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Abstract 

 

An investigation on effects of variability in viscosity and thermal conductivity on 

steady mixed convection flow and heat transfer in a vertical channel is carried out. 

The equations of momentum and energy were solved analytically using Homotopy 

perturbation method. The impacts of the several controlling parameters were 

investigated and discussed. From the course of investigation, it was found that fluid 

velocity and temperature increase at fluid section near the heated plate while it 

decrease at section near the cold plate as the viscosity increases. The thermal 

conductivity decreases the fluid velocity gets increased at the heated plate while the 

reverse case was observed at the cold plate. It was further found that a higher mixed 

convection parameter leads to induce a reverse flow. 
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Nomenclature 

g -acceleration due to gravity [ms-2]                 Pr - Prandtl number 

 -coefficient of thermal expansion ][ 1K                  Gr - Grashof number 

*T - dimensional fluid temperature  K                 
Re - Reynold number  

wT  - channel wall temperature  K                  
Ec - Eckert number 

0T  - temperature of the ambience  K                     
 - density of the fluid  3Kgm   

T  - dimensionless fluid temperature                                   
*u  - dimensional velocity [ms-1]   

U - dimensional velocity of the moving plate[ms-1]               h -width of the channel [m]  

y  - dimensionless co-ordinate perpendicular to the plate      *u  - dimensional velocity [ms-1] 

*y -co-ordinate perpendicular to the plate [m]                      p -embedding parameter 

 - thermal diffusivity of the fluid  3Kgm                          - kinematic viscosity [m2s-1]  

pc - specific heat at constant pressure  122  Ksm                   

S -dimensionless heat generation/absorption parameter
        

 -coefficient of viscosity   11  sKgm  

0Q -heat generation/absorption coefficient  131  KsKgm    
 

1 Introduction 

The study of mixed convection flow between vertical channels has considerable applications in Geophysics and many Engineering problems, 

such as cooling nuclear reactors safety analysis, metal waste, spent nuclear fuel and fire. An unsteady mixed convection flow past an infinite 

vertical porous with constant heat source has been considered by Jha [1]. He concluded that fluid velocity decreases with the increase of heat 

source. Jha and Ajibade [2] also carried out extensive study of an unsteady free convective Couette flow of heat generating/absorbing fluid. They 

discovered that increasing the internal heat absorption decreases the skin friction on both plates, while the mass flux is shown to be higher for 

mercury as compared to air since mercury possesses higher temperature and velocity than air. Jer-Huan et al. [3] investigated wall transpiration 

effects on mixed convection and concluded that rate of heat transfer increases with an increase in mixed convection parameter. Jha et al. [4] 

presented steady fully developed mixed convection flow in a vertical parallel micro channel with porous material. They found that increasing 

values of mixed convection parameter leads to decrease in fluid velocity. Hamid and Behnam [5] considered mixed convective rarefied flows 

with symmetric and asymmetric heated walls. They discovered that the friction coefficient increases and decreases with growing mixed 

convection parameter on the hot and cold walls. Borah and Hazarika [6] studied the effects of variable viscosity and thermal conductivity effect 

on the free convection and mass transfer flow. They showed that the temperature decreases with the increase of both viscosity and thermal 
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conductivity parameter. Hazeem and Mostafa [7] presented a study on the efficiency of variation of physical variables on steady flow between 

parallel plates with heat transfer. It was discovered that the viscosity and the thermal conductivity parameter have a more evident effect on the 

velocity and temperature distributions for smaller values of porosity parameter. On the other hand, the thermal conductivity has no substantial 

effect on the velocity. However, it has a marked effect on the temperature. Mohamed [8] analyzed unsteady mixed convection heat transfer along 

vertical stretching surface with variable viscosity. They reported that growing values of mixed convection parameter is to enhance the local heat 

transfer rate for all values of viscosity. Swati and Iswar [9] studied magnetohydrodynamics mixed convection and heat transfer over a vertical 

porous plate. They concluded that fluid velocity increases with the increase in mixed convection. Parash and Hazarika [10] investigated effects of 

variable viscosity and thermal conductivity on unsteady free convective heat and mass transfer. They discovered that viscosity and thermal 

conductivity have significant effects on velocity and temperature distributions within the boundary layer. Anjali-Devi and Prakash [11] studied 

the temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow. Their work discovered that the temperature 

increases with the increase in thermal conductivity. Makungu et al. [12] examined the effect of variable viscosity and thermal radiation over a 

permeable wedge embedded in saturated porous medium with chemical reaction. They reported that the heat transfer rate increase with the 

increase in viscosity. Santana and Hazarika [13] investigated the effects of variable viscosity and thermal conductivity on 

magnetohydrodynamics free convection and mass transfer flow over an inclined vertical surface with heat generation. They discovered that an 

increase of thermal conductivity fluid temperature decreases. Macha and Naikoti [14] presented mixed convection analysis of heat and mass 

transfer. They showed that fluid velocity increases with an increase in mixed convection parameter whereas increasing values of mixed 

convection parameter decreases the temperature profile. Muhammad et al. [15] studied viscous dissipation effect on the mixed convection 

boundary layer flow. They found that an increase in mixed convection parameter and Prandtl number has decreased the thermal boundary layer 

thickness. Prathap et al. [16] presented viscous dissipation on mixed convection flow using Robin boundary conditions. They discovered that an 

increasing mixed convection parameter increases the reversal of flow at both plates. Hazarika and Bandita [17] analyzed the effects of variable 

viscosity and thermal conductivity on magnetohydrodynamics free convection flow of a micropolar fluid past a stretching plate through porous 

medium with radiation, heat generation and joule dissipation. They showed that thermal conductivity decreasing the temperature whereas 

viscosity increases it. Ajibade and Thomas [18] studied entropy generation due to steady mixed convection flow in a vertical porous channel. 

They reported that fluid velocity increases with an increase in mixed convection parameter. Jha and Aina [19] analyzed effect of induced 

magnetic field on magnetohydrodynamics mixed convection flow in a vertical micro-channel. They reported that increasing the mixed 

convection parameter leads to a reduction in the fluid velocity at the cold wall while the reverse trend is observed at the heated wall. Ajibade and 

Tafida [20] examined viscous dissipation effect on steady natural convection Couette flow of heat generating fluid in a vertical channel. They 

discovered that fluid temperature and velocity increase with an increase in viscous dissipation. In another article, Ajibade and Tafida [21] 

considered viscous dissipation effect on a steady generalised Couette flow of heat generating/absorbing fluid in a vertical. They reported that 

fluid temperature and velocity increase with an increase in Eckert number. 

The objective of the present study is to investigate the effects of variability in viscosity and thermal conductivity on steady mixed convection 

flow and heat transfer in a vertical channel. The equations governing the flow are non linear and coupled so that obtaining closed form solution is 

a daunting task. Such problems can therefore be approached by numerical schemes or some approximate solution methods. One of the efficient 

methods is the perturbation method. However, solutions obtained by perturbation method are restricted to small perturbation parameters; 

therefore to overwhelm this restriction, alternative method called Homotopy perturbation method was presented. The convergence of the 

Homotopy perturbation method is so rapid that just a few terms of the series solution is required to achieve a high accuracy of the solutions. 

The concept of Homotopy Perturbation Method (HPM) was initially introduced by He [22] to solve linear, non-linear and coupled equations in 

partial or ordinary form. He [23] studied a coupling method of a Homotopy technique and perturbation technique for non-linear problems. He 

[24] studied a new non-linear analytical technique using Homotopy perturbation method. He [25] also introduce the new method to solve non-

linear and boundary value problems (BVP) and further established the Homotopy perturbation method for solving nonlinear initial and boundary 

value problems by combining the standard Homotopy in topology and the perturbation technique. By this method, a speedy convergent series 

solution can be obtained in most of the cases. Normally, a few terms of the series solution can be used for numerical calculations. Abaker [26] 

analyzed solution of linear and non linear Schrodinger equation using Homotopy perturbation method and variational iteration method. They 

concluded that Homotopy perturbation method is very efficient and powerful to get the exact solution and also gives more sensible series 

solutions that converge very fast in physical problems. Because of nonlinearity and coupling of the governing equations in the present situation, 

the Homotopy perturbation shall be engaged to obtain the solutions. Abou-Zeid [27] examined Homotopy perturbation method for 

magnetohydrodynamics non-Newtonian nanofluid flow through a porous medium in eccentric annuli with peristalsis. 
 

