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Abstract 

We use the C4v symmetry group of the 4-site Hubbard model to construct a ground   

State variational wave function of two and four interacting electrons. In the limit 

0U , ground state energies  
g

E  of the two and four interacting electrons system is 

of the order t4 .The  variational  wave function of the four interacting electrons 

obtained using the 
1

B  irreducible representation is valid for onsite coulomb 

repulsion  U , while the one obtained using the 
1

A  representation is valid for 

negative values of coulomb interaction. The system exhibit antiferromagnetic   

correlations. 
 

1.1 INTRODUCTION 

The Hubbard model is the simplest generic model for strongly correlated electrons This arose from the independent work of 

Hubbard [1], Gutzwiller [2] and kanamori [3].   One of the main motivations of studying the Hubbard model is that it is the 

simplest generalization beyond the band theory description of solids yet still appears to capture the gross features of many 

systems characterized by more general interaction parameters [4]. The Hubbard model has been used in attempts to 

describe:(i) the electronic properties of solids with narrow bands(ii)  band magnetism in iron, cobalt and nickel(iii) Mott 

metal-insulator transition(iv)electronic properties of high-TC  cuprates in the normal state. 

Despite its apparent simplicity, no fully consistent treatment of the Hubbard model is available in general[4]. A rigorous 

mathematical solution by Lieb and Wu exists in one dimension [5]. Using the formulation of Bethe Ansatz they reduced the 

problem of diagonalizing the Hamiltonian to solving a set of coupled nonlinear equations. They showed that the Hubbard 

model at half-filling is an insulator for all positive values of the interaction U. In more than one-dimension many important 

physical questions remain unresolved, despite the great number of different theoretical approaches that have been applied. 

In the absence of exact results reliable way to describe the properties of strongly correlated models is to resort to 

approximate analytical and numerical techniques. These techniques have proved to be very useful in dealing with finite size 

lattices [6,7].   

The Hubbard Hamiltonian consists of two contributions, 

 
 

i

i

i

ji

jij
nnUchCCtH
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†
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.            (1.1) 

a kinetic term describing the motion of electrons between neighboring sites (th e hopping integral 
ij

t ,is usually restricted to 

nearest-neighbours, and is assumed translationally invariant, namely 0,  ttt
ij

),and an on-site term, which approximates 

the interaction among electrons, whose strength is given by the parameter U. 0U  corresponds to repulsive coulomb 

interaction, whereas 0U  could eventually describe  an effective attraction mediated by the ions. ji ,  denotes nearest 

neighbour sites of a D-dimensional lattice  ,  ,  denotes the spin and 
 ,

†

i,
,

j
CC are the electrons creation and 

destruction operators, with  
 ,

†

i, ii
CCn  . 

The aim of this present study is to obtain the ground state properties of the one dimensional Hubbard model using the 

variational wave function approach [8]. The construction of the variational wave function is based on the space group  
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symmetry of the Hamiltonian eqn (1.1). We consider the Hubbard model on a four site ring , with band fillings  
2

1
  and 

.1  
The main motivation for this study is the work done using the variational approach [8] where the construction of the trial 

wave function was done without recourse to the space symmetry group of the Hamiltonian. 

The remaining part of this paper is organized as follows: the methodology and computation   of the ground state energy for 

the various band fillings are shown in Sec. 1.2.In Sec. 1.3 we compute the correlation functions (charge and spin 

correlations). In Sec.1.4 we present numerical results, while Sec.1.5 is devoted to discussion of results, and in Sec.1.6 we 

draw up conclusions. 

