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Abstract 

 
In this work, reported in this paper, we evaluate the Airy functions required in the 

approximation of second order linear differential equations which arises in the 

treatment of multiple turning point and energy curve-crossing problems in quantum 

mechanics. In the framework of the deformed quantum mechanics with a minimal 

length, we consider the motion of a non-relativistic particle in a homogeneous 

external field. In this study, we derive the Airy differential equation from the 

stationary state Schr𝒐̈dinger’s equation using a simple linear potential force field. 

Pairs of numerically linearly independent solutions 𝑨𝒊(𝒚) and 𝑩𝒊(𝒚) are thereafter 

constructed from the fundamental leading asymptotic series expansion of the Airy 

differential equation. We then find the series representation for the physically 

acceptable wave function in the position representation. The asymptotic expansions 

of the wave functions at large positive argument are also shown. In another 

development, we employ the leading asymptotic series expansion to derive the Airy 

functions, which proceeds from classically forbidden region to classically allowed 

one through a turning point. We also show that if the slope of the potential at a 

turning point is too steep, the Airy functions are no longer valid around the turning 

point.  
 

Keywords: Schrödinger’s equation, Airy equations, Airy functions, series solution. 

 
1.0 INTRODUCTION  

In the physical sciences, the Airy function is a special function named after the British astronomer George Biddell Airy [1]. 

Airy functions play an important role in the theory of asymptotic representations of various special functions, they have 

diverse applications in mathematical physics [2].  

In quantum mechanics, three approximate methods are commonly applied: perturbation theory, (which produces a series 

expansion for quantities of interest); the variational method, (which allows a best estimate from a trial solution); and the 

semiclassical approximation which supposes that   is small compared to the action function in the corresponding classical 

problem [3].  

The Airy function is a solution to Schrodinger’s equation for a particle confined within a triangular potential well and for a 

particle in a one-dimensional constant force field. The triangular potential well solution is directly relevant for the 

understanding of many semiconductor devices [5]. For the same reason, it also serves to provide uniform semi-classical 

approximations near a turning point in the WKB approximation, when the potential may be locally approximated by a 

linear function of position.  

The Airy function also underlies the form of the intensity near an optical directional caustic, such as that of the rainbow. 

Historically, this was the mathematical problem that led Airy to develop this special function. Airy differential equation is 

important in microscopy and astronomy, it describes the pattern, due to diffraction and interference, produced by a point 

source of light (one which is much smaller than the resolution limit of a microscope or telescope) [6].  

Airy built two partial solutions and for the first equation in the form of a power series. The solutions were named the Airy 

functions. Much later, H. Jeffreys (1928 – 1942) investigated these functions more deeply. The current notation 𝐴𝑖(𝑦) and 

𝐵𝑖(𝑦) were proposed by Miller [7].   
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The functions 𝐴𝑖(𝑦) and the related 𝐵𝑖(𝑦) are linearly independent solutions to the Airy differential equation: 𝜑′′ ± 𝑥𝑦 =
0, known as Airy equation or the Stokes equation [1].  

Although, the homogeneous field potential 𝑉(𝑥) = −𝐹𝑥 is not studied so intensively as the quantum well, it has an 

important application in theoretical physics. In the ordinary quantum mechanics, the solutions to the Schrodinger equation 

with the linear potential are Airy functions, which are essential to derive the WKB connection formulas through a turning 

point [4]. This motivates us to study the linear potential in the deformed quantum mechanics. 

Physically, Airy functions can be thought of as modeling a spring (elasticity), vibrating with no damping but with 

increasing spring constant 𝑥 → 0 (e,g. spring vibrating in a rapidly, chilling room) [7]. Generally, the Airy functions can be 

applied in solving equations with asymptotic properties, that is, for solving asymptotic approximate problems in the 

neighborhood of critical points. Applications of Airy functions include quantum mechanics of linear potential, 

electrodynamics, electromagnetism, optical theory of the rainbow, solid state physics, radiative transfer, and 

semiconductors in electric fields [8].    