2 Mathematical Analysis 

The present problem considers unsteady mixed convection flow of an incompressible viscous fluid in a vertical channel formed by two infinite 

parallel plates. The *x - axis is taken vertically parallel to one of the plates of the channel and normal to the *y  - axis. The plate at 0y   
moves 

impulsively in its own plane with uniform velocity U while the other plate, which is placed h  distance away from the first one remain stationary. 

The fluid flow is set up due to the applied pressure gradient, movement of one of the channel plates as well as density change caused by the 

asymmetric heating of the channel boundary plates, hence, the present situation describes a mixed convection flow in a vertical channel. The flow 

configuration and coordinates system is shown in figure 1.  

  
Figure 1: Schematic diagram of the problem 
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Under the usual assumption of Boussinesq's approximation, the governing dimensional equations of the energy and momentum are: 
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Here *u is the dimensional velocity, *T  is the dimensional temperature. *y  is the dimensional distance.   is the coefficient of thermal 

expansion,   is the density of the fluid, 
pc  is the specific heat constant pressure, 

0Q  is the heat generation/absorption coefficient, *k  is the 

thermal conductivity, 
*

*

dx

dP  is the applied pressure gradient and g  is the acceleration due to gravity. 

The viscosity and thermal conductivity of the working fluid are assumed to vary linearly with temperature as follows 
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while the boundary conditions that satisfy the problem are: 
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where U is the velocity of the moving plate, 
wT  is the temperature of the heated plate and 

0T  temperature of the cold plate respectively. By 

introducing the following dimensionless quantities: 
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Where u  is the dimensionless velocity, T  is the dimensionless temperature, y  is the dimensionless coordinate normal to the channel walls, Pr  

is the Prandtl number, S  is the heat generation/absorption,   the viscosity coefficient, Ec  is the viscous dissipation and Gre  is the ratio of 

Grashof number to that of the Reynolds number.  

Applying the usual Boussinesq approximation to equations (1) and (2), the momentum and energy equations in the dimensionless form are 
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 The boundary conditions in the dimensionless form for the physical system considered in the present work are:  

,1u ,1T  at ,0y  

,0u ,0T  at .1y       (7) 

 

2.1 Solution by Homotopy Perturbation Method 

Apply the Homotopy perturbation technique to solve the governing equations in the present problem, we Construct a convex Homotopy on 

equations (5) and (6) to get 
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Simplify 
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using infinite series  (5) and (6) to define u and T as follows 
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Substituting (12) into (10) and (11) and simplifying, we have the following 
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Since the zeroth order of the homotopy gives a linear ordinary differential equation, it is easily solvable without making recourse to initial guess. 

Therefore solving (15) and (16) and applying the boundary conditions 1)0(0 u  and 0)1(0 u ,  1)0(0 T  and 0)1(0 T , we obtain the 

zeroth order solutions 
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Equations (22) - (27) gives the approximation solutions for velocity and temperature as 

....210.  uuuu             (28)
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2.2 Pressure Gradient 

In order to find pressure gradient in the present problem, we assumed that the flow has a constant mass flux q  and use the assumption to 

determine the pressure gradient that drives the flow  

 
1

0
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Where q  is the mass flux constant. Then the pressure gradient can be expressed as 
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To find the critical values of Gre  after which a reverse flow sets in near the stationary plate, we evaluate 0
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du , and found that 
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 To obtain the skin friction and rate of heat transfer at both plates, the expression for temperature and velocity are differentiated with respect to

y , that is  
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We further obtain the mass flux Q by evaluating the integral  

,
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0 udyQ                   (37) 

Also mean temperature ,m   we have 
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3 Results and Discussion 

The present problem considers effects of variability in viscosity and thermal conductivity on steady mixed convection flow and heat transfer in a 

vertical channel using Homotopy Perturbation method controlled by a number of physical parameters such as the variable viscosity ),(  variable 

thermal conductivity ),(  Prandtl number (Pr),  viscous dissipation ),(Ec  mixed convection parameter ),(Gre  and heat generation/absorption 

parameter ),(S  the constant mass flux )(q  and also the critical values of ),(Gre  which signal the onset of reverse flow near the stationary plate, 

the skin friction ),(  rate of heat transfer ),(Nu  pressure gradient 









dx

dP  and mean temperature )( m
 are presented in tables. In this discussion, 

the value of Pr  used is 0.71 which corresponds to air, the values of S  are chosen between -2.0 to 2.0 to account for heat generation )0( S  as 

well as heat absorption )0( S  through the plates. All other parameters of interest are selected arbitrarily between ,0.11.0  Ec  

,0.250.5 Gre 0 since the viscosity of air and its thermal conductivity increases with growing temperature, we will consider the viscosity 

parameter )0(   and conductivity parameter )0(   throughout this discussion. 

