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Abstract 
 

Positron annihilation techniques are established tools for the study of different 

properties of materials. In this study, positron annihilation rates in deformed 

metals were computed using the perturbed hypernetted chain approximation in 

conjunction with the stabilized jellium model. The results obtained revealed 

that the enhancement factor of deformed metals is higher than that of 

undeformed metals and increases with increase in deformation or strain. 

Enhancement factor of deformed metals varies at different rate with strain for 

different metals. The results further revealed that strain causes a decrease in 

the positron annihilation rates in deformed metals. The rate of decrease of 

positron annihilation rates with strain in deformed metals varies depending on 

the nature of the metal. The alkali metals has the least rate of decrease of 

positron annihilation rates with strain while Al has the fastest rate of decrease 

of positron annihilation rates in deformed metals with strain.  
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INTRODUCTION 
Positron annihilation techniques are an established methods for probing defects and microstructural properties of materials (Sabah, 2015). 

Positrons with energies ranging from few electron volts to giga electron volts are very useful in different areas of physics and applications. 

When energetic positron from a radioactive source enters condensed matter, it annihilates with an electron from the surrounding medium by 

emitting two 511 keV gamma quanta. The properties of these gamma quanta; such as their energies, emission direction and time of emission, 

which can be measured provides useful information about the material in which the positron annihilate (Eldrup, 1995).  

During the process of positron annihilation in condensed matter, a variety of phenomena takes place. These phenomena are reflected in the 

temporal, spatial and energetic distributions of the annihilation radiation. The positrons lose their energies to electron excitations including 

target atom ionizations and collective Plasmon-like processes. At lower energies, phonon excitations take place leading to positron 

thermalization. At thermal equilibrium that is achieved in a few picoseconds, positron motion continues as a quantum diffusion process ( 

Niemanien, 2000 ).   
Positron annihilation studies are carried out experimentally and theoretically. Rajesh et al., (2018) studied positron annihilation lifetime in 

chemically synthesized FeCo alloy. The FeCo alloy has different lifetime components corresponding to annihilating in vacancies and different types of 

open volume defects as a result of the unique morphology of the synthesized FeCo alloy. Mizuno et al., 2004 used first principle electronic calculation 

to calculate positron lifetime in bulk and vacancy states in MgO and ZnO.  The semiconductor model reproduced the experimental positron lifetime in 

the two compounds. For cation vacancy, the positron lifetime calculated based on the semiconductor model was shorter than experimental value as a 

result of inward relaxation occurring around the cation vacancy.  Dryzek (2018) carried out experimental and theoretical studies of positron in defects 

created during compression and dry sliding in bismuth. The results obtained revealed that positron lifetime increases with increase in the size of the 

defect clusters. The results further revealed that positron lifetime (inverse of annihilation rate) increased with increase in strain. Mitroy and Barbiellini 

(2002) used the enhancement factors of the one component local density approximation, the Boronski and Nieminen (1986) two component local 

density approximation and a modified one component local density approximation enhancement factors to calculate positron annihilation rates for 

valence and core electrons in different positronic systems. They found that the modified one component local density approximation predicts positron 

annihilation rates that are reliable for some positronic systems.      

In this work, positron annihilation enhancement factor and positron annihilation rates for deformed metals were computed using the perturbed 

hypenetted chain approximation (Stachowiak and Lach, 1993) through the application of the stabilized jellium model. This will enable us test the 

applicability of the stabilized jellium model in the study of positron annihilation characteristics of deformed metals.  The hypernetted chain 

approximation provides a simple, direct and efficient method of computing positron annihilation characteristics in metal lattices. The approximation 

also allows for a wide range of annihilation parameter calculation and provides a reasonable description of the screening of a positron for any density of 

the electron gas. 
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3.0 Theoretical Consideration 

3.1  Electron gas parameter of deformed metals 

In order to obtain the electron gas parameter of a deformed metal, we consider a hypothetical crystal having the shape of a 

parallelepiped of equivalent faces.  The deformation is assumed to be a measured quantity and the metallic crystal is assumed to 

be made up of simple crystallites. Consider a cubic cell of side length ao and volume given as (Keiegna and Pogosor, 1999).  

Ωo = 𝑎𝑜
3 =

4

3
𝜋𝑟𝑜

3                                                                                                    (1)  

where ro is the radius of the Winer-Seitz cell given as ro = 𝑍
1

3𝑟𝑠, where 𝑟𝑠 is the electron gas parameter of undeformed metal 

defined as the radius of the sphere containing one electron on average and a measure of inter electronic spacing in the metal. 𝑟𝑠  is 

defined as 
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where n is the density of the undeformed metal. 