This paper is outlined as follows. Section 1, illustrates the basic concept of the work under study.  The mathematical theory 

is presented in section 2. While in section 3, we present the computed and the discussion of the results obtained is given in 

section 4. The conclusion of this work is shown in section 5 and this is immediately followed by list of references. 

 

2.0 Mathematical Theory 

In this section we are going to derive the Airy equations from the Schrödinger’s equation. let us consider one-dimensional 

motion of a particle in a homogenous constant force field, specifically in a field with the potential, 𝑉(𝑥). Here we take the 

direction of the force along the axis of – 𝑥 and let 𝐸 be the energy posses by the particle in the field due to the force exerted 

on it. The stationary state one-dimensional Schrodinger’s wave equation is given by the following: 
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The potential of the constant force 𝐹 reads 𝑉(𝑥) = −𝐹𝑥, where 𝐹 represents force and 𝑥 the distance moved by the particle. 

Hence the stationary state Schrodinger’s equation for this scenario is given by the stationary state Schrodinger’s equation 

with the required potential 
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here 2/h  and h  is Planck's constant, 𝑚 is the particle mass. At positive 𝐹 the classically permitted region extends 

to the right from the turning point FEx /
0

 . Further simplification of (2.4) is accomplished through the stationary phase 

transformation or change of variables: 

𝑦 = 𝑎𝑥 + 𝑏                                                                    (2.5) 

where 𝑦 has the dimensions of length and with the coefficients defined as follows:  
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Suppose 𝜑(𝑥) = 𝑦(𝑥) then we can use the chain rule of differentiation to determine the first and second derivatives of 

(2.9). That is 
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The substitution of the value of the equation in (2.13) into (2.4) will yield the following results: 
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Further simplification of (2.15) is accomplished when we multiply through it by 
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Hence with the implementation of (2.8) in (2.17), then the stationary state Schrödinger’s equation given by (2.1) finally 

reduces to the standard dimensionless eigen-value equation: 

0
2

2

 


y

dy

d                                                            (2.18) 

Thus equation (2.18) is known as the Airy differential equations or the Stokes equation which are finite at the origin. The 

general solution of this equation is given in terms of Airy functions.  
 

2.1  The Series Solution of Airy Differential Equations. 

The general equation for a homogeneous second order linear differential equation is of the form 
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variables. An example of such a case is the Airy’s equation. Thus we can recast the Airy differential equations given by 

(2.18) in the form given by: 
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where 𝑦 which is the coefficient of 𝜑 is also a variable. To find the power series solutions for this second-order linear 
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Our exercise here would be to determine the right choice for the coefficients (𝑎𝑛). 
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By substituting equation (2.23) into the Airy differential equation given by (2.20), we get  
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Our next goal is to simplify this expression such that (basically) only one summation sign remains. The obstacle we may 

encounter is that the powers of both sums are different,  
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Now we can run into the next problem: the second sum starts at 𝑛 = 1, while the first sum has one more term and starts at 

𝑛 = 0. We therefore split off or sum up the zeroth term of the first part of the summation that is: 
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Consequently. we can now combine the two sums in equation (2.28) as follows:  
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The power series on the left is identically equal to zero, consequently all of its coefficients are equal to 0 for all 𝑛 = 1, 2,
3, ⋯:  
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Thus the remaining expression in the parenthesis of equation (2.30) will now read as follows: 
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for all 𝑛 = 1, 2, 3, 4, ⋯. These equations are known as the “recurrence relations” of the differential equations. The 

recurrence relations permit us to compute all coefficients in terms of  𝑎0 and 𝑎1. We already know from the 0𝑡ℎ recurrence 

relation that 𝑎2 = 0. Let us now compute 𝑎3 by reading off the recurrence relation for 𝑛 = 1, 2, 3, ⋯ 7: 
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To recognize the patterns evolving in the series we have to consider the following three cases:   
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Case I: All the terms 𝑎2, 𝑎5, 𝑎8, ⋯  are equal to zero. We can write this in compact form as   

𝑎3𝑛+2 = 0                                                                (2.41) 

for all 𝑛 = 0, 1, 2, 3, ⋯ .   

