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Abstract 

The phonon dispersion curves of Mo and Ta have been calculated from analytical (IFCs 

technique using Born – von Kármán model) with different numbers of interacting nearest-

neighbours (NN) and computational approach (first principle using density functional 

theory) with the exchange correlation functionals. The different branches of the phonon 

band structure follow from the Eigen values after diagonalizing the dynamical matrix. The 

phonon frequencies in the first Brillouin zone were calculated along the directions of high 

symmetry, 𝜞 → 𝜢, 𝜢 → 𝜬, 𝜬 → 𝜞 and 𝜞 → 𝜨. Obtain also are the thermodynamic 

properties from analytical and first principle. It is observed that the phonon dispersion 

curve of Mo from first principle calculation is in better agreement with experiment 

compared to the IFCs calculation, whereas, the phonon dispersion curve of Ta from IFCs 

is in better agreement with experiment compared to the first principle calculation.  
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1.0 INTRODUCTION 
It is a fact that phonons play a vital role in several important phenomena in modern and classical solid state physics. Thus, a 

vast number of physical properties hinge on the behaviour of their lattice dynamics and it follows that the force model, if 

given a good fit to the dispersion foretell brilliantly all other properties of the lattice dynamics [1, 2]. Currently, it is 

feasible to calculate specific properties of specific materials applying first principle techniques in quantum-mechanics in 

computational material science and condensed-matter theoretical physics with the chemical composition of the materials as 

its only input information. Accordingly, for a particular case of the properties of lattice dynamics, a considerable number of 

first principle calculations on the basis of the theory of linear response of the vibrations of lattice is feasible now by the 

success of density functional theory (DFT) [3, 4] coupled with the occurrence of density-functional perturbation theory 

(DFPT) [5, 6]. The DFPT is a technique used in employing the DFT in the heart of general theoretical architecture. Thus, 

making it feasible to produce accurately the dispersion curves of phonon on a smooth grating of wave vectors which 

encompass the whole Brillouin zone (BZ). 

The first principle prediction of the dispersion curves of phonon of noble and transition metals have encountered challenges 

that still lack adequate solution from the generally used exchange correlation functional “local density approximation 

(LDA) and the generalized gradient approximation (GGA)” [4, 8, 9]. To improve on the first principle calculation results, 

the density functional theory was applied [10] with variation in the exchange and correlation functional being used, the 

dispersion curves can in some cases underestimate or overestimate when compared to experimental results. This brings us 

to the question, if the first principle (QUANTUM ESPRESSO) calculation [11, 12] is still having these challenges, is it also 

possible for us to tackle the phonon dispersion problem using the interatomic force constant technique as implemented in 

the Born-von Kármán model? The challenge here is to determine and improve on existing techniques employed to 

determine the lattice dynamics of Mo and Ta using analytical approach (interatomic force constants – IFCs) and 

computational approach (first principle or ab-initio – QUANTUM ESPRESSO) and compare with experiment. Also 

calculated are their thermodynamic properties. 
 

2.0 THEORETICAL FORMALISM 

2.1 ANALYTICAL (IFCs) PROCEDURE 

The Born-von Kármán theory was applied by assigning a force-constant matrix to each of the nearest neighbours of the  

 

Correspondence Author: Okocha O.G., Email: obitex5555@gmail.com, Tel: +2348055587223 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 13, (October - December, 2020), 61 –68 



62 

 

First Principle and Analytical…                     Okocha and Osuhor                   Trans. Of NAMP 

 

atom considered, constructing the dynamical matrix from the individual force-constant matrices, and then solving the 

dynamical matrix for the phonon energies and the associated phonon polarizations. 

CONSTRUCTION OF THE DYNAMICAL MATRIX 
The phonon frequencies are given by the solution of the secular determinant 

|𝐷ij(𝑞⃗) − 𝑚𝜔2𝐼| = 0        (1) 

Where 𝑚 is the mass of the ion, 𝜔 is the phonon frequency, 𝐷ij(𝑞⃗) is the dynamical matrix elements and 𝐼 is a 3 × 3 unit 

matrix. The elements of the dynamical matrix are a matrix as shown below 

𝐷ij = (

𝐷xx(𝑞⃗) 𝐷xy(𝑞⃗) 𝐷xz(𝑞⃗)

𝐷yx(𝑞⃗) 𝐷yy(𝑞⃗) 𝐷yz(𝑞⃗)

