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Abstract

The paper aims to give concise information for treating least squares
problems. Useful estimates for computing optimal regularized low Rank
inverse approximation to include the SVD and the probability measure
encompassing the Wallis factor and Gamma density estimation for the
subspace solution have been detailed. We also obtained the square root of the
symmetric matrix from the normal equation from the least squares equation
using the Lagrangre interpolation formula. Numerical example has been
demonstrated with the described methods.
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1. Introduction

The first thing that comes to mind whenever we are given a set of datad(xi,yi),i =1,2,...,mWhich aims at constructing possibly, a line of

best fit by the function y(x,t), for the parameters describing the data is the least squares. This is the simplest aspect of this type of

problems. However, the aim of this paper hopes to give more insights than what is anticipated with precise useful information. The use of
Singular values decomposition has gained prominence in recent years. Its main application areas are in systems requiring matrix rank
determination, system identification, reliability and risk analysis, antenna beam formation and recently, mathematical biology and a
number of many other methods [1], e.g.

We start off by giving general descriptive ideas on the least squares equation designated in the form:

min|F (x.) - J(x)9], (1.2)
The solution to equation (1.1) is written as
Xeag = X +5¢ (k=1.2,.), 1.2

Where, S, is obtained by repeatedly solving system of normal equation
(ATAs, =—AT (%) (L3
The matrix A is the Jacobian obtained from data which represents J(x, )and AeR™", m>n.

As a special case, stringent conditions when F e R™", is described in the form:
Definition 1.1[2]: The function F e R™" satisfies a Lipschitz condition in a domain D < X, if a constant 77 is in existence, called a

Lipschitz constant such that HF(X’) — F(X”)H < UHX’ —x"lwx' x" eD.If n<1, F is called a contraction mapping provided Miranda’s

theorem holds verbatim.
The non smooth analysis for F is discussed in the context of continuity for a useful purpose. By semi-smoothness is implied the
behaviour of singularity of Jacobian F’(x*)at the solution and Lipschtz continuity for F/.By a theorem due to Fowler and Kelly (2005)
we have a definition for F in terms of smoothness.

Definition 1.2 [3]. F is semi-smooth at x € R" if and only if

lim [F(x+3)—F(x) - As] _ » Where the directional derivatives imply
5—0,AedF (x+8) HSH

Correspondence Author: Stephen E.U., Email: Stephen_uwamusi@yahoo.com, Tel: +2348020741193
Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January — June, 2020), 173-180

173



Information Criteria On... Stephen Trans. Of NAMP

that F/(X . S): lim F(X+ hS)_ F(X) and, X,S€e R".
’ h—0 h
We link regularity space with directional derivatives for the function F .
Given that F is semi smooth, F(x*) =0, assuming further all matrices in oF (x") are nonsingular, there are matrices K and & such
that given the ball B(x* , g) and AeoF(x).then HA*H <K remains valid. Thus if matrix A has an inverse that is bounded, the Jacobian

matrices A(X) corresponding to system of Equation (1.1) are not only F —Suslin and Polish, but also ultrabarrelled and possess

Baire’s second Category theorem.

The error estimate and order of convergence using approximate Jacobian matrices by the Finite difference methods with computed results
for the solution by the Newton iteration to system of Equation (1.1) thereof are stated in the form:

Theorem 1.1 [3]. Let F: D < R" — R" be given, such that F (x") =0.

Assuming further that F is semi-smooth at x” and if all matrices in the Jacobian matrices OF (x") exist. There are parameters,}j, M >0

such that if X, € B[x*,é) and p, g,}for which the inexact Newton iteration of Equation (1.2) converges to desired solution X" with

additional hypothesis given by the equation
el < M7 fle]|+ Qe

Where, the order of convergence p of F at X" is

p+l
vl < Mbnle + )
Basic toolsin our favour are Singular values decomposition, QR -Cholesky-Factorization , Preconditioned Conjugate Gradient methods

coupled with Tikhonov regularization and Chevbyshev —Semi iterative techniques in order to cope with a highly ill-conditioned system.
Not too long ago, luckily enough , Chevbyshev-Semi-iterative method has gained several appeals in providing solution to Least squares
problems.