Case II: All the terms 𝑎3, 𝑎6, 𝑎9, ⋯  are multiples of 𝑎0. We can be more precise if we compactly write:  
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for all 𝑛 =  1, 2, 3, 4, ⋯   and where (−1)𝑘 = ∓1 for 𝑘 = 1, 2, 3, ⋯. 

Case III: All the terms 𝑎4, 𝑎7, 𝑎10, ⋯  are multiples of 𝑎1. We can be more precise if we write it in the form:  
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for all 𝑛 =  1, 2, 3, 4, ⋯  and where (−1)𝑘 = ∓1 for 𝑘 = 1, 2, 3, ⋯ ∞. 

Thus the general form of the solutions to Airy differential equation (2.20) is therefore of the form 
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In practice, for example, when we expand (2.44) on account of the index 𝑛 we get the following; 
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Note that, as always,  𝜑(0) = 𝑎0 and 𝜑′(0) = 𝑎1. Thus it is trivial to determine 𝑎0 and 𝑎1 when you want to solve an initial 

value problem. In particular  
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Again (−1)𝑘 = ∓1 for  𝑘 = 1, 2, 3 ⋯ ∞. The reader should also note that we are only calculating for the index 𝑛 = 1 and  

𝑛 = 2 since 𝜑1(𝑦) and 𝜑2(𝑦)  both go to zero as 𝑦 → ∞. 

𝜑(𝑦) = 𝑎0𝜑1(𝑦) + 𝑎1𝜑2(𝑦)                                                 (2.48) 

Thus )(
1

y  and )(
2

y  form a fundamental system of solutions for Airy differential Equations.  

2.2  The Asymptotic Series Representation of Airy functions:  𝑨𝒊(𝒚) and 𝑩𝒊(𝒚). 

In another development, we can rewrite equation (2.42) and (2.43) in terms of Gamma notation or function. In that case 

both equations respectively become:  
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where (−1)𝑘 = ∓1 for 𝑘 = 1, 2, 3, ⋯ ∞. That means if we expand (2.50) carefully we shall realize (2.45). Hence the 

general solution of the Airy equation is given in terms of Airy functions 

𝜑(𝑦) = 𝑐1𝐴𝑖(𝑦) + 𝑐2𝐵𝑖(𝑦)                                                  (2.51) 

The Airy functions and their derivatives have rather simple series representations at the origin: 

𝐴𝑖(𝑦) = 𝐴𝑖(0)𝜑1 + 𝐴𝑖′(0)𝜑2                                                 (2.52) 

𝐵𝑖(𝑦) = 𝐵𝑖(0)𝜑1 + 𝐵𝑖′(0)𝜑2                                                (2.53) 

The series given in  (2.52) and (2.53) converge at the whole plane and their symbolic forms are the following: where 

𝐴𝑖(0) = 𝜑(𝑦) = 𝑎0 and 𝐴𝑖′(0) = 𝜑′(𝑦) = 𝑎1, similarly for 𝐵𝑖(𝑦). 
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However, in this study, we shall restrict our operations to only the Airy functions )( yAi  and )( yBi so that their 

derivatives can be left for later studies. Thus with (2.58) and (2.59), then equation (2.52) and (2.53) subsequently becomes 

on account of Airy functions as follows: 
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However, without loss of dimensionality, (2.60) and (2.61) in terms of Gamma functions are: 
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where we have said that 1)1( 
k

 for odd and even values of the index  𝑘 = 1, 2, 3 ⋯ ∞. Note: when (2.60) – (2.63) 

is expanded on account of the index 𝑘 and in ascending powers of 𝑛 the resulting series equation are the same for both 

𝐴𝑖(𝑦) and 𝐵𝑖(𝑦). Again in this work, we calculated for the index 𝑛 = 1 and  𝑛 = 2 since 𝐴𝑖(𝑦) and 𝐵𝑖(𝑦) both go to zero 

as 𝑦 → ∞. 
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3.0 Presentation of results.  

