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Abstract 

 

The paper aims to give concise information for treating least squares 

problems. Useful estimates for computing optimal regularized low Rank 

inverse approximation to include the SVD and the probability measure 

encompassing the Wallis factor and Gamma density estimation for the 

subspace solution have been detailed. We also obtained the square root of the 

symmetric matrix from the normal equation from the least squares equation 

using the Lagrangre interpolation formula. Numerical example has been 

demonstrated with the described methods. 
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1. Introduction 

The first thing that comes to mind whenever we are given a set of data   miyxd ii ,...,2,1,,  which aims at constructing possibly, a line of 

best fit by the function ),( itx , for the parameters describing the data is the least squares. This is the simplest aspect of this type of 

problems. However, the aim of this paper hopes to give more insights than what is anticipated with precise useful information. The use of 

Singular values decomposition has gained prominence in recent years. Its main application areas are in systems requiring matrix rank 

determination, system identification, reliability and risk analysis, antenna beam formation and recently, mathematical biology and a 

number of many other methods [1], e.g. 

 

We start off by giving general descriptive ideas on the least squares equation designated in the form: 

2
)()(min sxJxF kk

s
                                       (1.1) 

The solution to equation (1.1) is written as 

kkk sxx 1  (k=1,2,..),                          (1.2) 

Where, ks  is obtained by repeatedly solving system of normal equation 

  )( k

T

k

T xfAsAA                                 (1.3) 

The matrix A is the Jacobian obtained from data which represents  kxJ and nmRA  ,  nm  . 

As a special case, stringent conditions when nnRF  ,  is described in the form: 

Definition 1.1[2]: The function nnRF   satisfies a Lipschitz condition in a domain XD , if a constant   is in existence, called a 

Lipschitz constant such that DxxxxxFxF  ///////// ,,)()(  .If 1 , F  is called a contraction mapping provided Miranda’s 

theorem holds verbatim. 

The non smooth analysis for F is discussed in the context of continuity for a useful purpose. By semi-smoothness is implied the 

behaviour of singularity of Jacobian  xF / at the solution and Lipschtz continuity for /F .By a theorem due to Fowler and Kelly (2005) 

we have a definition for F  in terms of smoothness. 

Definition 1.2  [3]. F is semi-smooth at nRx if and only if 
0

)()(
lim

)(,0




 s

AsxFsxF

sxFAs

 , where the directional derivatives imply  
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that  
 

h

xFhsxF
sxF

h

)(
lim:

0

/ 




and, nRsx , . 

We link regularity space with directional derivatives for the function F . 

Given that F is semi smooth, 0)( * xF , assuming  further  all matrices in )( *xF  are nonsingular, there are matrices K  and  such 

that  given the ball  ,xB  and )(xFA  ,then KA 1  remains valid. Thus if matrix A has an inverse that is bounded, the Jacobian 

matrices )(xA   corresponding to system of Equation (1.1) are not only F Suslin  and  Polish, but also  ultrabarrelled  and possess 

Baire’s second Category theorem. 

The error estimate and order of convergence using approximate Jacobian matrices by the Finite difference methods with computed results  

for the  solution by the Newton iteration  to system of Equation (1.1) thereof are stated in the form: 

Theorem 1.1 [3]. Let nn RRDF :  be given, such that 0)( * xF . 

Assuming further that F is semi-smooth at *x  and  if all matrices in the Jacobian matrices )( *xF exist. There are parameters 0,, 


M

such that if 










 ,0 xBx  and 



k
for which the inexact Newton iteration of Equation (1.2) converges to desired solution 

x with 

additional hypothesis given by the equation 

kkkk eeMe 01   ,  

Where, the order of convergence p  of F at 
x is 

 1

1



 
p

kkkk eeMe  . 

Basic toolsin our favour are Singular values decomposition, QR -Cholesky-Factorization , Preconditioned Conjugate Gradient methods 

coupled with Tikhonov regularization and Chevbyshev –Semi iterative techniques  in order to cope with a highly ill-conditioned system. 