If an elongative force is applied along the x-axis of a cube that causes it to deform, the volume of the unit cell is 

𝛺0 =  𝑎𝑥  𝑎𝑦
2 =

4

3
 𝜋 𝑎𝑏2                                                                                     (3)   

where ax , ay and az are the sides of the deformed cubic cell. If the unaxial strain is Uxx , then 

 0
1

x xx
a a u    

𝑎𝑧 =  𝑎0[1 + 𝑈𝑧𝑧] = 𝑎0[1 −  𝑈𝑥𝑥]                                                             (4) 

where   is the polycrystalline Poisson ratio that relates the transverse compression to the elongation in the direction of the 

applied deformation that is 𝑈𝑥𝑥 =  𝑈𝑦𝑦 = − 𝑈𝑧𝑧. The ratio of the unit volume of the deformed cubic cell to that of the 

undeformed cell is 
Ωd

Ωo
=

ao [1+Uxx][1+Uyy]ao[1+Uzz]ao

a0
3                                                                      (5)  

Ωd

Ωo

= [1 + 𝑈𝑥𝑥][1 + Uyy +  𝑈𝑧𝑧Uyy]                                                            ( 6) 

Neglecting higher order terms of uniaxial strain, then (Kiejna and Pogosor, 1999) 
Ωd

Ωo

=  1 + Uxx + 𝑈𝑦𝑦  + Uzz                                                                         (7) 

 The average electron density of the deformed metal is 

𝑛𝑎𝑣 =
𝑛𝑜𝛺𝑜

𝛺
=

𝑛𝑜𝑎3

𝑎𝑜[1 + 𝑈𝑥𝑥]𝑎0[1 −  𝑈𝑥𝑥]²
                                              (8) 

𝑛𝑎𝑣 = 𝑛𝑜[1 − (1 − 2 )𝑈𝑥𝑥] + 0                                                                 (9) 

The electron gas parameter of the deformed metal is obtain from its volume as 
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𝑟𝑠𝑢
3 = 

𝑟𝑠𝑢 = 𝑟𝑠
3[1 + 𝑈𝑥𝑥 −  𝑈𝑥𝑥 +  𝑈²𝑥𝑥 −  𝑈𝑥𝑥 −  𝑈²𝑥𝑥]                    (10) 

Neglecting higher order terms in the strain or deformation we have (kiejna and Posogo, 1999). 

𝑟𝑠𝑢 = 𝑟𝑠[1 + 𝑈𝑥𝑥(1 − 2 )]
1

3                                                                        (11)  

Equation (11) gives the expression for the electron gas parameter of deformed metal, 𝑟𝑠𝑢 , which is a measure of the inter-

electroniC distance in a deformed metal. 

 

3.2 Positron annihilation rate in deformed metals 

The ground state electron and positron densities in metals can be calculated using the generalized Kohn-Sham method. This 

method requires the solving of the following set of one particle Schrondinger equation for electrons and positrons  respectively 

(Puska and Niemanien, 1994). 

−
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where Ø(r) is the Coulomb potential defined as 

∅(𝑟) = ∫
𝑑𝑟𝐼 𝑛−(𝑟𝐼)𝑛+(𝑟𝐼)𝑛𝑜(𝑟𝐼)
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                                                                          (14)  
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n0 (r) is the positive charge density providing the external potential, Vext,,  n_ (r) and n+ (r) are the electron positron densities 

respectively given as 
2

( )
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                                                                               (15) 
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                                                                        (16) 

The potential experienced by the positron in a perfect crystal is the sum of the coulomb potential and the correlation potential 

Vcorr
(n_(r))  

𝑉(𝑟) =  ∅(𝑟) + 𝑉𝑐𝑜𝑟𝑟

(𝑛−(𝑟))
                                                                                    (17) 

The total annihilation rate can be obtained from the overlap of the electron and positron densities which results in the 

enhancement of the electron density at the positron site; 

𝜆 =
∫ 𝑑𝑟 𝜑+(𝑟)2

𝜏(𝑛−(𝑟))
                                                                                                 (18 )                     

In the local density approximation, the positron annihilation rate λ is given as; 

𝜆 = ∫ 𝑑𝑟 𝑛+ (𝑟)𝜏(𝑛−(𝑟))                                                                                (19) 

where 𝜏(𝑛(𝑟)) 𝑖𝑠 the positron annihilation rate in an electron gas,  𝜏(𝑛−(𝑟)) is expressed as 

𝜏(𝑛−(𝑟)) = 𝜋𝑟0
2𝑐𝑛𝑔(𝑟𝑠)                                                                                  (20) 

where ro is the classified electron radius, c is the speed of light in vacuum and n is electron density, g(rs) is the enhancement 

factor, which takes into consideration the electron-positron correlation. 