The algorithmic form of Chevbyshev-Semi-iterative method is presented as follows in the sense of [4].

ALGORITHM

1) Input the matrix A< R™", vector p < R™, tol. & -order of accuracy.

2) Decompose A =QR -Cholesky factorization for which 0 < o < o, Where all non zero singular values o € A are contained in
the interval [o.,0,].

3) Setmid(7 (03+Uf);radaz(ffﬁ—gf);

2 2
4) Initialize x=0,v=0and r =b;
5) For B do
K=01.. (Ioge; IogZ)
log2u—21d
(Gu +GL)
0 if k=0
6) 1 ;
B= E(raola/mida)z, if k=1
(a(rado)/2)*  otherwise
1 .
if k=0 .
7) mido ! ;
a={mido - (rade)® /(2rado); if k =1
- L > » otherwise
(mido) - a(rado)?/4)
Ve S+ AT
8) X< X+oV;

9) < —aAv
10) If solution found write x = X,y and quit endif

11)  Else repeat steps 5t0 9
12)  end for
(13) end
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The QR iterative refinement with residual vector is given below.
Algorithm:

1) Let X solve R"Rx=A"b
2)  Computer=b- Ax

3)  SolveRTRw=A'r

4)  Computey=x+w

2. Computing Optimal Regularized Low Rank Inverse Approximation
Particularly, we are interested in application in the Low rank approximation of a matrix in the form:
min_|(BA-1,)f + 2[8; @3

rank(B)<r

In equation (2.1), the term B is a special matrix aimed at approximating the inverse of the matrix Awhile | is an identity matrix with a
scalar A being the Tikhonov regularization parameter aimed to penalize the equation (2.1).

Low rank matrix approximation is mainly used for data processing technique which helps to reduce noise present in the data and is

applicable in such varied areas such as signal processing, compressed sensing, image and pattern recognition, and many other
Engineering practices.

The singular value decomposition for A is given by AU yv7; Where Uy e R™™ v e R™.The matrix B is an approximate inverse to A.
Practically, we use the SVD computation for the approximate inverse in place of B in the form:

B=V,(EL T, +41) T, UL, 2.2)
Where the global minimiseré e R™™is then given by the equation
B ag min|(BA-1,M)L + 2[B[’ 23

rank(B)<r

Using the above information given, the low rank approximation for the matrix A in terms of SVD is in the form:

U, sV ]=argmin{|A-U VT[] + 2 [BUJF ﬁsz} (24)

.2V ]-agmin{[a-usv [l s Rl + eV

The matrices appearing in Equation (2.4) are compatible matrices which may be set to a second order finite difference matrices

[5].[4].and [6].

By further setting that:b = A" f (x) , and writing the ill-posed problem in the form:

Ax=b+e¢,(2.5)

where ¢~ N(0,0?), with unknown variance *, and mean0 has the introduced noise & that is calibrated to a factor HEHE _ .The
S22 o
A,

corresponding standard Tikhonov regularization for the Pseudo-inverse matrix with respect to A2 is that matrix

A(R2) = A(ATA+ 2 )’1 AT it has negative log likelihood function:

! exp[_(Ax(,le;b))i] =m,0g2mj2+HAx(/1 ?—b\\
(x(22) Ab)=—log[ [ oV2r 2 20°

20
i=1
:7Iogz—”+mlogHAx(/12) of + 2.

(2.6)
Where, the bias correction term is given by (42, A b) = P*" (/IZ)ZTrA(/lz).