Not too long ago, luckily enough , Chevbyshev-Semi-iterative method has gained several appeals in providing solution  to  Least squares 

problems. 

The algorithmic form of Chevbyshev-Semi-iterative method is presented as follows in the sense of  [4]. 

ALGORITHM 

1) Input the matrix ,nmRA  vector ,mRb tol.  -order of accuracy. 

2) Decompose QRA  -Cholesky factorization for which 
UL  0 where all non zero singular values Ai   are contained in 

the interval ],[ UL 
;
 

3) Set mid  
2

22

LU 





;rad  
2

22

LU 



 ; 

4) Initialize 0,0  vx and br 0
; 

5) For  
 
 

























LU

LU

k







log

2loglog
,...,1,0

    do 

6) 
 



















otherwiserad

kifmidrad

kif

2

2

)2/)((

1,/
2

1

00





;      

7) 

 




















otherwise
radmid

kifradradmid

kif
mid

;
4/)()(

1

1);2/()(

0;
1

2

2









; 

k

T rAvv  ; 

8) vxx  ; 

9) Avrr kk   

10) If solution found  write 
1 kxx  and quit endif 

11) Else repeat steps  5 to 9 

12) end for 

(13)  end 
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The QR iterative refinement with residual vector is given below. 

Algorithm: 

1) Let 

^

x  solve bARxR TT   

2) Compute


 xAbr  

3) Solve


 rARwR TT  

4) Compute wxy 


 

 

2. Computing Optimal Regularized Low Rank Inverse Approximation 

Particularly, we are interested in application in the Low rank approximation of a matrix in the form: 

  222

)(

min
FFn

rBrank

BIBA 




                (2.1) 

In equation (2.1), the term B  is a special matrix aimed at approximating the inverse of the matrix A while I  is an identity matrix with a 

scalar  being the Tikhonov regularization parameter aimed to penalize the equation (2.1). 

Low rank matrix approximation is mainly used for data processing technique which helps to reduce noise present in the data and is 

applicable in such varied areas such as signal processing, compressed sensing, image and pattern recognition, and many other 

Engineering practices. 

The singular value decomposition for A  is given by TVUA  ; where nnmm RVRU   , .The matrix B  is an approximate inverse to A . 

Practically, we use the SVD computation for the approximate inverse in place of B  in the form: 

  T

AAA

T

AA UIVB 
12 ,                  (2.2) 

Where the global minimiser mnRB 
^

is then given by the equation 

  222

)(

^

minarg
^

FFn

rBrank

BMIBAB 



           (2.3) 

Using the above information given, the low rank approximation for the matrix A  in terms of SVD is in the form: 

 











222

2
,, 22

minarg,,
Fv

v

Fu
uT

VU

VBUBVUAVU


   

(2.4) 

The matrices appearing in Equation (2.4) are compatible matrices which may be set to a second order finite difference matrices 

[5],[4],and [6]. 

By further setting that: )(xfAb T , and writing the ill-posed problem in the form: 

 bAx , (2.5) 

where ),0(~ 2 N , with unknown variance 2 , and mean 0  has the introduced noise  that is calibrated to a factor 
01.0

2

2

2

2 
Ax

 .The 

corresponding standard Tikhonov regularization for the Pseudo-inverse matrix with respect to 2 is that matrix 

  TT AIAAAA
122 )(


  ,it has negative log likelihood function: 

  

   











































m

i

i

m
bAx

m

m

m

bAxmbAx

bAx
1

2
2

^
2

2
2

^
2

2^

22

^
2

.
2

)(log
2

2
log

2

2

2log
2

2

)(
exp

2

1

log,,















 

                                                                                                                                         (2.6) 

Where, the bias correction term is given by    222 ),,(  TrAPbA eff  . 