Figures 2 and 3 illustrate the effect of Prandtl number on fluid velocity and temperature. Increase in Prandtl number Pr  has generated two 

opposing trends in velocity and temperature within the channels. Near the heated plate, it is observed that fluid velocity increases with an increase 

in Prandtl number. However, increase in Prandtl number has an increasing effect on velocity near the cold plate as shown in figure 2. On the 

other hand, the reverse trend is observed in fluid temperature as shown in figure 3. This is physically expected because an increase in Prandtl 

number Pr  decreases the thermal diffusivity of the working fluid, which reduces the thermal boundary layer thickness and energy mobility. 

Therefore the transmission of heat generated by viscous dissipation reduces as Prandtl number increasing, causing heat accumulation. 

The effect of viscous dissipation Ec  on the velocity and temperature profiles are observed in figures 4 and 5. It is observed that fluid velocity 

increases at fluid section adjacent to the heated plate while it decreases at section adjacent to the cold plate as the viscous dissipation increases. 

However, the reverse trend is observed in fluid temperature as shown in figure 5. Also greater viscous dissipative heat causes rise in velocity as 

well as temperature and as consequences greater buoyancy force so that fluid velocity increases as viscous dissipation increases. 

The effect of mixed convection parameter Gre  on the velocity and temperature profiles are presented in figures 6 and 7. Increase in mixed 

convection parameter has generated two opposing trends in velocity within the channel. Near the heated plate, it is discovered that mixed 

convection parameter leads to corresponding rise in velocity and the opposite trend is discovered near the cold plate as shown in figure 6. On the 

other hand, growing mixed convection parameter increased the convection current within the channel so that fluid temperature is observed to 

increase as mixed convection parameter is increased as shown in figure 7. This is physically true since higher value of mixed convection 

parameter Gre  implies an improved buoyancy force which is higher when compared to the viscous force. 

The influence of heat generation/absorption on the fluid velocity and temperature are presented in figures 8 and 9. It should be noted that )0( S  

represents heat generation while )0( S  represents heat absorption. It is clearly discovered from the figure 8 that fluid velocity increases near the 

heated plate as a result of increase of heat generation parameter, while the reverse trend is observed on the cold plate. Moreover, fluid 

temperature increases as the heat generation )0( S  increases, while it decreases with the increase in heat absorption )0( S . The influence of 

temperature increase is the strengthening of the convection current which has the capacity to increase the fluid velocity. However, the pressure 

gradient application is one that maintains a constant flow rate so that velocity is conditioned to decrease near the cold plate. 

The influence of viscosity variation   on the fluid velocity and temperature are shown in figures 10 and 11. It is clearly seen that fluid velocity 

and temperature increase at fluid section near the heated plate while they decrease at section near the cold plate as the viscosity increases. This is 

attributed to reduction in diffusivity due to increase viscosity and dominance of applied boundary heating over the viscous dissipation near the 

heated plate whereas near the cold plate. In addition to these, an increasing viscosity corresponds to the increasing resistance to flow which 

suppress the velocity of the working fluid, decreasing the viscosity contributes a decrease in the temperature of the working fluid. 

The effect of variable thermal conductivity parameter   on the velocity and temperature profiles are observed in figure 12 and 13. The thermal 

conductivity   of the fluid increases the fluid velocity adjacent to the heated plate and decreases adjacent to the cold plate while the reverse case 

is observed on the fluid temperature. An increase in the thermal conductivity of the fluid which causes an increase in the thermal boundary layer 

thickness resulting in temperature increase in the channel. The thermal boundary layer thickness is also increased due to the corresponding 

strengthening of the convection currents caused by increase in the thermal conductivity and fluid velocity increases. 