As a special case, is the iterated unregularized Land webber method. The method is described in the form. Starting with the sequence

X =Xq +AAT (- AX ), (% =0k=12...) 2.7)
With A, a fixed parameter. Now at the kth step in the iteration we have that
k-1 .
X =(1-28TA] " x,+ 3 (1 - 227 AY (AD) 2.8)
i=0

= (ATAJ* (1 = (1 - a7 A) (A™b)
We decompose the matrix AT sz(zT z)\/T where, | =V . Therefore, using the information as above, we write that:

Z(l (- o?) )(u bj (2.9)
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Thus for convergence, it is necessary that ‘1—&0.2‘ <1, Which means that 0 < 1@2 < 2. This upper bound for 1< i Vi Let us note
! 2
O

that we often take the value of 1 = &, * in Equation (2.7).

y (R Y L A for very small value of A .
im == = 72)k =1

k—o 2\ k—x
(/1 + 0| )

For a value of k — oo, it would yield that

3. The Ellipsoid for the Data Problem and accompany metric topology.

It is important in providing ellipsoid for the described data. Before continuing, we give the expository basic set topology necessary for
understanding the intention in the paper.
Definition 2.1. Let D: X —Y be a set valued map and y, e D(x,) be given with X and Y the metric space .Assuming further that

5:R, >R, be a strictly monotone continuous function with §(0) = 0,the statements following hold for adoption in our work:

(i) F is 5-open around (x,, YO) if there is a neighbourhood U of X, and a neighbourhood W of Y, such that
By (2) = F(B, (X)), ¥x €U,z ewnF(x),t >0, for which, B (x)) cU -
(i) F is approximately s -open around (Xo, yo) if there is some non-negative function

xR, >R, with Iim(é’l(;c(t))/t)<1r9ive” U of X, and a neighbourhood W of Y, such that forall xeU,zewNF(x) and t >0 with
t10

B,(x,) cU implies that

By (2) < B [F(B; (X)) @1

From the above preambles there follows:

F is ¢ -regular around (Xm YO) assuming one can find a constant x>0, a neighbourhood U of X, a neighbourhood W of Y such
that for all Zew and all xeU with F(x)w=0induces metric topology

d(x, F(2))< x5 4(d(z, F(x)))- (3.2)

Definition 2.2. A mapping F:D < R" —R" is a homeomorphism of D onto F(D) if F is one-to-one on D and F and F™* are
continuous on D and F(D), respectively.

Definition 2.3. A mapping F: D c R™ — R" is Holder continuous on D,cD if there exist constants >0 and p € (0,1) such that,
forall x;,x, e D, we have that

[F(x,) = F(x)|| < @fx, - Xal' If p=1, F is Lipschitz-continuous on D, .

Motivated by the above details, the homeomorphism it carries is stated below:
e Let X and Y be metric spaces and F:x —Y be a set valued map. Suppose §: R, &R, is strictly monotone i.e., continuous

function and y, e F(x,) .We say that F'is ot Lipschitz continuous (LSC ) around (Xo: YO) if there exist a neighbourhood W of

Y, and a neighbourhoodU of X, such that (i) F™(y)NU = ¢ for all y e w;(ii) there exists x > Qwith the property that for

every y,, Y, € w the inclusion holds verbatim such that:
F(y,)NU Bkg,l(d(ylyyz))(F’1(y2)ﬂU), (3.3)
where 5(’[): ct" for some ¢ >0,r >0. The map §*-LSC around (xo, yo)is pseudo-Holder at the rate r around (yo, xo).We noted that
whenr =1, it is pseudo- Lipschitz on (yo, Xo)'
After all these we are now in a position to consider the closed graph implied by the algorithm as stated earlier. Take‘x‘ :HXHJ“HAXH CIf
‘Xn‘ is Cauchy, then X, >XeX asAx, —>yeY .The closed graph induces that Ax=y and \xn—x\—>o- By introducing uniform
boundedness theorem, that F, = {x:\F(x] < M} and taking into existence of Baire category for some F,, containing a ball B(s,r),
there is HXH < r which produces \F(x)\ :‘F(S + x)_ F(S)‘ <M +M,. Thus HFH is uniformly bounded by the factor (M +M.).

r
Having taken into consideration that X Y are separable metric spaces and,Y complete, the point wise mapping F:X —Y is computable

provided there exists a strongly continuous tightening. The ellipsoid described by the minimum generator X for the least squares problem
1.1 is obtained using p-norms. Consider p >1and g which satisfy the unit ball 1.1, .By recalling that aﬁ<£+ﬁ it is easy to

pq pq
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verify the convexityeﬁ"”(H)y < Je* +(1_,1)ey. The result is proven by setting ﬂ:l x= plog and y=qlog - Therefore Holder
o’ )
inequality gives‘xT y‘ < Hpr +|y o1+ The unit ball {x : HxH < T} gives the elliptic norm. Using the above it holds that