The enhancement factor can be expressed as (Stachowiak and Lach, 1993); 

𝑔(𝑟𝑠) = 1 + 1.23𝑟𝑠𝑢 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑡𝑒𝑟𝑚𝑠                                (21)      

In the perturbed hypernetted chain approximation the enhancement factor is given as (Shachowiak, 1990); 

𝑔(𝑟𝑠) = 1 + 1.23𝑟𝑠 − 0.1375𝑟𝑠
2 +

𝑟𝑠
3

6 
                                                          (22) 

The modified perturbed hyper netted chain approximation for deformed metals is 

𝑔(𝑟𝑠𝑢) = 1 + 1.23𝑟𝑠𝑢 − 0.1375𝑟𝑠𝑢
2 +

𝑟𝑠𝑢
3

6
                                                (23) 

where 𝑟𝑠𝑢 is the electron gas parameter of the deformed metal. 

𝑟𝑠𝑢 = 𝑟𝑠[1 + 𝑈𝑥𝑥(1 − 2 )]
1

3  
 

4. Results and Discussion 
Figures 1, 2, 3 and 4 shows the variation of enhancement factor with strain for deformed metals calculated using the perturbed hypernetted 

chain approximation. As shown in figures, strain (or deformation) causes an increase in the enhancement factors of the metals. In Fig. 1, 

potassium has the highest enhancement factor compared to the other metals whose enhancement factors are shown in the figure. This may be 

due to its low density. Alkali metals have large enhancement factor as a result of their low densities (Puska and Nieminen, 1994).  The strain 

causes an increase in the enhancement factor of the metals. This shows that the strain causes more distortion of the positron wave function as 

the enhancement factor or correlation function describes both the distortion of the positron wave function from its initial state and the 

enhancement of the densities of the individual electronic states on the positron site.   This may also be due to the increase in the inter-particle 

spacing in the metals caused by the strain. As revealed in the figures, the enhancement factor of all the metals follows the same pattern but all 

do not increase with strain at the same rate. Generally, the enhancement factor of the deformed metals are higher than that of the undeformed 

metals as the enhancement factor of undeformed  metals varies between two and eight (Puska and Nieminen, 1994).   

Figure 5, 6, 7 and 8 shows the variation of positron annihilation rates in deformed alkali, simple, transition and inner transition metals with 

strain. The figures reveals that generally as the strain increases, positron annihilation rates in the deformed metals decrease but the rate of 

decrease varies from one metal to another. Aluminum, Al has the fastest rate of decrease followed by Beryllium, Be while Potassium, K has the 

least rate of decrease of all the metals used in the work.  Positron annihilation rates vary least with strain for low density metals. This may be 

due to the small change in the electron density as a result of the applied strain or deformation. The variation of positron annihilation rates in 

deformed metals with strain further shows that the rate of decrease of positron annihilation rate with deformation (or strain) in deformed metals 

depends on the nature of the metal.  

The results obtained in this work is in good agreement with the experimental work of Dryzek, (2018), who found that mean positron life time 

(inverse of positron annihilation rate) in bismuth increases with increase in strain. As strain increases, there is increase in plastic deformation 

leading to the creation of point defects. These defects act as traps for the positrons in the deformed metals. 
 

5. Conclusion 

Positron enhancement factor and annihilation rates in deformed metals have been studied using the the perturbed hypernetted chain 

approximation in conjunction with stabiized jellium model. Strain or deformation causes an increase in the enhancement factor of deformed  
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metals. The enhancement factor of deformed metals is higher than that of undeformed metals. Low density deformed metals have high 

enhancement factor unlike high density deformed metals. Strain causes a decrease in positron annihilation rates in deformed metals. Positron 

annihilation rates in deformed metals depend also on the nature of the metal. 
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Fig. 1: Variation of enhancement factor computed using the perturbed hypernetted                  Fig. 2: Variation of enhancement factor computed using the perturbed hypernetted    
            chain approximation with strain for some deformed simple metals.                      chain approximation with strain for some deformed transition metals. 
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Fig. 3: Variation of enhancement factor computed using the perturbed hypernetted        Fig. 4: Variation of enhancement factor computed using the perturbed hypernetted 

            chain approximation with strain for some deformed inner transition metals.                       chain approximation with strain for some deformed inner transition metals. 
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Fig. 5: Variation of positron annihilate rate in deformed simple    Fig. 6: Variation of positron annihilate rate in some deformed 

             metals with electron gas parameter.      transition metals with electron gas parameter. 
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Fig. 7: Variation of positron annihilate rate in some deformed    Figure 8: Variation of positron annihilate rate in some deformed 
            inner transition metals with electron gas parameter.    inner transition metals with electron gas parameter. 
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