As a special case, is the iterated unregularized Land webber method. The method is described in the form. Starting with the sequence 

,...,.)2,1,0(),( 011   kxAxbAxx k

T

kk   ,                      (2.7) 

With  , a fixed parameter. Now at the kth  step in the iteration we have that  

     

      bAAAIIAA

bAAAIxAAIx

TkTT

k

i

TiT
kTT

k
















1

1

0

0                               (2.8) 

We decompose the matrix   TTT VVAA   where, TVVI  . Therefore, using the information as above, we write that: 

  

















k

i

i

i

T

ik

ik v
bu

x
1

211



       (2.9) 

 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 11, (January – June, 2020), 173–180 



176 
 

Information Criteria On…                                        Stephen                             Trans. Of NAMP 

 
 
 

Thus for convergence, it is necessary that 11 2  i , which means that 20 2  i . This upper bound for i
i


2

2


 . Let us note 

that we often take the value of 2

1

  in Equation (2.7). 

For a value of k , it would yield that  
   

11limlim
22

2























 k

i

k

kk

i

kk

i

k 





  for very small value of  . 

 

3. The Ellipsoid for the Data Problem and accompany metric topology. 

It is important in providing ellipsoid for the described data. Before continuing, we give the expository basic set topology necessary for 

understanding the intention in the paper. 

Definition 2.1. Let YXD :  be a set valued map and )( 00 xDy   be given with X  and Y the metric space .Assuming further that 

  RR: be a strictly monotone continuous function with 0)0(  ,the statements  following  hold for adoption in our work: 

(i) F  is  -open around  00 , yx  if there is a neighbourhood U of 0x  and a neighbourhood w  of 0y such that 

  0),(,,)()()(  txFwzUxxBFzB tt
, for which, UxBt )( 0

. 

(ii) F  is approximately  -open around  00 , yx  if there is some non-negative  function 

  RR: with     1/lim 1

0



tt

t
 ,given U of 0x  and a neighbourhood w  of oy  such that for all )(, xFwzUx   and 0t  with 

UxBt )( 0
 implies that 

 


 ])([)( )()( xBFBzB Ttt 
.        (3.1) 

From the above preambles there follows: 

F is -regular around  00 , yx  assuming  one can find a constant 0 , a neighbourhood U  of 0x , a neighbourhood w of 0y such 

that for all wz  and all Ux  with 0)( wxF  induces metric topology  

    )(,)(, 11 xFzdzFxd   .     (3.2) 

Definition 2.2. A mapping nn RRDF :  is a homeomorphism of D  onto )(DF  if F  is one-to-one on D  and F  and 1F  are 

continuous on D  and )(DF , respectively. 

Definition 2.3. A mapping nm RRDF :  is Holder continuous on DD 0
 if there exist constants 0  and )1,0(p  such that, 

for all Dxx 21, , we have that  

p
xxxFxF 1212 )()(   . If 1p , F  is Lipschitz-continuous on 

0D . 

Motivated by the above details, the homeomorphism it carries is stated below: 

 Let X  and Y be metric spaces and YXF : be a set valued map. Suppose 
  RR:  is strictly monotone i.e., continuous 

function and )( 00 xFy  .We say that 
1F  is 1 Lipschitz continuous (LSC ) around  00 , yx  if there exist a neighbourhood w of 

0y  and a neighbourhoodU of 0x  such that (i)  UyF )(1 ,for all wy ;(ii) there exists 0 with the property that for 

every wyy 21,  the inclusion holds verbatim such that: 

 
  

  UyFBUyF
yydk

 2

1

,1

1

21
1





,      (3.3) 

where   rctt   for some 0,0  rc . The map 1 -LSC around  00 , yx is pseudo-Holder at the rate r around  00 , xy .We noted that 

when 1r , it is pseudo- Lipschitz on  00 , xy . 

After all these we are now in a position to consider the closed graph implied by the algorithm as stated earlier. Take Axxx   . If 

nx  is Cauchy, then Xxxn   as YyAxn  .The closed graph induces that yAx   
and Oxxn  . By introducing uniform 

boundedness theorem, that   MxFxFM  :  and taking into existence of Baire category for some 
MF  containing a ball ),( rsB , 

there is rx  which produces   sMMsFxsFxF  )()( . Thus F  is uniformly bounded by the factor  
r

MM s . 