𝐷zx(𝑞⃗) 𝐷zy(𝑞⃗) 𝐷zz(𝑞⃗)

)       (2) 

Once the force constant matrices have been determined the elements of the dynamical matrix are evaluated. This gives for 

the diagonal matrix elements of the first nearest to eighth nearest neighbours dynamical matrix as: 
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And the off - diagonal matrix elements of the first nearest to eighth nearest neighbour dynamical matrix as: 
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Where 𝑀 denotes the mass of the element, and 𝐷xy = 𝐷yx, 𝐷xz = 𝐷zx and 𝐷yz = 𝐷zy. The elements 𝛼1, 𝛽1, … are the nearest 

neighbour parameters in a least-squares fit to the data. The force constants were also of great value as a simple 

mathematical description of the phonon spectrum [13] used this property in their method of calculating the phonon 

distribution function. 
 

2.2 COMPUTATIONAL PROCEDURE 

The DFT calculations were performed using QUANTUM ESPRESSO (opEn Source Package for Research in Electronic 

Structure, Simulation, and Optimization) [11, 12]. This code uses plane-wave and pseudopotential method to describe the 

electron-ion interaction. In this research work, the local density approximation (LDA), Generalized Gradient 

Approximation (GGA) with exchange and correlation functional described by Perdew-Burke-Ernzerhof (PBE) [9]. Also, 

PAW and PW91 method were used to generate the pseudopotentials for the elements in this work. 

The convergence of the total electronic energy as computed in plane-wave pseudopotential codes is determined by two key 

computational parameters, namely the number of basis functions (plane-wave cut-off) and the number of k-points (k-

spacing). In this research work, the number of basis functions was determined by running series of self-consistent 

calculations for different values of kinetic energy cut-off (ecutwfc) starting from (10 to 70) Ry at an interval of 5Ry. The 

converged values were found to be between 25 to 65 Ry. Also, the k-points values are tin the range of 4 – 12 k-points 

meshes. All these assisted in determining accurately the electronic ground state properties of the systems studied in this 

work. 
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2.3 CALCULATION OF THE THERMODYNAMIC PROPERTIES OF BCC METALS 
Thermodynamic functions of solids are determined by their vibrational degrees of freedom of their lattice [14]. Thus, for 

the calculation of these thermodynamic functions requires a complete knowledge of the vibrational spectrum, with adequate 

accuracy [15, 16, 17]. The phonon contributions to the thermodynamic properties which include Helmholtz free energy ∆𝐹, 

the internal energy ∆𝐸, the constant-volume specific heat 𝐶𝑣, and the entropy 𝑆 are computed for these bcc metals studied 

in this work within the temperature range of 0 – 800K with the following expressions: 

For the Helmholtz free energy 
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For the internal energy we have 
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For the constant-volume specific heat we have 
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Finally, for the entropy we have 
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Note:
tanh

1
coth  , 

sinh

1
csc h  

Where 𝐾𝐵 is the Boltzmann’s constant, ℏ is reduced Planck’s constant 

 

3.0 RESULTS AND DISCUSSION 

3.1 Lattice dynamics 

Fig. 1. shows the phonon dispersion curve of Molybdenum (Mo) from IFCs calculated up to fifth nearest neighbours 

implemented by Born – von Kármán model and matched with data from experiment. The data from experiment is presented 

in blue, green and red circles with the red solid line calculations from IFCs. Fig. 2. the black, red and blue solid curves are 

the dispersions calculated using the generalized gradient approximation (GGA-PBE), local density approximation 

(LDA)and PW91 respectively, with the experimental data in blue, green and red circles. Tables 1a and 1b show that the 5 th 

nearest neighbours dispersions calculated with (MAE 0.1539THz, MARE 2.47%), did not improve the results when 

matched with experiment. Whereas, the DFT using GGA (PAW), PW91 and LDA gave (MAE 0.1200THz, MARE 1.92%), 

(MAE 0.0269THz, MARE 0.43%) and (MAE 0.1618THz, MARE 2.59%) respectively. In the first principle computations 

employing DFT, PW91 gave a better result when compared to GGA (PBE) and LDA. Also, the lattice constant given by 

PW91 is 1.23% above that of the experiment. This error was corrected by functionals of GGA (PAW) and LDA with only 