 

1.2 METHODOLOGY 

The Hubbard Hamiltonian Eqn. (1.1) admits C4v symmetry [9]. The group C4v is a group of symmetry operations when 

applied to a square produces an equivalent or an identical configuration [10]. The symmetry operations include rotation by

,2

 , 𝜋, 
3𝜋

2
, and 2 , then reflections in two planes of symmetry 

v
  and  d. thus there are five classes and therefore five 

irreducible representations.  
2121

,,, BBAA  are one – dimensional and E  is two dimensional. For a given system size N  and 

number of fermions n , the dimension of the Hilbert space is given by: 
nC

N2dim   We chose to work in the subspace 0
z

S , 

where the number of up spins ( n ) equals the number of down spins ( n ), and the dimension of Hilbert space becomes 
2

2

dim 














nC
N

. For a system of two interacting electrons that is  2n ,   164dim
2

1


C

H
. By making use of the projection 

operator   

p̂
(j) = 

  RR
h

l j

R

j ˆ 
                                          (1.2) 

of the jth, irreducible representation of the group C4v, we can project out symmetry invariant subspaces of the Hilbert space. 

For an arbitrary basis in the Hilbert space say  1,11  and putting  
1

Aj   where 
1

A  is one of the four one dimensional 

representation of the group, Eqn. (1.2) becomes  

  RR
h

l
P

A

R

AA ˆ1  
         (1.3)         

where we have made use of the character table of the group C4v for the irreducible representation A1 

  4,43,32,211
4

1
111A

P

 

Similarly 
  4,34,34,14,13,23,22,121

8

1
2,11A

P
 

And 
  4,24,23,131

4

1
3,11A

P
 

Thus, we have a 3 dim. invariant subspace of the 16 dimensional Hilbert space, i.e. 

  4,43,32,21,1
2

1


 

  4,34,34,14,13,23,22,12,1
22

1


 

  4,24,23,13,1
2

1


 

Using the basis  , 


 and   we construct a trial variational wave function of the form. 


210

xxx   , where
0

x , 
1

x  and  
3

x  are variational parameters. The variational ground state energy is given by; 



 H
E 

         (1.4 ) 

2

2

2

1

2

0

21100
2424

xxx

xxtxxtUxH
E










                           

 

Employing the energy minimization condition 
0





i
x

E  for 2,1,0i  we obtain the variational ground state energy matrix  































0220

22022

022

t

tt

tU

A

       (1.5) 
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The procedure used above for the 2 interacting electrons can be extended to a system of 4 interacting electrons, that is

 4,4  nN . In the subspace 0
Z

S  

   364)dim(
2

2


C

H . Accordingly, we label the 4 electron basis in this Hilbert space as 

 2,2,1,11   3,3,1,12   4,4,1,13   3,3,2,24  

  4,4,2,25   4,4,3,36   3,2,1,17   3,2,1,18  

 4,2,1,19   4,2,1,110
  

 4,3,1,111  4,3,1,112
 

 
 3,2,2,113

   
 3,2,2,114

  
 4,2,2,115

 
 4,2,2,116  

 4,3,2,217
 

 4,3,2,218
 

 4,3,3,119
 

 4,3,3,120
   

 

 3,3,2,121
 

 3,3,2,122
  

 4,3,3,223
  

 4,3,3,224  

 4,4,2,125  4,4,2,125
  

 4,4,2,126
 

 4,4,3,127  

 4,4,3,128
 

 4,4,3,229  4,4,3,229
 

 4,4,3,230  

 4,3,2,131
  

 4,3,2,132
 

 4,3,2,133
  

 4,3,2,134  

 4,3,2,135
  

 4,3,2,135  4,3,2,136
 

By replacing  
j
 with  

1
B

, one of the four one-dimensional representations of the group V
C

4 ,  together with an arbitrary basis, 

say 
 2,2,1,11

 we can project out symmetry invariant subspaces of the Hilbert space. That  is; 
   6431

4

1
11 

B
P

    

Similarly,    

  

   3231
2

1
11 

B
P

    
   33343635

2

1
331 

B
P

    

   122215302017257
8

1
7 

B
P

 

 

   112116291918268
8

1
81 

B
P

        

 
021 

B
P

 

 

   282724231413109
8

1
91 

B
P

 

This leads us to the following new basis, that is  

 6431
2

1
1


    

]171821222526111230292019161587[
4

1
2



 

 282724231413109
22

1
3


   

 
 33343635

2

1
4


              

 3231
2

1
5


    

The variational wave function becomes 

5443322110
 xxxxx 

                                               (1.6)                    

The ground state energy is obtained using the eqn.(1.3), that is 

2

4

2

3

2

2

2

1

2

0

2

0

2

2

2

141233110
224224

xxxxx

UxUxUxxxtxtxxtxxxtx
E






                    (1.7) 

By employing the energy minimization condition 
0





i
x

E

  for  4,3,2,1,0i     , we obtain the variational

  ground 

state energy matrix. 



