,forl 1
o' —+==Lp
pq

1. <X < n[ﬁ) X|. 1< p<q<o-Bytaking p=2 and g =oo it would yield that HXH < HXH < \MHXH bounded by a factor /n .
q p q’ o 2 ®

Thus for a vector valued function ¢ ot | > r"the ¢ ,-norm for p>1 is given by

t 0 %’ 34
I, {J f(x)Fdx] (34)

Where , 1
I, ~[Sieter |

We give the probability measure for the computed errors in the solution. Let>A< e R", and suppose S is selected uniformly and randomly

fl,, =fi\ f00jax [, =espsuplmax|f, (x)|}

ty i=1

from the unit sphere S __ in n-dimension, the expected value of ;(s is defined to be
AT I
E[x s]: XE, (35
The Wallis factor E_is given by
E,=1E, =3, and for n> 2, we have that
T
_1357..(n-2)  fornodd; (3.6)
" 24.6.8..(n-1)
_22468..(n-2) forneven. 3.7
" 7z 1357.(n-1)
The estimate for _is given by the equation
-2 . (38)

" \z(n-05)

AT A - . .
By further setting . _ |, ¢/« asan approximation for ||\ ||, and for ,>1,the probability measure is given by
n

. (3.9

X
2 .
>1-——+0(inv(E,

£ O E)

Prl —<7<E,

n

X

We move further to discuss the gamma density and the moment estimation of parameters and construct 7504 0950,08% confidence

intervals associated with the set of computed vector solution for purpose of reliability in terms of survival and risk analysis.
Given that a random variable X = X,y Xgy e s X, (n>3) be drawn from a sample population with i.i.d random variable, with a

probability density function f(x). If the independence of sample mean X and sample coefficient of variation v _S can be

n

X
calculated, the corresponding gamma density for the rate parameter and is defined in the form
B (3.10)
I(a)
where S, is the standard deviation .
Drawn from standard Statistics Texts, it can be obtained that:

-2 (na+l) E(S2 _a, i (@+k=1)..(a+1)a, for k >1.
E(Xn)= vigt e (Sy) 5 E(X )_—ﬂk

gamma(x,a, ) = x“ e x>0,a>0,4>0"
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2

1+na
n

To compute ¢ and g , the following procedure is adopted in the sense of [7]: ,;k:{(i/sz B, =Xal S [S ] and
no n : n

1 The limiting value 1 is the square of the coefficient of variation which is an asymptotically unbiased
=lim =— a

estimator of the square of variation.
Assuming instead, we estimate the values of ai and ﬁi by the equation:
1 1,and

. 101 1) then it could be deduced that:
ai:viz—* ﬁ,:;:i Lt
no N "X, M V2 n
a( 2na 6), 3.11
var(S?) = F((n—l)z +ﬁj var S| 2a(o +1) ( )

X (n_l)[méf(mz)(mﬁj
n n n

Therefore for n large enough, the terms ( i ,respectively /}i) — (o, p) inthatorder.
We thus construct confidence intervals in the form of 7504, 9506,98% for values of k =1,2,3 as shown below.

_2 _2
3.12
LY ETR S [ PORATEE T S (12
Sz n-1) n S? n-1 n
An alternate form of expression given in Equation (3.12) in the form of ordinary interval is
2 -
v 2 1.13
x; (LL}E,XQ [17 K j+1 , (k=12,3) (1.13)
S, n-1) n §; n-1) n
Using the fact that E(In(X))=w(a)-In(), Where 1 is a digamma function defined as w(a) ~ log(a) — Zla ,
log T(c!) ~ rlog( @) — —%Ioga +const  (Stirling), we give the information entropy in the form:
H(X) = E[~In(P(X))] = E[- In(B) + In(T(a)) - (@ —1)In(X) + AX] (3.14)
= a—ln(ﬂ)
The Kullback-Leibler divergence is the expression given b
DKL(ap,ﬂp,aq ,ﬂq): (ap -a, )y/(ap)— IogF(ap)+ IogF(aq)+ a, a/og B, —log ﬂq)+
B, - B, (3.15)
P ﬂq
4. NUMERICAL ILLUSTRATION

Consider the set of data taken at secondary source in [8] as means of numerical weather computing. The experimental data were taking at a primary source from TRODAN at
Anyigba, Kogi State University. The period ranges from 2010 to 2013 with average monthly records of Temperatures and relative Humidity as showed in Table 1.