0.72% above and 0.62% lower than experiment respectively. Fig. 3. shows the phonon dispersion curve of Tantalum (Ta) 

from IFCs calculated up to eighth nearest neighbours implemented into Born – von Kármán model and matched with data 

from experiment. The data from experiment is presented in blue, green and red circles with the red solid line calculations  
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from IFCs. Fig. 4. The experimental data is shown as blue, green and red circles, the black, red and blue solid curves are the 

dispersion calculated using GGA-PBE, PW91 and LDA respectively. In tables2a and 2b, IFCs calculations of the lattice 

dynamics of Tantalum (Ta) showed that the 8th nearest neighbours dispersions calculated with (MAE 0.0126THz), 

percentage error (MARE 0.31%) improve on the experimental results. Whereas, the density functional theory (DFT) using 

GGA (PBE), PW91 and LDA gave a larger MAE and MARE as (MAE 0.1008THz, MARE 2.66%), (MAE 1.1238THz, 

MARE 27.50%) and (MAE 1.6995THz, MARE 41.57%) respectively. In the first principle calculations using DFT, the 

GGA (PBE) functional gave a better result when compared to PW91 and LDA functionals. Also, the PW91 gave a better 

percentage error to the lattice constant by 0.50% slightly above experiment while GGA(PBE) and LDA overestimated and 

underestimated by 0.85% and 1.56% respectively 
 

3.2 Thermodynamic properties 

Figs.3 and 9. shows an increase in the internal energy as temperature increases and also at 0K it is above zero.  Figs. 4 and 

10. shows a decreases in the free energy within crease in temperature whereas in Figs. 5 and 11. shows an increase in the 

entropy with an increase in temperature. In Figs. 6 and 12. the heat capacity on the other hand shows a rapid increase with 

temperature and approaches the Dulong-Petit limit at high temperature and at low temperature the graph obeys the 
3

T and 

at very low temperature the graph obeys the linear law as can be found in literature. 

      
Fig 1: Molybdenum dispersion curves. The Red curves correspond to fifth nearest  Fig 2: Molybdenum dispersion curves. GGA(PBE), the LDA and PW91 results from 
QUANTUM 

neighbours fit (IFCs). The experimental results [18]are shown by the symbols    ,     and           ESPRESSO calculations.  The experimental results [18] are shown by the symbols      ,       and  

       
Fig 3: Tantalum dispersion curves. The Red curves correspond to eight nearest neighbours fit (IFCs).       Fig 4: Tantalum dispersion curves. GGA(PBE), LDA and PW91 results. The experimental 

The experimental results from the inelastic neutron scattering data [19]are shown by the symbols     ,     and       results from the inelastic neutron scattering data [19]are shown by the symbols    ,      and 

     
Fig 5: The internal energies 𝛥𝐸 of Molybdenum. Analytical (IFCs) calculated values in the pink line;  Fig 6: The Helmholtz free energies 𝛥𝐹 of Molybdenum. Analytical (IFCs) calculated 

First principle (QUANTUM ESPRESSO) calculated values in blue line    values in the pink line; First principle calculated values in blue line 

     
Fig 7: The entropy of Molybdenum. Analytical (IFCs) calculated values in the pink line;   Fig 8: The 𝐶𝑣 for Molybdenum. Analytical (IFCs) in the pink line dispersion; 

First principle calculated values in blue line           First principle calculated values in blue line 
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Fig 9: The phonon contribution to the internal energies 𝛥𝐸 of Tantalum. Analytical (IFCs)  Fig 10: The phonon contribution to the Helmholtz free energies 𝛥𝐹 of Tantalum. Analytical (IFCs) 

calculated values in the pink line; First principle calculated values in blue line   calculated values in the pink line; First principle calculated values in blue line 

     
Fig 11: The entropy of Tantalum. Analytical (IFCs) calculated values in the pink line;            Fig 12: The 𝐶𝑣 for Tantalum. Analytical (IFCs) in pink line; First principle calculated values in blue line 

First principle calculated values in blue line 

 

Table 1: (a) Frequencies and calculated percentage errors at some high symmetry points for Molybdenum (Mo). (b 

Calculated MAE and MARE for Molybdenum.  
 𝒂𝑻 FREQUENCY (THz) 

 (𝑎. 𝑢) 𝐻𝐿 𝐻𝑇 𝑃𝐿 𝑃𝑇 𝑁𝐿 𝑁𝑇1  𝑁𝑇2  

GGA(PAW) 5.99 6.6726       6.6726 6.1009 6.1009 7.5130 4.4645 5.3168 

PW91 6.02 5.9781       5.9781 6.6026 6.6026 8.0528 4.4545 5.8246 
LDA 5.91 6.6602       6.6602 6.0387 6.0387 7.6225 4.3982 5.1306 