00220

020

2222

0022

t

Ut

tUt

tU

B
                                       (1.8) 
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 A new basis, which constitutes five invariant subspaces of the Hilbert space, can be   constructed using the irreducible 

representation  
1

A  of the symmetry group  
v

C
4

 together with the projection operator eqn. (1.2). 

 
 52

2

1
1


    

 
 6431

2

1
2


 

 302926252221201918171615121187
4

1
3


   

 282724231413109
22

1
4


              

 3635343
2

1
5


 

and the trial variational wave function becomes 

5443322110
 xxxxx  

                     (1.9) 
 

 4,3,2,1,0ix
i

 are variational parameters. 

Using the same procedure, we obtain another form of the ground state energy matrix using the irreducible representation A1

 of the symmetry group C4v.   

The ground state energy matrix is thus given by 





































0200

2222

0220

02202

t

tUtt

tU

tU

B

                                                (1.10)

 

  

1.3 CHARGE – CHARGE AND SPIN CORRELATION FUNCTIONS. 

Correlation functions can be calculated from the wave function. Charge –charge correlation function is given by the 

formula
 
 

P(i,j) =   jjii CCCC
† †       (1.11) 

P(i,j) measures the probability of finding an electron onsite i when an electron of opposite spin is sitting on site j. For the 

two electron system, we obtain the following correlation functions. 

 
 

4
,

2

0
x

jiP 

, 4,...2,1i                                      (1.12)
 

and 
 

8
,

2

1
x

jiP 

 for 1 ji
                            (1.13)

 

 4
),(

2

2
x

jiP 

for   2 ji                                 (1.14) 

The-spin correlation function is given by: 

  .., 
ji

SSjiS
                                 (1.15) 

  With  
  z

j

z

ijijiji
SSSSSSSS 



2

1
.

 

Negative values of ),( jiS   
between sites denotes antiferromagnetic   correlations. 

 
16

3
,

2

1
x

jiS




  for 1 ji
                                                           (1.16)

 

and    

 
8

3
,

2

2
x

jiS




  for   2 ji
                                                (1.17)       

 

Similarly for a system of four electrons, we have for positive values of   the onsite repulsion U the following results.  

 
 

42
,

2

1

2

0
xx

iiP 

   0 ji
, and                                                  (1.18) 
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 
24

,

2

4

2

3

2

1

2

0
xxxx

jiP 




 ,    1 ji
                                       (1.19) 

and  

 
2

4

2

1

4
2,1 x

x
S 




.                                                                (1.20) 

For negative U values, we have the following results. 

   
22

1
,

2

22

1

2

0

x
xxiiP 

,   
0 ji

                                                (1.21) 

and  

   2

4

2

2

2

1
4

1
, xxxjiP 

  ,
1 ji
                                          (1.22 ) 

 

1.4 NUMERICAL RESULTS.  

In this section we present numerical results of the ground state energies, correlation functions and variational parameters for 

values of the onsite coulomb repulsion (U)  
 

Table 1.1 Ground   state energy in unit of t and the corresponding variational parameters as a function of coulomb repulsion (U)  

for a system of 2 interacting electrons. 

U Eg x0 x1 x2 

0 -4.0000 -0.5000 -0.7071 -0.5000 

2 -3.6272 -0.3685 -0.7331 -0.5717 

4    -3.4186 -0.2818 -0.7392 -0.6116 

6 -3.2915 -0.2550 -0.7390 -0.6350 

8 -3.2078 -0.1860 -0.7370 -0.6498 

10 -3.1489 -0.1580 -0.7346 -0.6598 

12 -3.1056 -0.1371 -0.7323 -0.6670 

-2 -4.6858 -0.6696 -0.6359 -0.3838 

-4 -5.8064 -0.8152 -0.5207 -0.2536 

-6 -7.2915 -0.8981 -0.4101 -0.1591 

-8 -8.9879 -0.9390 -0.3280 -0.1032 

-10 -10.7957 -0.9602 -0.2701 -0.0708 

-12 -12.6648 -0.9722 -0.2285 -0.0510 

 

Table 1.2 Pair correlation function and Spin correlation function  versus onsite coulomb repulsion (U)  for a system 

of 2 interacting electrons. 