Table 1 exhibits the numerical value of Gre  which signaling the onset of reverse flow near the stationary plate. A general view of this table 

indicates that an increase in the thermal conductivity and heat generation decreases the critical value of Gre  for which reverse flow sets in 

adjacent the plate )1( y . However, mixed convection parameter decreases with the increase in both thermal conductivity and viscosity. In 

addition to these, an increase in mixed convection parameter increases the reverse flow region and the critical value of the mixed convection 

parameter leading to the flow reversal. The table further shows that mixed convection parameter increases due to growing heat absorption. That 

is, it requires a reduced Gre  to bring about a reverse flow near the plate whenever the buoyancy is enhanced. On the other hand, the critical value 

decreases when the working fluid is air as compared to that of mercury.  

The skin friction on both boundary surfaces are simulated and presented in table 2. It clearly seen from table 2 that an increase in thermal 

conductivity have tendency to increase the skin friction on both plates. Furthermore, skin friction decreases as viscosity increases. The table 

further shows that the skin friction drops when the working fluid is air as compared to that of mercury. This is physically expected since an 

increase in Prandtl number Pr  decreases the thermal diffusivity of the working fluid. 

Table 3 presents the numerical values of rate of heat transfer on both boundary surfaces. It is clearly discovered that the rate of heat transfer 

increases with an increase in thermal conductivity at the heated plate and decreases at the cold plate. This is physically true since fluid 

temperature increases with an increase in thermal conductivity near the heated plate and decreases near the cold plate. More so, the rate of heat 

transfer is higher when the working fluid is air as compared to that of mercury. Finally, rate of heat transfer decreases as viscosity increases near 

the heated plate, the reverse trend is observed near the cold plate. 
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Table 4 shows the numerical values of mass flux Q . It is discovered that mass flux decreases with an increase in the thermal conductivity. 

However, mass flux increases with an increase in Prandtl number. 

The numerical values of pressure gradient 









dx

dP  and mean temperature )( m  are indicated in table 5. An observation from table 5 is that pressure 

gradient and mean temperature decrease when the thermal conductivity increases. However, pressure gradient increases as viscosity increases 

while the reverse trend is observed in mean temperature. The table further shows that the pressure gradient increases with an increase in Prandtl 

number Pr . An increase in Prandtl number requires an increase in pressure gradient. 

 

4 Validation of Results 

By setting the mixed convection term Gre , viscous dissipation term Ec , variable viscosity term  , variable thermal conductivity term   and 

pressure gradient 

dx

dP  to zero in the present problem, we recover the results of Jha and Ajibade (2010). The comparison is presented in table 6 

which shows that the Homotopy perturbation method is an efficient tool for solving coupled and nonlinear system of differential equations. 
 

5 Conclusions 

In this paper the effects of variability in viscosity and thermal conductivity on steady mixed convection flow and heat transfer in a vertical 

channel. Equations of momentum and energy are obtained and solved using Homotopy perturbation method. The following major findings have 

been drawn from the present work. The thermal conductivity of the fluid increases the fluid velocity adjacent to the heated plate and decreases 

adjacent to the cold plate while the reverse case is observed on the fluid temperature. Fluid velocity and temperature increases at fluid section 

near the heated plate while it decreases at section near the cold plate as the viscosity increases. It was further discovered that a higher mixed 

convection parameter leads to induce a reverse flow. In addition, a comparison made between present work with those of Jha and Ajibade (2010) 

shows that the present work agrees significantly with Jha and Ajibade (2010). Finally, thermal conductivity and variable viscosity are important 

fluid properties. 

 

 

            
Fig 2: Velocity profile for different values of       Fig 3: Temperature profile for different values  Fig 4: Velocity profile for different values of 
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Fig 5: Temperature profile for different values        Fig 6: Velocity profile for different values of Fig 7: Temperature profile for different values 
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Fig 8: Velocity profile for different values of        Fig 9: Temperature profile for different values            Fig 10: Velocity profile for different values of 
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 Fig 11: Temperature profile for different values    Fig 12: Velocity profile for different values of         Fig 13: Temperature profile for different values 
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)0.1,0.15  qGre
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Table 1: Critical values of  Gre  at the plate 1y   

                 ,2.0,1.0  
           

,5.0,1.0             ,5.0,3.0  
 

    
               6.0Ec                               6.0Ec              6.0Ec  

               S                   1cGre                        2cGre                       3cGre  