Table 1

SIN DATE/TIME TEMPERATURE (OU) VY RELATIVE HUMIDITY (%) X
1 2011-04 32.002906 67.961866
2 2012-04 31.331634 68.431059
3 2013-04 29.887573 74.096862
4 2010-08 27.060463 82.752606
5 2011-08 26.438872 83.023268
6 2012-08 26.191286 83.452398
7 2010-12 30.039266 47560099
8 2011-12 28.355457 37.122311
9 2012-12 28.638782 50.906093
10 2011-02 32.267793 60.666083
11 2012-02 31.043251 64.010414
12 2013-02 31.063575 55.738473
13 2011-01 29.062744 32.955172
14 2012-01 28.816789 41.495453
15 2013-01 29.158118 47.972735
16 2010-07 26.048773 83.517390
17 2011-07 27.902184 79.944623
18 2012-07 26.945129 82.449950
19 2011-06 28.900817 78.000009
20 2012-06 27.873762 79.053775
21 2011-03 33.950121 60.316848
22 2012-03 33.401677 54.788059
23 2013-03 33.303313 65.349271
24 2011-05 30.639803 73.495656
25 2012-05 29.369926 75.301975
26 2010-11 29.471345 76.122503
27 2011-11 28.170606 66.909216
28 2012-11 28.891984 76.298347
29 2010-10 28.214158 80.737601
30 2011-10 27.204551 80.169298
31 2012-10 27.401785 81.294369
32 2010-09 27.053905 82.342825
33 2011-09 26.616421 81.995541
34 2012-09 26.590674 83.569152
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By using polynomial fit of degree 4, the following system of normal equation is constructed
Bx=Db 4.1)
Where g _ aTa b= ATy Such that
0.0000 0.0000 0.0000 0.0000 0.0000 Y, 0.0000 4.2)
0.0000 0.0000 0.0000 0.0000 0.0000 | X, 0.0000
1.0e+16*| 0.0000 0.0000 0.0000 0.0000 0.0006 | X, |=1.0e+10%*| 0.0005
0.0000 0.0000 0.0000 0.0006 0.0446 | X, 0.0353
0.0000 0.0000 0.0000 0.0444 35129 ) x, 2.6598
With solution 156.9696) ,
-9.6952
x=B\b=|02595
~0.0029
0.0000
0.0000) .
0.0000
eig (B) = 1.0e +16*| 0.0000
0.0000
35134
Then decompose g =y yvT, with
0.0000 —0.0000 —0.0018 —0.0728  —0.9993
~0.0000 —0.0007 —0.0506 —0.9961 —0.0728
U =|-0.0002 -0.0292 —0.9983 —0.0506 —0.0019
-0.0126 —0.9995 0.0292 0.0008  0.0000
-0.9999 0.0126 —-0.0002 —0.0000 —0.0000

35134 0 0 0 0 )

0 0.0000 0 0 0
D=1.0e+16* 0 0 0.0000 0 0

0 0 0 0.0000 ©

0 0 0 0 0.0000

0.0000 —0.0000 —0.0018 —0.0728  —-0.9993
~0.0000 —0.0007 —0.0506 —0.9961 —0.0728 |
VT =|-0.0002 -0.0292 -0.9983 —0.0506 -0.0019
—-0.0126 —0.9995 0.0292 0.0008 0.0000
—0.9999 0.0126 -0.0002 —0.0000 -0.0000