U P(i,i) P(i,j) 

1 ji  
P(i,j) 

2 ji  
S(i,j) 1 ji  S(i,j) 

2 ji  
 

 

0 0.0625 0.0625 0.0625 -0.0937   -0.0938  

2 0.0339 0.0672 0.0817 -0.1008 -0.1226  

4    0.0199 0.0683 0.0935 -0.1025 -0.1403  

6 0.0163 0.0683 0.1008 -0.1024 -0.1512  

8 0.0086 0.0679 0.1056 -0.1018 -0.1583  

10 0.0062 0.0675 0.1088 -0.1012 -0.1633  

12 0.0047 0.0670 0.1112 -0.1019 -0.1668  

-2 0.1121 0.0505 0.0368 -0.0758 -0,0552  

-4 0.1661 0.0339 0.0161 -0.0508 -0.0241  

-6 0.2016 0.0210 0.0063 -0.0315 -0.0095  

-8  0.2204 0.0134 0.0027 -0.0202 -0.0040  

-10    0.2305 0.00912 0.0013 -0.0137 -0.0019  

-12    0.2363 0.00653 0.0007 -0.0098 -0.0010  
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Table 1.3 Ground state energies in unit of t and variational parameters as a function of positive values 

of the onsite coulomb repulsion (U) for a system of 4 interacting electrons. 

U            
g

E                   
0

x                
1

x                    
2

x                   
3

x              
4

x  

0              --4.0000      -0.3536           -0.7071        0.0000          0.3536         -0.5000 

0.5          -3.6490        -0 .2978          -0.6923        0.0000          0.3795          -0.5366 

1.0          -3.3408         -0.2516         -0.6719         0.0000          0.4022          -0.5688 

1.5           -3.0691        -0.2135         -0.6479         0.0000          0.4222          -0.5971 

2.0           -2.8284        -0.1821          -0.6219        0.0000          0.4397          -0.6219 

2.5            -2.6147       -0.1563          -0.5950        0.0000          0.4552          -0.6437 

3.0           -2.4244       -0.1349           -0.5682        0.0000 0.4687          - 0.6628 

3.5          -2.2546        -0.1171           -0.5417        0.0000          0.4806           -0.6796 

 4.0          -2.1027        -0.1022          -0.5162        0.0000          0.4910           -0.6943 
 

Table 1.4 Ground state energies  in unit of t  and variational   parameters as a function of negative 

values of the onsite coulomb repulsion (U)    for a system of 4 interacting electrons. 

U            
g

E                   
0

x                 
1

x                 
2

x                       
3

x                
4

x  

 0              --4.0000      0. 5000          -0.3536           0.7071           0.0000            0.3536 

-0.5           -4.6490       0 .5366          -0.3795           0.6923          0.0000           -0.2978     

-1.0           -5.3408       -0.5688         -0.4022           -0.6719         0.0000           -0.2516 

-1.5           -6.0691        0.5971         -0.4222            0.6479          0.0000            0.2135 

-2.0           -6.8284       -0.6219          -0.4397          -0.6219          0.0000          -0.1821  

-2.5           -7.6147       -0.6437          -0.4552          -0.5950         0.0000            -0.1563 

-3.0           -8.4244       0.6628           -0.4687         - 0.5682          0.0000            0.1349 

-3.5          -9.2546        0.6796           -0.4806          -0.5417          0.0000            0.1171 

-4.0          -10.1027     -0.6943          -0.4910           -0.5162          0.0000           -0.1022 
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1.5   Discussion of Results 