Having taken into consideration that YX , are separable metric spaces and,Y complete, the point wise mapping YXF :  is computable 

provided there exists a strongly continuous tightening. The ellipsoid described by the minimum generator x for the least squares problem 

1.1 is obtained using p-norms. Consider 1p and q  which satisfy the unit ball 
1

11


qp

 .By recalling that 

qp

qp 
 

 it is easy to  
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verify the convexity     yxyx eee   11 . The result is proven by setting 
,log,

1
 px

p


and logqy  . Therefore Holder 

inequality gives
qp

T yxyx  , for
1,1

11
 p

qp

. The unit ball  }1: xx gives the elliptic norm. Using the above it holds that 












qpxnxx
q

qp

pq
1,

11

. By taking 2p  and q  it would yield that 


 xnxx
2

 bounded by a factor n . 

Thus for a vector valued function n

k Rttf ,: 0
the 

p -norm for 1p  is given by 

pt

t

p

p

k

p

dxxff

1

0

)(













 

,       (3.4) 

Where , 

   
pn

i

p

ip
xfxf

1

1









 



, 





kt

t

n

i

i dxxff

0

1
1

)(


,  )(maxsup xfespf i
i




. 

We give the probability measure for the computed errors in the solution. Let nRx
^

, and suppose s is selected uniformly and randomly 

from the unit sphere
1nS  in n-dimension, the expected value of sx

^
is defined to be 

n

T

ExsxE
^^














 .        (3.5) 

The Wallis factor 
nE is given by 

,
2

,1 21


 EE and for 2n , we have that 

)1...(8.6.4.2

)2....(7.5.3.1






n

n
En

,    fornodd;       (3.6) 

)1.(7.5.3.1

)2...(8.6.4.2
.

2






n

n
En



, for n even.      (3.7) 

The estimate for
nE is given by the equation  

 5.0

2




n
En


.         (3.8) 

By further setting
n

T

Esx *
^

  as an approximation for 
^

x ,  and for 1 ,the probability measure is given by 

))((0
2

1Pr
^

^

n

n

n

n

Einv
E

xE
E

x


























.      (3.9) 

We move further to discuss the gamma density  and the moment estimation of parameters  and construct  %98%,95%,75  confidence 

intervals associated with the set of computed vector solution for purpose of reliability in terms of survival and risk analysis. 

Given that  a random variable  
nxxxX ,...,, 21  ( 3n )   be drawn from a sample population with i.i.d random variable, with a 

probability density function )(xf . If the independence of sample mean nX


 and sample coefficient of variation 

n

n

n

X

S
V




 can be 

calculated, the corresponding gamma density  for the rate parameter  and  is defined in the form 

 
0,0,0,),,( 1 


  




 



xexxgamma x .       (3.10) 

where
nS  is the standard deviation . 

Drawn from standard Statistics Texts, it can be obtained that: 

 





n

n

n
XE n

22

2
1

)(



 ; 

2

2 )(



nSE ,    

k

k k
XE



 1...1
)(




, for 1k . 
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To compute   and   , the following procedure is adopted in the sense of  [7]: 22

2

/,/ nnknnk SXSX


  .

n

n

X

S
E

n

n




















 12

2
and 



1

.1

1
lim

1
lim 












 

n

n

n

n

n

nn

. The limiting value 


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Therefore for n large enough, the terms ( i



  ,respectively 
i



 ) ),(    in that order.  

We thus construct confidence intervals in the form of %98%,95,%75  for values of 3,2,1k  as shown below. 
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An alternate form of expression given in Equation (3.12) in the form of ordinary interval is  
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Using the fact that )ln()())(ln(  XE , where   is a digamma function defined as 
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The Kullback-Leibler divergence is the expression given by 
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4. NUMERICAL ILLUSTRATION 
Consider the set of data taken at secondary source in [8] as means of numerical weather computing. The experimental data were taking at a primary source from TRODAN at 

Anyigba, Kogi State University. The period ranges from 2010 to 2013 with average monthly records of Temperatures and relative Humidity as showed in Table 1. 