We compute the Wallis factor, and probability measure for the variable Temperature 6° (Y) in the form:
EYs|=|¥|[E, = 23.3965, r =¥ "s|/E, =7.1598e + 03;

pr[‘I’I—H <r< EHHYH] = pr(L.2312e + 03 < 7.1598E + 03 < 23.3965) > 1—ﬂEi =-3.6181

n

We also computed that

0 0 0 0 0 .
0 0.0000 0.0000 0.0000 0.0000 | '
Cov(A) =1.0e+14*| 0 0.0000 0.0000 0.0000 0.0003

0 0.0000 0.0000 0.0003 0.0300
0 0.0000 0.0003 0.0300 2.7224

Using Komolgorov Test Statistic for the gamma density function B

we computed the following characteristics
gamma(x,«, ) = @)

x“le !

for the Relative Humidity

2

— — v _2
mean(X) = 68.7353: Vr(X) =220.3824:;, _ X 0073 5= X _oooma’ [s1)_ n g% |- 09D 0 gass0e 03"
S, S -2 | 1+na 893 n’g’
X
E(Sf):%:4.8568e+04‘ Vaisi 7eaL
We now construct the pr ility confidence interval for the Relative Humidity data in the form:
- 2 -2 (4.3)
pr] X—;[l— K ]—lSaS Xz" (1— K ]+1 . k=123,...
S, n-1) n S, n-1) n
That is,
[osorsosoe- )< zo0ur szt 0
Pr| 0.0973 0.9706 — — | < & < 0.0973 1.0294 + —
33 33

On the other hand, we also can present in terms of intervals in the form of 75%,95%, and 98% confidence intervals for (X as
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(4.5)

_2
X k 1| Xa k 1

1-— |-=|, 1-— [+=| k=123,..,.
S
As point of remark, we could have also constructed both probability measure and confidence interval for the computed solution for the least squares
problems. Thus the same procedures apply verbatim.

We compute the square root for the matrix B = AT A
Writing as the Taylor Series,

_ i _ " (t - /‘L| )2 (m-1) (t - ﬂ“l )”\ B (46)
PO= 1(3)+ 1104 )+ ()T e 100G A
And Hermite formula,
sfat1 ) , 4.7)
MO -3 S Lo - AT TT0-2)
where,
a=—Y
lk'[(t.w)k
We define a function f on the spectrum of A<c™ for the Jordan canonical form, then f(A) = Qf (J)Q" such that
(i) ¢ " G,)]
£Q) F(A) o (4.8)
(%)
fJ)=
f'(4)
f(%)
Furtherrﬁore, we substitute J, e C™™ to have
£D(2,) (4.9)

f3,)= F(AN + (A )P+t

Pmk—l
(m -1 "

It must be noted that Equation (4.6) coincides with that of Equation (4.8) in the long run based on the fact that higher powers of P, _y0-The Lagrange

polynomial function being adopted is given by
(4.10)

PO)=1(4 )H((f%i))

Where f(2)=+/2-
Therefore we obtain the matrix square root for B = A” A by the Lagrange interpolation formula of Equation (4.10 ) with
P(t) = 1.2300e —58*t*, therefore it follows that ¢ (g)- p(g)=1.2300e - 58+B* =1.2300¢ - 53*B*

= 0 0 0 0 0
0 0 0 0 0
(1.0e+08)*|0 0 0 0.0000 0.0003
0 0 0 0.0003 0.0238
0 0 0 0.0237 1.8740
5.0 Conclusion

Methods for solving the least equations were described and in particular the normal equation approach was used to illustrate the theoretical example based on the data collected
[8] as a primary source from Lower Atmospheric Studies at Kogi State University, Kogi State, Anyigba. We reported the probability confidence interval for the Gamma density
function calculated for the Relative Humidity as well as the interval for the 75%, 95% and 98& confidence interval for the data. We also calculated the Wallis Factor for
Probability confidence interval for the Atmospheric Temperature. Finally, using the Lagrange interpolation, we were able to obtain the result for the square root of the
symmetric matrix appearing in the normal equation for the least squares problem provided its eigenvalues are not located in the negative real line,a quite significant advantage in
Engineering and Scientific practices in numerical weather Computing.
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