Let us begin our discussion with the non-half filled case that is a system of two interacting electrons. In table 1.1 the ground 

state energy increases as the coulomb repulsion (U) increases, and decreases when the interaction becomes negative 

(attractive).This is expected to happen since the coulomb interaction is measured in units of the hopping integral t. In fact 

ground state energies obtained in Table 1.1 for the two interacting electrons is exactly the same as the one’s obtained using 

the correlated variational wavefunction approach[11]. In table 1.2, computed values of pair correlation functions and spin 

correlation functions are presented for two electron systems. It is observed that the onsite or double occupancy correlation 

function decreases as the repulsive coulomb repulsion increases. Of particular interest is the first nearest neighbor 

correlation function which increases up to tU 4  , for  tU 4 , it starts to decrease. This behavior is similar to the result 

obtained by Hirsh [12] for two electrons on 4sites using the Monte Carlo method. In Fig 1.7 onsite pair correlation function 

increases for negative values of coulomb interaction (U), whereas Fig 1.8 shows a decrease for first nearest neighbour 

correlation function.  

The overall behavior of pair correlation function ),( jip  can be explained as follows; when an  electron with an up-spin sits 

at a site, and the coulomb repulsion is switched on, a down spin electron will be pushed away from that place. The 

probability of finding down-spin electrons has to increase in the neighbourhood of the studied place, to guarantee the 

conservation of down-spin electrons. Negative values of spin correlation functions between sites characterize 

antiferromagnetic correlations and extend along the lattice; it decreases for repulsive values of U and increases for negative 

values of U as shown in Fig. 1.11 and 1.12 respectively. 

Let us now conclude our discussion by looking at a half-filled system; that is a system of 4 interaction electrons. In tables 

1.7 and 1.8, we have computed ground state energies for values of coulomb interaction (U). It is observed in the limit 0U

, tE
g

0000.4  and this reproduces the well known result of  tLE
o

  of Dongen and Vollhardt[13 ] obtained at half 

filling. Computed values of the ground state energies of four  interacting electrons are in excellent agreement with the 

results obtained by  Enaibe et al.[8] ,Nonce and Cuoco[6]  as shown in Fig 1.1 and Fig 1.2 repectively.Our results also 

compare nicely with the values obtained by Salerno[14,15] and Leprevost et al.[16] In the large  U limit ,say tU 4 ,

tE
g

1027.2 , while the famous result of  Lieb and Wu[5]    gives tE
g

1810.2 . Our result also show a significant 

improvement when compared with result obtained by Villet and Steeb[9]  who took account of the 
v

C
4

 space group 

symmetry in diagonalizing   the half-filled 4-site Hubbard model. In fact for tU 4  , we obtained t1027.2  while Villet 

and Steeb[9]  got t0681.1 .The dependence of correlation functions on coulomb interaction (U) for 4 electrons is similar to 

the non-half filled case of 2 interacting electrons. 

Finally, we have used the two different one-dimensional representations of the 
v

C
4

 group, that is 
1

B  and  
1

A  to construct 

two different variational wave function of four interacting electrons. The ground state energy matrix Eqn (1.8) obtained 

using 
1

B  is valid for coulomb repulsion (U), while the ground state energy matrix Eqn (1.10) obtained using 
1

A  is valid for 

negative values of a U (attractive interaction).These are shown in Fig 1.1 and Fig 1.2 respectively. 

 

 1.6 Conclusion 

 In closing this paper we have presented a method to compute the ground state  properties of the 4-site Hubbard model at 

half-filling and away from half filling using the space symmetry group 
v

C
4

 of the Hamiltonian Eqn.(1.1). We have also 

derived a scheme to construct a variational wavefunction that will enable us to determine ground state properties of 

interacting electrons other than ground state energies. The variational wavefunction constructed using this approach shows 

significant improvement when compared with the   correlated variational wavefunction approach of Enaibe et al.[8] , where 

the largest matrix block to be diagonalized is  99  .  In our present scheme, the largest block is a  44   matrix. 

This scheme can also be easily applied to other strongly correlated models such as  

 Jt  , Heisenberg and Anderson models. 
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