IFCs   - 6.3554       6.3554 6.6734 6.6734 8.0225 4.9257 5.7529 

Expt. a 5.947 6.4395       5.6369 6.5032 6.5096 8.2229 4.6051 5.7643 

  % Error 

GGA(PAW) 0.72 3.62 18.37 6.17 6.28 8.63 3.05 7.76 

PW91 1.23 7.17 6.05 1.53 1.43 2.07 3.27 1.05 
LDA -0.62 3.43 18.15 7.14 7.23 7.30 4.49 10.99 

IFCs - 1.31 12.74 2.62 2.52 2.44 6.96 0.20 

(a) 

 TOTAL AVERAGE ±(𝒘𝒐𝒓𝒌 −
𝒆𝒙𝒑𝒕. )(THz

) 

 MAE(THz) MARE (%) 

GGA(PAW) 42.8413 6.1202       0.8402      0.1200 1.92 

PW91 43.4933 6.2133       0.1882      0.0269 0.43 

LDA 42.5491 6.0784       1.1324      0.1618 2.59 
IFCs 44.7587 6.3941       1.0772      0.1539 2.47 

Expt. a 43.6815 6.2402            -         -    - 

(b) 
a[18] (Experiment) 

 

Table 2: (a) Frequencies and calculated percentage errors at some high symmetry points for Tantalum (Ta). (b) Calculated MAE and MARE for 
Tantalum. 

 𝒂𝑻 FREQUENCY (THz) 

 (𝑎. 𝑢) 𝐻𝐿 𝐻𝑇 𝑃𝐿 𝑃𝑇 𝑁𝐿 𝑁𝑇1 𝑁𝑇2 

GGA(PBE) 6.28 4.4978 4.4978 4.2166 4.2166 4.2908 2.4299 3.7510 

PW91 6.27 6.3895 6.3895 4.8935 4.8935 5.5420 3.3389 5.0255 

LDA 6.14 3.4133 3.4133 1.7771 1.7771 3.4189 0.8153 2.0944 

IFCs  5.0662 5.0662 3.6928 3.6928 4.3486 2.5274 4.3000 

Expt. b 6.239 5.1073 4.9158 3.7215 3.8071 4.3981 2.4620 4.1943 

 % Error  
GGA(PBE) 0.66 11.93 8.50 13.30 10.76 2.44 1.30 10.57 

PW91 0.50 25.11 29.98 31.49 28.54 20.64 35.62 19.82 

LDA -1.59 33.17 30.56 52.25 53.32 22.26 66.88 50.07 
IFCs    - 0.80 3.06 0.77 3.00 1.13 2.66 2.52 

 (a) 

 

 
Transactions of the Nigerian Association of Mathematical Physics Volume 13, (October - December, 2020), 61 –68 



67 

 

First Principle and Analytical…                     Okocha and Osuhor                   Trans. Of NAMP 

 

 TOTAL AVERAGE ±(𝒘𝒐𝒓𝒌
− 𝒆𝒙𝒑𝒕. ) 

           (THz) 

  

MAE(TH

z) 

MARE 

(%) 

GGA(PBE) 27.9005 3.9858       0.7056      0.1008   2.66 

PW91 36.4724 5.2103       7.8663      1.1238 27.50 

LDA 16.7094 2.3871     11.8967      1.6995 41.59 

IFCs 28.6940 4.0991       0.0879      0.0126   0.31 

Expt. b 28.6061 4.0866           -          -     - 

(b) 
b [19] (Experiment). 

 

4  CONCLUSION 

The dispersion curves and thermodynamic properties of Mo and Ta were calculated successfully using two techniques; the 

interatomic force constants (IFCs) technique employing the Born – von Kármán model and the first principle technique 

based on DFT implemented by QUANTUM ESPRESSO. The phonon dispersions were computed along the principal 

symmetry points of the BZ. The results obtained from both techniques were matched with data from experiment. We 

conclude that the phonon dispersion curve of Mo from first principle calculation is in better agreement with experiment 

compared to the IFCs calculation, whereas, the phonon dispersion curve of Ta from IFCs is in better agreement with 

experiment compared to the first principle calculation.  
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