Table 1  
S/N DATE/TIME TEMPERATURE )( 0O , Y RELATIVE HUMIDITY (%) , X 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

2011-04 

2012-04 

2013-04 

2010-08 

2011-08 

2012-08 

2010-12 

2011-12 

2012-12 

2011-02 

2012-02 

2013-02 

2011-01 

2012-01 

2013-01 

2010-07 

2011-07 

2012-07 

2011-06 

2012-06 

2011-03 

2012-03 

2013-03 

2011-05 

2012-05 

2010-11 

2011-11 

2012-11 

2010-10 

2011-10 

2012-10 

2010-09 

2011-09 

2012-09 

32.002906 

31.331634 

29.887573 

27.060463 

26.438872 

26.191286 

30.039266 

28.355457 

28.638782 

32.267793 

31.043251 

31.063575 

29.062744 

28.816789 

29.158118 

26.048773 

27.902184 

26.945129 

28.900817 

27.873762 

33.950121 

33.401677 

33.303313 

30.639803 

29.369926 

29.471345 

28.170606 

28.891984 

28.214158 

27.204551 

27.401785 

27.053905 

26.616421 

26.590674 

67.961866 

68.431059 

74.096862 

82.752606 

83.023268 

83.452398 

47.560099 

37.122311 

50.906093 

60.666083 

64.010414 

55.738473 

32.955172 

41.495453 

47.972735 

83.517390 

79.944623 

82.449950 

78.000009 

79.053775 

60.316848 

54.788059 

65.349271 

73.495656 

75.301975 

76.122503 

66.909216 

76.298347 

80.737601 

80.169298 

81.294369 

82.342825 

81.995541 

83.569152 
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By using polynomial fit of degree 4, the following system of  normal equation is constructed  

bBx           (4.1) 

Where yAbAAB TT  ,  such that 
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With solution 
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We compute the Wallis factor, and probability measure for the variable Temperature 0 (Y) in the form: 
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Using Komolgorov Test Statistic for the gamma density function 
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We now construct the probability confidence interval  for the Relative Humidity data in the form: 
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That is, 
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On the other hand, we also can present in terms of intervals in the form of %,95%,75 and %98  confidence intervals for  as  
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As point of remark, we could have also constructed both probability measure and confidence interval for the computed solution for the least squares 

problems. Thus the same procedures apply verbatim. 

We compute the square root for the matrix AAB T  

Writing as the Taylor Series, 
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And Hermite formula, 
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We define a function f  on the spectrum of nnCA   for the Jordan canonical form, then TQJQfAf )()(   such that  
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Furthermore, we substitute kk mm

k CJ


  to have  
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It must be noted that Equation (4.6) coincides with that of Equation (4.8) in the long run based on the fact that higher powers of oPk 
.The Lagrange 

polynomial function being adopted is given by 
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Where    f . 

Therefore we obtain the matrix square root for AAB T  by the Lagrange interpolation formula of Equation (4.10 ) with  
4*582300.1)( tetP  , therefore it follows that   44 *582300.1*582300.1)( BeBeBpBf   
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5.0  Conclusion 
Methods for solving the least equations were described and in particular the normal equation approach was used to illustrate the theoretical example based on the data collected 

[8] as a primary source from Lower Atmospheric Studies at  Kogi State University, Kogi State, Anyigba. We reported the probability confidence interval for the Gamma density 

function calculated for the Relative Humidity as well as the interval for the 75%, 95% and 98& confidence interval for the data. We also calculated the Wallis Factor for 

Probability confidence interval for the Atmospheric Temperature. Finally, using the Lagrange interpolation, we were able to obtain the result for the square root of the 

symmetric matrix appearing in the normal equation for the least squares problem provided its eigenvalues are not located in the negative real line,a quite significant advantage in 

Engineering  and Scientific practices in numerical weather Computing. 
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