 

            
Fig. 1: shows the graph of the series equation 𝜑1(𝑦) given by (2.46)            Fig. 2: shows the graph of the series equation 𝜑2(𝑦) given by (2.47) with   arbitrary values of:    

with   arbitrary values of: 𝑦 = [−10, 10] = −10, −9.75, −9.5, −9, ⋯ , 10:                            𝑦 = [−10, 10] = −10, −9.75, −9.5, −9, ⋯ , 10: which gave 81 possible values. 

       

    
Fig. 3: shows the graph of the Airy function 𝐴𝑖(𝑦) given by equation (2.60)    Fig. 4: shows the graph of the Airy function 𝐵𝑖(𝑦) given by equation (2.61) 

with   arbitrary values of: 𝑦 = [−8, 8] = -8, -7.75, -7.5, -7.25, -7, ⋯, 8:         with   arbitrary values of: 𝑦 = [−8, 8] = -8, -7.75, -7.5, -7.25, -7, ⋯, 8: 

which gave 65 possible values.       which gave 65 possible values. 

 
Fig. 5: shows the graph of the Airy function 𝐴𝑖(𝑦) and 𝐵𝑖(𝑦). 𝑦 = [−5, 5] = -5, -4.75, -4.5, -4.25, -4, ⋯, 5; which gave 

41 possible values. The Airy function 𝐴𝑖(𝑦) is represented by the blue curve while the brown curve represent the Airy 

function 𝐵𝑖(𝑦). 

 

4.0  Discussion of results. 

It is shown in fig. 1 that the wave function 𝜑1(𝑦) of the particle motion has a regular frequency of oscillation with 

decreasing amplitude when y is negative. The amplitude becomes exactly zero at the classical turning point. At the classical 

turning point the energy posses by the particle is equal to the potential field, 𝐸 = 𝑉(𝑥). The particle however tunnels across 

the potential barrier otherwise the classical turning point to the right side, the region where 𝑦 is positive. In this region the 

particle also has a regular frequency, but with increasing amplitude of oscillation.   

The second independent wave function 𝜑2(𝑦) describing the motion of the non relativistic particle is shown in fig.2. The 

spectrum of both wave functions 𝜑1(𝑦) and 𝜑2(𝑦)has similar interpretation. However, the classical turning points for  

𝜑2(𝑦) has a wider gap with zero amplitude and frequency of oscillation. 

Figure 3, 4 and 5 shows the graph of the Airy functions 𝐴𝑖(𝑦) and 𝐵𝑖(𝑦). The Airy functions have two linearly independent 

solutions. The Airy function 𝐴𝑖(𝑦) is the solution subject to the condition 𝜑(𝑦) → 0 as 𝑦 → ∞. The standard choice for the  
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other is the Airy function of the second kind, denoted 𝐵𝑖(𝑦).  It is defined as the solution with greater amplitude of 

oscillation than 𝐴𝑖(𝑦) as 𝑦 → −∞ which differs in phase by /2 (900). They are both non degenerate functions and are 

oppositely related. When 𝑦 is negative, 𝐴𝑖(𝑦) and 𝐵𝑖(𝑦) oscillate around zero with decreasing frequency and amplitude.  

When 𝑦 is positive, 𝐴𝑖(𝑦) and 𝐵𝑖(𝑦) oscillate around zero with increasing frequency and amplitude. 

 

5.0  Conclusion. 

The classically allowed region namely the region where 𝑉(𝑥) < 𝐸, the series solution given by the Airy functions are real 

and the approximate wave function is oscillatory. In the classically forbidden region 𝑉(𝑥) > 𝐸 the solutions are growing or 

decaying. It is evident that both of these approximate solutions become singular near the classical turning points, where 

𝑉(𝑥) = 𝐸, and cannot be valid. The turning points are the points where the classical particle changes direction. The Airy 

functions which describes the motion of the non relativistic particle can be good both in the region 𝐸 > 𝑉(𝑥) and the region 

𝐸 < 𝑉(𝑥) but cannot be good in between the regions close to the classical turning point 𝐸 = 𝑉(𝑥𝑐). The various gaps at the 

critical turning points can be used to study energy bands or gaps in semiconductor physics. 
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