+ μ)(γ + μ+ ψ)

γ
.                                                                                                          (16) 

The pneumonia free equilibrium is given as (x1 =
Λ

μ
, x2 = 0, x3 = 0, x4 = 0). Then the linearization matrix of the system 

of eq. 15 at the pneumonia free equilibrium is given by 

J𝔼0 = [

−μ

0
0
0

0
−k1

γ

ψ

−χ∗

χ∗

−k2
β

δ

0
0

−(μ + δ)

]. 

The right eigenvector w = (g1, g2, g3, g4)
T of the matrix J𝔼0associated with the simple zero eigenvalue can be obtained 

from J𝔼0w = 0. These eigenvectors are obtained as 
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g2 = g2 > 0;                                                                                            

g3 =
γg2

(μ+β+η)
 ;                                                                                           

g4 =
ψg2+ βg3

μ+δ
=

(ψ(μ+β+η)+ βγ)g2

(μ+δ)(μ+β+η)
;                                                          

g1 =
δg4−χg3

μ
=

[(μ+β+η)ψδ+ βγδ−χγ(μ+δ)]g2

μ(μ+δ)(μ+β+η)
.                                            

 

Next, the left eigenvector v = (h1, h2, h3, h4)associated with the simple zero eigenvalue can be obtained from vJ𝔼0 = 0. 

These eigenvectors are obtained as: 

h1 = h4 = 0,       h2 = h2 > 0,      h3 =
χh2

(μ + β + η)
. 

Next, we compute a and b using eq. ∗∗. Considering only the non-zero components (h2, h3)of the left eigenvectors, we 

have 

a = −
2γχμ

Λ
(
(δ+μ)(1+β+η+μ)+βγ+(β+η+μ)ψ

(δ+μ)(β+η+μ)2
) g2

2h2 < 0,                                

b =
γ

(μ+β+η)
g2h2 > 0.                                                                                 

 

Since the sign of the coefficient b is positive and the sign of the coefficient a is negative, the pneumonia model (1) exhibits 

a forward bifurcation and there exists at least one stable endemic equilibrium when  R0 > 1. Using expression for Ie in eq. 

10 and the parameter values provided in Table 2, we plotted a forward bifurcation diagram as shown in Fig. 2. 

 

Table 2: Parameter values of the model 

Parameter symbol Value Source 

χ 0.376 Estimated 

γ 0.001 to 0.01095 per day Assumed 

μ 0.0012 Estimated 

β 0.2 [19] 

ψ 0.02 Assumed 

η 0.057 [19] 

Λ 0.001 Assumed 

𝛿 0.1 [19] 

 

 

 
Figure 2: Forward bifurcation of the pneumonia model (1). 

 

Sensitivity Analysis of Model Parameters 

By sensitivity analysis of the parameters of the basic reproduction number, it becomes obvious which parameter has high 

impact on the basic reproduction number. We compute the sensitivity indices of R0 to the model parameters following the 

same approach used in [20]. The normalized forward sensitivity index of the basic reproduction number R0 that depends 

differentiability index on a parameter υ, is defined as 

ζυ
R0 =

∂R0
∂υ

×
υ

R0
                                                                                                                                                                                  (17) 
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Thus, we have 

{
 
 
 
 
 
 

 
 
 
 
 
 ζχ

R0 =
γ

(β + η + μ)(γ + μ + ψ)
×
(β + η + μ)(γ + μ + ψ)

γ
> 0;          

ζγ
R0 =

χ(μ + ψ)

(β + η + μ)(γ + μ + ψ)2
×
(β + η + μ)(γ + μ + ψ)

χ
> 0;        

ζψ
R0 = −

γχ

(β + η + μ)(γ + μ + ψ)2
×
(β + η + μ)ψ(γ + μ + ψ)

γχ
< 0; 

ζμ
R0 = −

γχ(β + γ + η + 2μ + ψ)

(β + η + μ)2(γ + μ + ψ)2
×
μ(β + η + μ)(γ + μ + ψ)

γχ
< 0;

ζη
R0 = −

γχ

(β + η + μ)2(γ + μ + ψ)
×
η(β + η + μ)(γ + μ + ψ)

γχ
< 0;  

ζβ
R0 = −

γχ

(β + η + μ)2(γ + μ + ψ)
×
β(β + η + μ)(γ + μ + ψ)

γχ
< 0 .

                                                                      (18) 

 

Using (18) together with the parameter values in Table 2 as obtained from literature, the sensitivity indices of the 

parameters are as shown in Table 2 with the list sorted in descending order of sensitivity index. 

 

Table 3: Sensitivity Indices of the Parameters of 𝐑𝟎 

Parameter Value(𝑑𝑎𝑦−1) Source Sensitivity Index 

χ 0.376 Estimated +1.000000 

γ 0.005975 Assumed +0.780129 

μ 0.0012 Estimated -0.0488058 

η 0.057 [12] -0.220759 

ψ 0.02 Assumed -0.735971 

β 0.2 [12] -0.774593 

 

Interpretation of Sensitivity Indices: It is obvious from the Table 3 that the rate of transmission, χ, and the rate, γ, at which 

the exposed individuals becomes infectious are the most sensitive parameters. The value of R0 increases when the 

parameter values χ and γ increase while other parameters are kept fixed.  Also keeping the values of χ and γ fixed while 

increasing the values of the other parameters of  R0, decreases the value of R0. 

Discussion and Conclusion 

This study has considered a mathematical model on the analysis and the optimal control of the pneumonia disease. In 

section 2, the basic model, which is a deterministic SEIR model is described. The model subdivided the population into 

four compartments by using a system of non-linear ordinary differential equations. The qualitative behaviour of the basic 

model was discussed in section 3. This includes non-negativity of solution, invariant region and boundedness of solution, 

disease-free equilibrium, basic reproduction number, stability analysis and sensitivity analysis. The centre manifold theory 

was employed to study the bifurcation analysis, and we observed that the system exhibits forward bifurcation. 
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