                       0.2        20922.102          18867.102      55230.69   

     044.0Pr         0.1       28516.102                      26700.102    77785.74  

                                       0.1         46948.102    45901.102       88285.87  

                         0.2          58285.102     57842.102       25312.96    

      0.2          19963.102     17677.102       54232.73    

      71.0Pr       0.1          27438.102     25354.102       44131.79    

         0.1          45553.102     44132.102       48243.94    

         0.2          56673.102     55781.102       04279.102          

             

Table 2: Estimated Numerical Values of Skin Friction 0  and 1   

       ,0.8,6.0  GreEc
      

,0.8,6.0  GreEc
  

      
0.1,3.0  S           0.1,3.0  S   

                            0                  1                            0                1                    

         0.1       75589.2        73610.3        71891.2      45770.3                  

    044.0Pr       5.0        78275.2        76150.3            74885.2      47819.3  

           5.0         83647.2        81231.3        80872.2      51912.3                  

           0.1       86334.2        83771.3             83866.2      53959.3  

    0.1          72576.2        67736.3             68324.2      40954.3  

  71.0Pr             5.0          75610.2        71441.3             71761.2       43963.3  

      5.0          81678.2        78850.3             78636.2       49982.3  

      0.1          84712.2        82554.3             82073.2       52991.3  
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Table 3: Estimated Numerical Values of Rate of Heat Transfer 0Nu  and 1Nu   

     ,0.8,6.0  GreEc
     

,0.8,6.0  GreEc
  

     
0.1,3.0  S       0.1,3.0  S   

                          0Nu
  

           1Nu                      0Nu             1Nu                    

         0.1       07569.1        24554.1        06871.1       25261.1                  

    044.0Pr       5.0        13208.1        08211.1              12663.1      08640.1  

           5.0         67686.1        62821.0        67489.1       62692.0                  

           0.1       16523.2        33773.0             16523.2       33365.0  

    0.1          97983.1        16009.2             87585.1       27850.2  

  71.0Pr               5.0          71466.1        73586.1              63196.1       80853.1  

      5.0          72310.1        57127.0             69240.1       55248.0  

      0.1          99670.1        16908.0             99670.1       23361.0  
 

Table 4: Estimated Numerical Values of Mass Flux Q   

                    ,0.8,6.0  GreEc
           

,0.8,6.0  GreEc
  

                     
0.1,3.0  S             0.1,3.0  S   

                                Q
  
                                Q                                

          0.1        77748.0                  79853.0                       

    044.0Pr        5.0         75383.0                         77474.0        

             5.0          70653.0                   72717.0                       

              0.1        68288.0                         70339.0        

                   0.1           81261.0                         83688.0        

    71.0Pr                          5.0           78222.0                         80640.0        

           5.0           72143.0                         74546.0        

        0.1           69104.0                        71498.0        
 

Table 5: Estimated Numerical Values of Pressure Gradient 
dx

dP
 and m   

       ,0.8,6.0  GreEc
            

,0.8,6.0  GreEc
  

       
0.1,3.0  S               0.1,3.0  S   

                               

dx

dP
  

             m                            
dx

dP
             m                    

         0.1       17032.60        90606.0              79576.85      87124.0                 

    044.0Pr       5.0        53653.55        67236.0              19408.83      64371.0  

           5.0         80655.46        15803.0               65516.73      14400.0                  

           0.1       68983.42        12585.0              70960.68      13121.0  

    0.1          71773.70        99907.0              51063.95      95847.0  

   71.0Pr             5.0          21982.64        73535.0              91547.89       70217.0  

      5.0          14159.52        14125.0              16144.78       12671.0  

      0.1          52556.46        19500.0              98320.71       19781.0  
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Table 6: Comparison of Numerical Values between the Present Problem and Jha and Ajibade  

   (2010) 
  

Jha and Ajibade (2010)   Present Work
             

                )0.1,0.10  qGre                     5.0,0,71.0Pr,10  yEcGre    

      S   Temperature                  Velocity                                  Temperature         Velocity                     
 
 

     0.1  56975.0            19747.1        56901.0           19813.1                    

     5.0   53297.0     19747.1                   53289.0           16156.1             

     5.0                  47030.0     19747.1             47039.0           09412.1                          

        0.1                    44341.0                 19747.1                             44401.0           06609.1                          
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